A Multivariate Student's t-Distribution

Daniel T. Cassidy
Department of Engineering Physics, McMaster University, Hamilton, ON, Canada
Email: cassidy@mcmaster.ca

Received 29 March 2016; accepted 14 June 2016; published 17 June 2016
Copyright © 2016 by author and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Open Access

Abstract

A multivariate Student's \boldsymbol{t}-distribution is derived by analogy to the derivation of a multivariate normal (Gaussian) probability density function. This multivariate Student's \boldsymbol{t}-distribution can have different shape parameters v_{i} for the marginal probability density functions of the multivariate distribution. Expressions for the probability density function, for the variances, and for the covariances of the multivariate \boldsymbol{t}-distribution with arbitrary shape parameters for the marginals are given.

Keywords

Multivariate Student's \boldsymbol{t}, Variance, Covariance, Arbitrary Shape Parameters

1. Introduction

An expression for a multivariate Student's \boldsymbol{t}-distribution is presented. This expression, which is different in form than the form that is commonly used, allows the shape parameter v for each marginal probability density function (pdf) of the multivariate pdf to be different.

The form that is typically used is [1]

$$
\begin{equation*}
\frac{\Gamma((v+n) / 2)}{\Gamma(v / 2)(\pi v)^{n / 2}|\Sigma|}\left(1+[x]^{\mathrm{T}} \Sigma^{-1}[x]\right)^{-(v+n) / 2} . \tag{1}
\end{equation*}
$$

This "typical" form attempts to generalize the univariate Student's \boldsymbol{t}-distribution and is valid when the n marginal distributions have the same shape parameter v. The shape of this multivariate t-distribution arises from the observation that the pdf for $[\boldsymbol{x}]=[\boldsymbol{y}] / \sigma$ is given by Equation (1) when $[\boldsymbol{y}]$ is distributed as a multivariate normal distribution with covariance matrix $[\Sigma]$ and σ^{2} is distributed as chi-squared.

The multivariate Student's \boldsymbol{t}-distribution put forth here is derived from a Cholesky decomposition of the scale matrix by analogy to the multivariate normal (Gaussian) pdf. The derivation of the multivariate normal pdf is

[^0]given in Section 2 to provide background. The multivariate Student's \boldsymbol{t}-distribution and the variances and covariances for the multivariate \boldsymbol{t}-distribution are given in Section 3 . Section 4 is a conclusion.

2. Background Information

2.1. Cholesky Decomposition

A method to produce a multivariate pdf with known scale matrix $\left[\Sigma_{s}\right.$] is presented in this section. For normally distributed variables, the covariance matrix $[\Sigma]=\left[\Sigma_{s}\right]$ since the scale factor for a normal distribution is the standard deviation of the distribution. An example with $n=4$ is used to provide concrete examples.

Consider the transformation $[y]=[M][x]$ where $[y]$ and $[x]$ are 4×1 column matrices, $[M]$ is 4×4 square matrix, and the elements of $[x]$ are independent random variables. The off-diagonal elements of $[M]$ introduce correlations between the elements of $[y]$.

$$
\left[\begin{array}{l}
\boldsymbol{y}_{1} \tag{2}\\
\boldsymbol{y}_{2} \\
\boldsymbol{y}_{3} \\
\boldsymbol{y}_{4}
\end{array}\right]=\left[\begin{array}{cccc}
m_{1,1} & 0 & 0 & 0 \\
m_{2,1} & m_{2,2} & 0 & 0 \\
m_{3,1} & m_{3,2} & m_{3,3} & 0 \\
m_{4,1} & m_{4,2} & m_{4,3} & m_{4,4}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{x}_{1} \\
\boldsymbol{x}_{2} \\
\boldsymbol{x}_{3} \\
\boldsymbol{x}_{4}
\end{array}\right]
$$

The scale matrix $\left[\Sigma_{s}\right]=[M][M]^{\mathrm{T}}$. The covariance matrix [Σ] has elements $\Sigma_{i, j}=\mathrm{E}\left\{\boldsymbol{y}_{\boldsymbol{i}} \boldsymbol{y}_{\boldsymbol{j}}\right\}$ where $\mathrm{E}\left\{\boldsymbol{y}_{i} \boldsymbol{y}_{j}\right\}$ is the expectation of $\boldsymbol{y}_{\boldsymbol{i}} \boldsymbol{y}_{j}$ and $\Sigma_{i, j}=\Sigma_{j, i}$. If the [$\left.\boldsymbol{x}\right]$ are normally distributed, then
$[\Sigma]=\left[\Sigma_{s}\right]=[M][M]^{\mathrm{T}}$, where the superscript T indicates a transpose of the matrix. If $\left[\Sigma_{s}\right]$ is known, then [M] is the Cholesky decomposition of the matrix [Σ_{s}] [2].
For the 4×4 example of Equation (2),

