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Abstract 
In this paper, we propose a class of estimators for estimating the finite population mean of the 
study variable under Ranked Set Sampling (RSS) when population mean of the auxiliary variable is 
known. The bias and Mean Squared Error (MSE) of the proposed class of estimators are obtained 
to first degree of approximation. It is identified that the proposed class of estimators is more effi-
cient as compared to [1] estimator and several other estimators. A simulation study is carried out 
to judge the performances of the estimators. 
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1. Introduction 
The problem of estimation in the finite population mean has been widely considered by many authors in 
different sampling designs. In application, there may be a situation when the variable of interest cannot be 
measured easily or is very expensive to do so, but it can be ranked easily at no cost or at very little cost. In view 
of this situation, [2] introduced the Ranked Set Sampling (RSS) procedure. [3] proved the mathematical theory 
that the sample mean under RSS was an unbiased estimator of the finite population mean and more precise than 
the sample mean estimator under simple random sampling (SRS).  

The auxiliary information plays an important role in increasing efficiency of the estimator. [4] suggested an 
estimator for population ratio in RSS and showed that it had less variance as compared to usual ratio estimator in 
simple random sampling (SRS).  

In RSS, perfect ranking of elements was considered by [2] and [3] for estimation of population mean. In some 
situations, ranking may not be perfect. According to [5], the sample mean in RSS is an unbiased estimator of the 
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population mean regardless of errors in ranking of the elements. In [6], the ranking of elements was done on 
basis of the auxiliary variable instead of judgment. [1] suggested an estimator for population mean and ranking 
of the elements was observed on basis of the auxiliary variable. [7] had suggested a class of Hartley-Ross type 
unbiased estimators in RSS. [8] had also proposed unbiased estimators in RSS and stratified ranked set 
sampling.  

In this paper, we suggest a class of estimators for the population mean, using known population mean of the 
auxiliary variable in RSS. It is shown that the proposed class of estimators outperforms as compared to the [9], 
[1] and several other estimators. Also some special cases of the proposed class are considered in Table A1 
(Appendix). 

2. Ranked Set Sampling Procedure  
In ranked set sampling (RSS), we select m random samples, each of size m units from the population, and rank 
the units within each sample with respect to a variable of interest. In order to facilitate the ranking, the design 
parameter m, is chosen to be small. From the first sample the unit having the lowest rank is selected, from the 
second sample the unit having second lowest rank is selected and the process is continued until from the last 
sample the unit having the highest rank is selected. In this way, we obtain m measured units, one from each 
sample. The cycle may be repeated r times until mr  units have been measured. These n mr=  units form the 
RSS data.  

Suppose that the variable of interest Y is difficult to measure and to rank, but there is the auxiliary variable X, 
which is correlated with Y. The variable X may be used to obtain the rank of Y. To perform the sampling 
procedure, m bivariate random samples, each of size m units are drawn from the population then each sample is 
ranked with respect to one of the variables Y or X. Here, we assume that the perfect ranking is done on basis of 
the auxiliary variable X while the ranking of Y is with error. An actual measurement from the first sample is then 
taken of the unit with the smallest rank of X, together with the variable Y associated with the smallest rank of X. 
From the second sample of size m the Y associated with the second smallest rank of X is measured. The process 
is continued until from the mth sample, the Y associated with the highest rank of X is measured. The cycle is 
repeated r times until n mr=  bivariate units have been measured out of the total 2m r  selected units. 

3. Some Existing Estimators and Notations  
We consider a situation when rank the elements on the auxiliary variable. Let [ ] ( )( ), i ji jy x  be the ith judgment 
ordering in the ith set for the study variable Y based on the ith order statistics of the ith set of the auxiliary 
variable X at the jth cycle. Based on RSS, the sample mean estimator ( )RSSy  of the population mean ( )Y , is 
given by  

[ ] ,RSS rssy y=                                        (1) 

where [ ] ( ) [ ]1 11 r m
rss i jj iy mr y

= =
= ∑ ∑ . 