$$
\left[\Sigma_{s}\right]=\left[\begin{array}{cccc}
m_{1,1}^{2} & m_{1,1} m_{2,1} & m_{1,1} m_{3,1} & m_{1,1} m_{4,1} \tag{3}\\
m_{1,1} m_{2,1} & m_{2,1}^{2}+m_{2,2}^{2} & m_{2,1} m_{3,1}+m_{2,2} m_{3,2} & m_{2,1} m_{4,1}+m_{2,2} m_{4,2} \\
m_{1,1} m_{3,1} & m_{2,1} m_{3,1}+m_{2,2} m_{3,2} & m_{3,1}^{2}+m_{3,2}^{2}+m_{3,3}^{2} & m_{3,1} m_{4,1}^{2}+m_{3,2} m_{4,2}+m_{3,3}^{2} m_{4,3}^{2} \\
m_{1,2} m_{4,1} & m_{2,1} m_{4,1}+m_{2,2} m_{4,2} & m_{3,1} m_{4,1}+m_{3,2} m_{4,2}+m_{3,3} m_{4,3} & m_{4,1}^{2}+m_{4,2}^{2}+m_{4,3}^{2}+m_{4,4}^{2}
\end{array}\right] .
$$

From linear algebra, $\operatorname{det}\left([M]\left[M^{\mathrm{T}}\right]\right)=\operatorname{det}[M] \operatorname{det}[M]^{\mathrm{T}}=(\operatorname{det}[M])^{2}$. For $[M]$ as defined in Equation (2), $\operatorname{det}[M]=m_{1,1} m_{2,2} m_{3,3} m_{4,4}$ and $\operatorname{det}\left[\Sigma_{s}\right]=m_{1,1}^{2} m_{2,2}^{2} m_{3,3}^{2} m_{4,4}^{2}=(\operatorname{det}[M])^{2}$ whereas $\Sigma_{i, i}=\mathrm{E}\left\{\boldsymbol{y}_{\boldsymbol{i}} \boldsymbol{y}_{\boldsymbol{i}}\right\}=\sigma_{y_{i}}^{2}$ is the variance of the zero-mean random variable $\boldsymbol{y}_{\boldsymbol{i}}$ and $\Sigma_{i, j}=\mathrm{E}\left\{\boldsymbol{y}_{i} \boldsymbol{y}_{j}\right\}=\sigma_{y_{i_{j}}}^{2}$ is the covariance of the zero-mean random variables $\boldsymbol{y}_{\boldsymbol{i}}$ and $\boldsymbol{y}_{\boldsymbol{j}}$.

2.2. Multivariate Normal Probability Density Function

To create a multivariate normal pdf, start with the joint pdf $f_{N}([x])$ for n unit normal, zero mean, independent random variables $[x]$:

$$
\begin{equation*}
f_{N}([x])=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} x_{i}^{2}\right)=\frac{1}{\sqrt{(2 \pi)^{n}}} \exp \left(-\frac{1}{2}[x]^{\mathrm{T}}[x]\right) \tag{4}
\end{equation*}
$$

where $[x]$ is an n-row column matrix: $[x]^{\mathrm{T}}=\left[x_{1}, x_{2}, \cdots, x_{n}\right] . f_{N}([x]) \mathrm{d} x_{1} \mathrm{~d} x_{2} \cdots \mathrm{~d} x_{n}$ gives the probability that the random variables $[x]$ lie in the interval $[x]<[x] \leq[x]+[\mathrm{d} x]$.

The requirement for zero mean random variables is not a restriction. If $\mathrm{E}\left\{\boldsymbol{x}_{i}\right\}=\mu_{i}$, then $x_{i}^{\prime}=x_{i}-\mu_{i}$ is a zero mean random variable with the same shape and scale parameters as $\boldsymbol{x}_{\boldsymbol{i}}$.

Use Equation (2) to transform the variables. The Jacobian determinant of the transformation relates the products of the infinitesimals of integration such that

$$
\begin{equation*}
\mathrm{d} x_{i} \mathrm{~d} x_{2} \cdots \mathrm{~d} x_{n}=\left|\frac{\partial\left(x_{1}, x_{2}, \cdots, x_{n}\right)}{\partial\left(y_{1}, y_{2}, \cdots, y_{n}\right)}\right| \mathrm{d} y_{1} \mathrm{~d} y_{2} \cdots \mathrm{~d} y_{n} . \tag{5}
\end{equation*}
$$

The magnitude of the Jacobian determinant of the transformation $[y]=[M][x]$ is (Appendix)

$$
\begin{equation*}
\left|\frac{\partial\left(x_{1}, x_{2}, \cdots, x_{n}\right)}{\partial\left(y_{1}, y_{2}, \cdots, y_{n}\right)}\right|=\left|\frac{1}{\operatorname{det}[M]}\right|=\left|\frac{1}{\sqrt{\operatorname{det}\left[\Sigma_{s}\right]}}\right| \tag{6}
\end{equation*}
$$

where the equality $\operatorname{det}\left[\Sigma_{s}\right]=(\operatorname{det}[M])^{2}$ has been used.
Since $\left[\Sigma_{s}\right]=[M][M]^{\mathrm{T}},\left[\Sigma_{s}\right]^{-1}=\left([M]^{\mathrm{T}}\right)^{-1}[M]^{-1}$, and since $[x]=[M]^{-1}[y]$, the multivariate "z-score" $[x]^{\mathrm{T}}[x]$ becomes $[y]^{\mathrm{T}}\left([M]^{\mathrm{T}}\right)^{-1}[M]^{-1}[y]=[y]^{\mathrm{T}}\left[\Sigma_{s}\right]^{-1}[y]$, which equals $[y]^{\mathrm{T}}[\Sigma]^{-1}[y]$ since $\left[\Sigma_{s}\right]=[\Sigma]$ for normally distributed variables.

The result is that the unit normal, independent, multivariate pdf, Equation (4), becomes under the transformation Equation (2)

$$
\begin{equation*}
f_{N}([y])=\frac{1}{\sqrt{(2 \pi)^{n} \mid \operatorname{det}\left[\Sigma_{s}\right]}} \exp \left(-\frac{1}{2}[y]^{\mathrm{T}}\left[\Sigma_{s}\right]^{-1}[y]\right) \tag{7}
\end{equation*}
$$

where $[y]$ is a n-row column matrix: $[y]^{\mathrm{T}}=\left[y_{1}, y_{2}, \cdots, y_{n}\right]$ and $\left[\Sigma_{s}\right]=[\Sigma]$.
For the 4×4 example,

$$
[M]^{-1}=\left[\begin{array}{cccc}
\frac{1}{m_{1,1}} & 0 & 0 & 0 \tag{8}\\
-\frac{m_{2,1}}{m_{1,1} m_{2,2}} & \frac{1}{m_{2,2}} & 0 & 0 \\
\frac{m_{3,2} m_{2,1}-m_{3,1} m_{2,2}}{m_{1,1} m_{2,2} m_{3,3}} & -\frac{m_{3,2}}{m_{2,2} m_{3,3}} & \frac{1}{m_{3,3}} & 0 \\
m_{1,4}^{-1} & \frac{m_{4,3} m_{3,2}-m_{4,2} m_{3,3}}{m_{2,2} m_{3,3} m_{4,4}} & -\frac{m_{4,3}}{m_{3,3} m_{4,4}} & \frac{1}{m_{4,4}}
\end{array}\right]
$$

from which $\left[\Sigma_{s}\right]^{-1}=\left([M]^{\mathrm{T}}\right)^{-1}[M]^{-1}$ can be calculated. In Equation (8),

$$
\begin{equation*}
m_{1,4}^{-1}=-\frac{m_{2,1} m_{3,2} m_{4,3}-m_{4,2} m_{2,1} m_{3,3}-m_{2,2} m_{3,1} m_{4,3}+m_{4,1} m_{2,2} m_{3,3}}{m_{1,1} m_{2,2} m_{3,3} m_{4,4}} \tag{9}
\end{equation*}
$$

The denominator in the expression for $m_{1,4}^{-1}$ is $\operatorname{det}[M]$.

3. Multivariate Student's \boldsymbol{t} Probability Density Function

A similar approach can be used to create a multivariate Student's \boldsymbol{t} pdf. Assume truncated or effectively truncated \boldsymbol{t}-distributions, so that moments exist [3] [4]. For simplicity, assume that support is $[\mu-b \beta, \mu+b \beta$] where b is a positive, large number, β is the scale factor for the distribution, and μ is the location parameter for the distribution. If b is a large number, then a significant portion of the tails of the distribution are included. If $b=\infty$ then all of the tails are included.