To obtain the bias and MSE  of estimators, we define: 

[ ] ( ) ( ) ( )0 11 , 1 ,rssrssy Y e x X e= + = +  

such that 

( ) ( )0 1 0E e E e= = , 

and 

( )2 2 2
0 y yE e C Wγ= − , ( )2 2 2

1 x xE e C Wγ= − , ( )0 1 y x yxE e e C C Wγρ= − ,  

where  

( ) ( ) [ ]
2 2 2 2

2 2 2 2 2
1 1 1

1 1 1, , ,
m m m

yx x yyx i x i y i
i i i

W W W
m rXY m rX m rY

τ τ τ
= = =

= = =∑ ∑ ∑  

( ) ( )( )x i x i Xτ µ= − , [ ] [ ]( )y i y i Yτ µ= − , ( ) [ ]( ) ( )( )yx i x iy i Y Xτ µ µ= − − , yx y xC C Cρ= . yC  and xC  are the  
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coefficients of variation of Y and X respectively. It also be noted that the values of [ ]y iµ  and ( )x iµ  are the 
means of ith order statistics from some specific distributions (see [10]).  

The variance of RSSy  under RSS scheme, is given by  

( ) ( )2 2 2 .RSS y yVar y Y C Wγ= −                                 (2) 

[4] proposed an estimator of the population ratio YR
X

=  under RSS as:  

[ ]

( )

ˆ .rss
RSS

rss

y
R

x
=                                       (3) 

When population mean ( X ) of the auxiliary variable (X) is known, and the variables Y and X are positively 
correlated, [9] proposed the ratio estimator for population mean ( Y ) based on RSS as  

[ ]

( )
.rss

rRSS
rss

y
y X

x
=                                      (4) 

The bias and MSE of rRSSy , up to the first degree of approximation, are given by  

( ) ( ) ( )2 2
rRSS x y x x yxBias y Y C C C W Wγ ρ = − − −                          (5) 

and  

( ) ( ) ( )2 2 2 2 22 2 .rRSS y x y x y x yxMSE y Y C C C C W W Wγ ρ ≅ + − − + −                   (6) 

When population mean ( X ) of the auxiliary variable (X) is known, and the variables Y and X are negatively 
correlated, then the product estimator based on RSS is defined as:  

[ ]
( ) .rss

pRSS rss

x
y y

X
=                                    (7) 

The bias and MSE of pRSSy , up to the first degree of approximation, are given by  

( ) ( )pRSS y x yxBias y Y C C Wγρ= −                               (8) 

and  

( ) ( ) ( ){ }2 2 2 2 22 2 .pRSS y x y x y x yxMSE y Y C C C C W W Wγ ρ≅ + + − + +                  (9) 

[11] suggested an estimator under RSS and is defined as:  

[ ] ,sRSS rssy yλ=                                     (10) 

where λ  is suitably chosen constant. 
The minimum bias and MSE of sRSSy  at optimum value of λ  i.e.  

( ) ( )2 2

1=
1opt

y yC W
λ

γ+ −
 

are given by  

( ) ( )
( )

2 2

2 21
y y

sRSS min
y y

Y C W
Bias y

C W

γ

γ

−
= −

+ −
                           (11) 

and  

( ) ( )
( )

2 2 2

2 2
.

1
y y

sRSS min
y y

Y C W
MSE y

C W

γ

γ

−
≅

+ −
                           (12) 

The difference-type estimator for population mean ( Y ) based on RSS, is given by  
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( ) [ ] ( )( ) ,d RSS rssrssy y d X x= + −                               (13) 

where d is a constant. 
The minimum variance of ( )d RSSy  at optimum value of d i.e.  

( )
( )
( )2 2

yx yx
opt

x x

R C W
d

C W

γ

γ

−
=

−
 

is given by  

( ) ( )
( )

2

2 2 2
2 2

.yx yx
dRSS y ymin

x x

C W
Var y Y C W

C W

γ
γ

γ

 − ≅ − −
 −
 

                     (14) 

Following [12], [1] suggested a class of estimators of the population mean (Y ), based on RSS as:  

( ) [ ] [ ]
( )( ) ( ) ( )1 2 ,

1

g

S RSS rss rss
rss

aX by y y
ax b aX b

λ λ
α α

 + = +
 + + − + 

                (15) 

where α  is a suitably chosen constant, a and b are either real numbers or functions of known parameters of the 
auxiliary variable X, g is a scalar which takes value of 1 (for generating ratio-type estimators) and 1−  (for 
generating product-type estimators) and ( )1 2,λ λ  are constants whose sum need not be unity. 