Start with the joint pdf for n independent, zero-mean (location parameters $[\mu]=0$) Student's t pdfs with shape parameters $[v]$, and scale parameters $[\beta]=1$:

$$
\begin{equation*}
f_{t}([x] ;[v])=\prod_{i=1}^{n} \frac{\Gamma\left(\left(v_{i}+1\right) / 2\right)}{\Gamma\left(v_{i} / 2\right) \sqrt{\pi v_{i}}}\left(1+\frac{x_{i}^{2}}{v_{i}}\right)^{-\left(v_{i}+1\right) / 2}=\prod_{i=1}^{n} g_{i}\left(x_{i} ; v_{i}\right) \tag{10}
\end{equation*}
$$

with $-\infty \leq x_{i} \leq+\infty . f_{t}([x] ;[v]) \mathrm{d} x_{1} \mathrm{~d} x_{2} \cdots \mathrm{~d} x_{n}$ gives the probability that a random draw of the column matrix $[\boldsymbol{x}]$ from the joint Student's \boldsymbol{t}-distribution lies in the interval $[x]<[\boldsymbol{x}] \leq[x]+[\mathrm{d} x]$. The pdf $g_{i}\left(x_{i} ; v_{i}\right)$ is a function of only x_{i} and the shape parameter v_{i}, and thus is independent of any other $g_{j}\left(x_{j} ; v_{j}\right), j \neq i$.

Use the transformation of Equation (2) to create a multivariate pdf

$$
\begin{equation*}
f_{t}([y] ;[v])=\frac{1}{\mid \operatorname{det}[M]} \prod_{i=1}^{n} \frac{\Gamma\left(\left(v_{i}+1\right) / 2\right)}{\Gamma\left(v_{i} / 2\right) \sqrt{\pi v_{i}}}\left(1+\frac{\left(\sum_{j=1}^{i} m_{i, j}^{-1} y_{j}\right)^{2}}{v_{i}}\right)^{-\left(v_{i}+1\right) / 2} \tag{11}
\end{equation*}
$$

The solution $x_{i}=\sum_{j=1}^{i} m_{i, j}^{-1} y_{j}$ of the transformation Equation (2) was used. The elements of the inverse matrix $[M]^{-1}, m_{i, j}^{-1}$, are given in terms of the $m_{i, j}$ by Equation (8) for the $n=4$ example. Note that the shape parameters v_{i} of the constituent distributions need not be the same in the multivariate \boldsymbol{t}-distribution given by $f_{t}([y] ;[v])$.
$f_{t}([y] ;[v]) \mathrm{d} y_{1} \mathrm{~d} y_{2} \cdots \mathrm{~d} y_{n}$ gives the probability that a random draw of the column matrix $[y]$ from the multivariate Student's \boldsymbol{t}-distribution with shape parameters $[v]$ lies in the interval $[y]<[\boldsymbol{y}] \leq[y]+[\mathrm{d} y]$.

From the definition of the exponential function $\mathrm{e}^{x}=\lim _{n \rightarrow \infty}(1+x / n)^{n}$ where $\mathrm{e}=2.718281828 \cdots$ is Euler's number, then

$$
\begin{equation*}
\lim _{v \rightarrow \infty}\left(1+\frac{t^{2}}{v}\right)^{-(v+1) / 2}=\exp \left(-t^{2} / 2\right) \tag{12}
\end{equation*}
$$

and

$$
\begin{align*}
\lim _{v \rightarrow \infty} f_{t}([y] ;[v]) & =\frac{1}{|\operatorname{det}[M]|} \prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi}} \exp \left(-0.5\left(\sum_{j=1}^{i} m_{i, j}^{-1} y_{j}\right)^{2}\right) \\
& =\frac{1}{|\operatorname{det}[M]| \sqrt{(2 \pi)^{n}}} \exp \left(-0.5\left(\sum_{i=1}^{n} \sum_{j=1}^{i} m_{i, j}^{-1} y_{j}\right)^{2}\right) \tag{13}\\
& =\frac{1}{\sqrt{(2 \pi)^{n}\left|\operatorname{det}\left[\Sigma_{s}\right]\right|}} \exp \left(-\frac{1}{2}[y]^{\mathrm{T}}\left[\Sigma_{s}\right]^{-1}[y]\right) \\
& =f_{N}([y]) .
\end{align*}
$$

In the limit as $[v \rightarrow \infty]$, the multivariate Student's t-distribution $f_{t}([y] ;[v])$, Equation (11), becomes a multivariate normal distribution.

3.1. Some $\Sigma_{i, j}$ for the $n=4$ Example

In this subsection some examples for the variances and covariances of a multivariate Student's \boldsymbol{t}-distribution using the $n=4$ example of Equation (2) are given.

The variance of the random variable \boldsymbol{y}_{3} is

$$
\begin{equation*}
E\left\{\boldsymbol{y}_{3}^{2}\right\}=\iiint \int y_{3}^{2} f_{t}\left([M]^{-1}[y] ;[v]\right) \mathrm{d} y_{4} \mathrm{~d} y_{3} \mathrm{~d} y_{2} \mathrm{~d} y_{1} \tag{14}
\end{equation*}
$$

with the limits of the integrations equal to $\mu_{i}-b \beta_{i}$ and $\mu_{i}+b \beta_{i}, \quad i=1,2,3,4$.
Perform the integrations as listed. The integral over $\mathrm{d} y_{4}$ is unity since only x_{4} depends on y_{4} (c.f. Equation (2)) and $f_{t}([x] ;[v])$ factors into a product $g_{1}\left(x_{1}\right) g_{2}\left(x_{2}\right) g_{3}\left(x_{3}\right) g_{4}\left(x_{4}\right)$-see Equation (10). Write

$$
\begin{gather*}
x_{4}=m_{4,4}^{-1} y_{4}+m_{4,3}^{-1} y_{3}+m_{4,2}^{-1} y_{2}+m_{4,1}^{-1} y_{1} \tag{15}\\
=m_{4,4}^{-1} y_{4}-\mu_{4} \tag{16}
\end{gather*}
$$

where the $m_{i, j}^{-1}$ are the elements of the inverse of matrix $[M]$ and are as given by $[M]^{-1}$, Equation (8), and μ_{4} is a constant as far as the integral over y_{4} is concerned.

Repeat the procedure for the integrals for $\mathrm{d} y_{3}, \mathrm{~d} y_{2}$, and $\mathrm{d} y_{1}$. These integrals are not equal to unity owing to the presence of the \boldsymbol{y}_{3}^{2} term.

The variance of the random variable $\boldsymbol{y}_{\boldsymbol{i}}$ for the multivariate Student's \boldsymbol{t}-distribution with support $[-\infty, \infty]$ and with $v_{i}=v$ for all i is given by

$$
\begin{equation*}
E\left\{y_{i}^{2}\right\}=\sigma_{y_{i}}^{2}=\sum_{j=1}^{i} m_{j, j}^{2} \frac{v}{v-2} \tag{17}
\end{equation*}
$$

The expression for $\sigma_{y_{i}}^{2}$ is valid only for $v>2$. The expression would be valid for $v \geq 1$ if the region of support was $\left[\mu_{i}-b \beta_{i}, \mu_{i}+b \beta_{i}\right]$ rather than $[-\infty, \infty]$ where β_{i} is a scale factor and $b<\infty$ [3]-[5]. Note that the scale factors for the multivariate \boldsymbol{t}-distribution are $\beta_{i}=\left|m_{i, i}\right|$.

Truncation or effective truncation of the pdf keeps the moments finite [3]-[5]. For example, the second central moment for a $v=1$ Student's \boldsymbol{t}-distribution with scale factor β and support $[\mu-b \beta, \mu+b \beta]$ is

$$
\begin{equation*}
\mu_{2}(v=1, \beta, b)=\beta^{2} \times \frac{(b-\arctan (b))}{\arctan (b)} \tag{18}
\end{equation*}
$$

which is finite provided that $b<\infty$.
In the interest of brevity, only variances and covariances that were calculated for support of $[-\infty, \infty]$ will be discussed. The requirement that $v_{i}>2$ will be understood to be waived if the pdf is truncated or effectively truncated. It is also to be understood that the variances and covariances as calculated for support of $[-\infty, \infty]$ provide upper limits for variances and covariances calculated for truncation or effective truncation of the pdf.

If the v_{i} are not equal, then for the $n=4$ example of Equation (2)

$$
\begin{equation*}
E\left\{\boldsymbol{y}_{3}^{2}\right\}=\frac{v_{1}}{v_{1}-2} \times m_{3,1}^{2}+\frac{v_{2}}{v_{2}-2} \times m_{3,2}^{2}+\frac{v_{3}}{v_{3}-2} \times m_{3,3}^{2} . \tag{19}
\end{equation*}
$$

The covariance $\mathrm{E}\left\{\boldsymbol{y}_{2} \boldsymbol{y}_{3}\right\}$ for the $v_{i}=v$ for all i is given by

$$
\begin{equation*}
\mathrm{E}\left\{\boldsymbol{y}_{2} \boldsymbol{y}_{3}\right\}=\left(m_{2,1} m_{3,1}+m_{2,2} m_{3,2}\right) \frac{v}{v-2} \tag{20}
\end{equation*}
$$

If the v_{i} are not equal, then the covariance $\mathrm{E}\left\{\boldsymbol{y}_{2} \boldsymbol{y}_{3}\right\}$

$$
\begin{equation*}
\mathrm{E}\left\{\boldsymbol{y}_{2} \boldsymbol{y}_{3}\right\}=\frac{v_{1}}{v_{1}-2} \times m_{2,1} m_{3,1}+\frac{v_{2}}{v_{2}-2} \times m_{2,2} m_{3,2} \tag{21}
\end{equation*}
$$

The expression for $\mathrm{E}\left\{\boldsymbol{y}_{1} \boldsymbol{y}_{3}\right\}$, which is valid for the v_{i} not equal, is

$$
\begin{equation*}
\mathrm{E}\left\{\boldsymbol{y}_{1} \boldsymbol{y}_{3}\right\}=\frac{v_{1}}{v_{1}-2} \times m_{1,1} m_{3,1} \tag{22}
\end{equation*}
$$

The expressions for $\mathrm{E}\left\{\boldsymbol{y}_{3} \boldsymbol{y}_{3}\right\}, \mathrm{E}\left\{\boldsymbol{y}_{2} \boldsymbol{y}_{3}\right\}$, and $\mathrm{E}\left\{\boldsymbol{y}_{1} \boldsymbol{y}_{3}\right\}$ show a simple pattern for the relationship between the covariance matrix Σ, the scale matrix $\left[\Sigma_{s}\right]$ Equation (3), and the matrix $[M]$ Equation (2).

3.2. General Expressions for $\Sigma_{i, j}$

Given a matrix $[M]$ that is an $n \times n$ square matrix with elements $m_{i, j}$, an expression for the variance (assuming support $[-\infty, \infty], v_{i}>2$ for all i, and $\left.i \leq n\right)$ for the multivariate Student's t-distribution $f_{t}([y] ;[v])$ is

$$
\begin{equation*}
\mathrm{E}\left\{\boldsymbol{y}_{i}^{2}\right\}=\sum_{j=1}^{i} \frac{v_{j}}{v_{j}-2} \times m_{j, j}^{2} \tag{23}
\end{equation*}
$$

A general expression for the covariance (assuming support $[-\infty, \infty], v_{i}>2$ for all i, and $i \leq n, j \leq n$) for the multivariate Student's \boldsymbol{t}-distribution $f_{t}([y] ;[v])$ is

$$
\begin{equation*}
\mathrm{E}\left\{\boldsymbol{y}_{\boldsymbol{i}} \boldsymbol{y}_{\boldsymbol{j}}\right\}=\sum_{k=1}^{\min (i, j)} \frac{v_{k}}{v_{k}-2} \times m_{i, k} m_{j, k} . \tag{24}
\end{equation*}
$$

If support is $[\mu-b \beta, \mu+b \beta]$, then the general expressions need to be multiplied by functions that depend on b and v. Truncation or effective truncation keeps the moments finite and defined for all $v \geq 1$ [3]-[5]. The general expressions for the covariance, Equation (24), yields, when $i=j$, the general expression for the variance, Equation (23). The general expression for the variance, Equation (23), is given to emphasize the $m_{j, j}^{2}$
nature of the variance.
Unlike normally distributed random variables, the correlation matrix $[\Sigma]$ for random variables that are distributed as Student's \boldsymbol{t} is not equal to $[M][M]^{\mathrm{T}}$. For normally distributed variables, the scale parameter β equals the standard deviation σ. For Student's t distributed variables, the standard deviation σ does not equal the scale parameter β. For a Student's \boldsymbol{t} distribution with shape parameter v, scale parameter β, and support $[-\infty, \infty], \sigma^{2}=\beta^{2} \times v /(v-2)$. If the region of support for the Student's \boldsymbol{t} distribution is truncated to $[\mu-b \beta, \mu+b \beta]$ then the variance $\sigma^{2}<\beta^{2} \times v /(v-2)$ for all $v \geq 2$ and is finite for all $v \geq 1$ [3]-[5].

Given a matrix of the variances and the covariances, $[\Sigma]$, and a column matrix of the shape parameters $[v]$ associated with each variable, the scale matrix $\left[\Sigma_{s}\right]=[M][M]^{\mathrm{T}}$ would in principle be determined sequentially, starting with $m_{1,1}$ and $m_{1,2}$. The shape parameters $[v$] would be obtained from the marginal distributions or from other knowledge.

4. Conclusion

A multivariate Student's \boldsymbol{t}-distribution is derived by analogy to the derivation for a multivariate normal (or Gaussian) pdf. The variances and covariances for the multivariate \boldsymbol{t}-distribution are given. It is noteworthy that the shape parameters $[v]$ of the constituent Student's \boldsymbol{t}-distributions of the multivariate \boldsymbol{t}-distribution, Equation (11), need not be the same.

Acknowledgements

This work was funded by the Natural Science and Engineering Research Council (NSERC) Canada.

References

[1] Kotz, S. and Nadarajah, S. (2004) Multivariate t-Distributions and Their Applications. Cambridge University Press, Cambridge.
[2] Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1992) Numerical Recipes in FORTRAN: The Art of Scientific Computing. 2nd Edition, Cambridge University Press, Cambridge, 89.
[3] Cassidy, D.T. (2011) Describing n-Day Returns with Student's \boldsymbol{t}-Distributions. Physica A, 390, 2794-2802. http://dx.doi.org/10.1016/j.physa.2011.03.019
[4] Cassidy, D.T. (2012) Effective Truncation of a Student's \boldsymbol{t}-Distribution by Truncation of the Chi Distribution in a Mixing Integral. Open Journal of Statistics, 2, 519-525. http://dx.doi.org/10.4236/ojs.2012.25067
[5] Cassidy, D.T. (2016) Student's \boldsymbol{t} Increments. Open Journal of Statistics, 6, 156-171. http://dx.doi.org/10.4236/ojs.2016.61014

Appendix: The Jacobian

The Jacobian determinant is used in physics, mathematics, and statistics. Many of these uses can be traced to the Jacobian determinate as a measure of the volume of an infinitesimially small, n-dimensional parallelepiped.

1. Volume of a Parallelepiped

The volume of an n-dimensional parallelepiped is given by the absolute value of the determinant of the components of the edge vectors that form the parallelepiped.

The area of a parallelogram with edge vectors \boldsymbol{a} and \boldsymbol{b} is $|\boldsymbol{a} \times \boldsymbol{b}|$.
The volume of a parallelepiped with edge vectors $\boldsymbol{a}=\left(a_{1}, a_{2}, a_{3}\right), \boldsymbol{b}=\left(b_{1}, b_{2}, b_{3}\right)$, and $\boldsymbol{c}=\left(c_{1}, c_{2}, c_{3}\right)$ is given by the determinant

$$
\boldsymbol{c} \cdot(\boldsymbol{a} \times \boldsymbol{b})=\left|\begin{array}{lll}
c_{1} & c_{2} & c_{3} \tag{25}\\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right| .
$$

2. Inversion Exists

Assume that there are n functions $x_{i}=f_{i}\left(q_{1}, q_{2}, \cdots, q_{n}\right)$. The necessary and sufficient condition that the functions can be inverted to find $q_{i}=f_{i}^{-1}\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ is that the Jacobian determinant is nonzero, i.e.,

$$
\begin{equation*}
\frac{\partial\left(x_{1}, x_{2}, \cdots, x_{n}\right)}{\partial\left(q_{1}, q_{2}, \cdots, q_{n}\right)} \neq 0 \tag{26}
\end{equation*}
$$

where

$$
\frac{\partial\left(x_{1}, x_{2}, \cdots, x_{n}\right)}{\partial\left(q_{1}, q_{2}, \cdots, q_{n}\right)} \equiv\left|\begin{array}{cccccc}
\frac{\partial x_{1}}{\partial q_{1}} & \frac{\partial x_{1}}{\partial q_{2}} & . & . & \frac{\partial x_{1}}{\partial q_{n}} \tag{27}\\
\frac{\partial x_{2}}{\partial q_{1}} & \frac{\partial x_{2}}{\partial q_{2}} & . & . & & \frac{\partial x_{2}}{\partial q_{n}} \\
\cdot & . & . & . & \cdot
\end{array}\right|
$$

To simplify the notation, assume that $n=3$ so that $x_{i}=f_{i}\left(q_{1}, q_{2}, q_{3}\right), i=1, \cdots, 3$. The total differential is

$$
\begin{equation*}
\mathrm{d} x_{i}=\frac{\partial f_{i}}{\partial q_{1}} \mathrm{~d} q_{1}+\frac{\partial f_{i}}{\partial q_{2}} \mathrm{~d} q_{2}+\frac{\partial f_{i}}{\partial q_{3}} \mathrm{~d} q_{3} \tag{28}
\end{equation*}
$$

These equations can be put in matrix form

$$
\left[\begin{array}{l}
\mathrm{d} x_{1} \tag{29}\\
\mathrm{~d} x_{2} \\
\mathrm{~d} x_{3}
\end{array}\right]=\left[\begin{array}{lll}
\frac{\partial f_{1}}{\partial q_{1}} & \frac{\partial f_{1}}{\partial q_{2}} & \frac{\partial f_{1}}{\partial q_{3}} \\
\frac{\partial f_{2}}{\partial q_{1}} & \frac{\partial f_{2}}{\partial q_{2}} & \frac{\partial f_{2}}{\partial q_{3}} \\
\frac{\partial f_{3}}{\partial q_{1}} & \frac{\partial f_{3}}{\partial q_{2}} & \frac{\partial f_{3}}{\partial q_{3}}
\end{array}\right]\left[\begin{array}{l}
\mathrm{d} q_{1} \\
\mathrm{~d} q_{2} \\
\mathrm{~d} q_{3}
\end{array}\right]
$$

These three equations can be solved for the $\mathrm{d} q_{i}$ if the determinant of the 3×3 matrix is non-zero. This is a standard result from linear algebra. The determinant of the 3×3 matrix is called the Jacobian determinant of the transformation.

3. Change of Variables

The Jacobian determinant of the transformation is used in change of variables in integration:

$$
\begin{equation*}
\iiint \mathrm{d} V=\iiint \mathrm{d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} x_{3}=\iiint\left|\frac{\partial\left(x_{1}, x_{2}, x_{3}\right)}{\partial\left(q_{1}, q_{2}, q_{3}\right)}\right| \mathrm{d} q_{1} \mathrm{~d} q_{2} \mathrm{~d} q_{3} . \tag{30}
\end{equation*}
$$

The absolute value sign is required since the determinant could be negative (i.e., the volume could decrease). The Jacobian determinant for the inverse transformation (to obtain $[x]$ as functions of $[y]$) given by Equation (8) is

$$
\left|\begin{array}{llll}
\frac{\partial x_{1}}{\partial y_{1}} & 0 & 0 & 0 \tag{31}\\
\frac{\partial x_{2}}{\partial y_{1}} & \frac{\partial x_{2}}{\partial y_{2}} & 0 & 0 \\
\frac{\partial x_{3}}{\partial y_{1}} & \frac{\partial x_{3}}{\partial y_{2}} & \frac{\partial x_{3}}{\partial y_{3}} & 0 \\
\frac{\partial x_{4}}{\partial y_{1}} & \frac{\partial x_{4}}{\partial y_{2}} & \frac{\partial x_{4}}{\partial y_{3}} & \frac{\partial x_{4}}{\partial y_{4}}
\end{array}\right|=\left|\begin{array}{cccc}
\frac{1}{m_{1,1}} & 0 & 0 & 0 \\
-\frac{m_{2,1}}{m_{1,1} m_{2,2}} & \frac{1}{m_{2,2}} & 0 & 0 \\
\frac{m_{3,2} m_{2,1}-m_{3,1} m_{2,2}}{m_{1,1} m_{2,2} m_{3,3}} & -\frac{m_{3,2}}{m_{2,2} m_{3,3}} & \frac{1}{m_{3,3}} & 0 \\
m_{1,4}^{-1} & \frac{m_{4,3} m_{3,2}-m_{4,2} m_{3,3}}{m_{2,2} m_{3,3} m_{4,4}} & -\frac{m_{4,3}}{m_{3,3} m_{4,4}} & \frac{1}{m_{4,4}}
\end{array}\right|
$$

which equals

$$
\begin{equation*}
\frac{1}{m_{1,1}} \times \frac{1}{m_{2,2}} \times \frac{1}{m_{3,3}} \times \frac{1}{m_{4,4}}=\frac{1}{\operatorname{det}[M]} \tag{32}
\end{equation*}
$$

[^0]: How to cite this paper: Cassidy, D.T. (2016) A Multivariate Student's t-Distribution. Open Journal of Statistics, 6, 443-450. http://dx.doi.org/10.4236/ojs.2016.63040