The bias of ( )S RSSy , is given by  

( )( ) ( ) ( )2 2 2 2
1 2 2 2

1( 1) .
2 x x Y x yxS RSS

gBias y Y g C W g C C Wλ λ λ α θ γ λ αθ γρ +  = + − + − − −    
    (16) 

The MSE of ( )S RSSy , to first degree of approximation, is given by  

( )( ) ( ) ( ) ( ) ( )2 2 2
1 2 1 2 1 21 2 2 2 ,s w s w s w s wS RSSMSE y Y A A B B C C D Dλ λ λ λ λ λ ≅ + − + − + − − − −     (17) 

where  

( )21 ,s yA Cγ= +  

2 ,w yA W=  

( )( ){ }2 2 2 21 2 1 4 ,s y x yB C g g C g C xγ θ α αθ= + + + −  

( )2 2 2 22 1 4 ,w y x yxB W g g W g Wθ α αθ= + + −  

( )2 2 2 21
1 2 ,

2s y yx x
g g

C C g C Cγ θα θ α
+ 

= + − + 
 

 

( )2 2 2 21
2 ,

2w y yx x
g g

C W g C Wθα θ α
+

= − +  

( ) 2 2 21
1 ,

2s x yx
g g

D C g Cγ θ α θα
+ 

= + − 
 

 

( ) 2 2 21
.

2w x yx
g g

D W g Wθ α θα
+

= −  

We discuss two cases. 
Case 1: Sum of weights is unity (i.e. 1 2 1λ λ+ = ). 
Solving (17), the optimum value of 1λ , is given by  
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( )
( ) ( ) ( )

( ) ( ) ( )1

1
= .

2
s w s w s w

opt
s w s w s w

B B C C D D
A A B B C C

λ
 + − − − − − 
 − + − − − 

 

Substituting ( )1 optλ  in (17), we get the minimum MSE of ( )1S RSSy , given by  

( )( ) ( ) ( ) ( )
( ) ( ) ( )

2
2

1

1
1 2 .

2
s w s w s w

s w s wS RSS min s w s w s w

B B C C D D
MSE y Y B B D D

A A B B C C

 + − − + − +
≅ + − − − − 

− + − − −  
       (18) 

Case 2: Sum of weights is flexible (i.e. 1 2 1λ λ+ ≠ ).  
Solving (17), the optimum values of 1λ  and 2λ  are given by  

( )
( ) ( ) ( )
( ) ( ) ( )1 2

s w s w s w
opt

s w s w s w

B B C C D D

A A B B C C
λ

 − − − − =
 − − − − 

 

and  

( )
( ) ( ) ( )
( ) ( ) ( )2 2

= .s w s w s w
opt

s w s w s w

A A D D C C

A A B B C C
λ

 − − − − 
 − − − − 

 

Substituting the optimum values of 1λ  and 2λ  in (17), we get  

( )( )
( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( ){ }
2

2
2 2

2
1 .

s w s w s w s w s w

S RSS min
s w s w s w

B B C C D D A A D D
MSE y Y

A A B B C C

 − − − − + − −
 ≅ − − − − −  

      (19) 

4. Proposed Class of Estimators  
Following [1] and [12], we propose a class of estimators of the population mean (Y ), under RSS as  

( ) [ ] ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )

( )( )1 2 1 ,
rss

L RSS rssrss
rss rss

aX b ax b aX b
y k y k X x exp

aX b ax b ax b
α α
  + − + +   = + − + −    + + + +    

      (20) 

where α  is a suitably chosen constant, a and b are either real numbers or the functions of known parameters of 
the auxiliary variable X and ( )1 2,k k  are constants whose sum need not be unity. From (20) we can generate a 
large number of estimators for the different values of the constants (Table A1 in Appendix). The proposed 
estimator ( )L RSSy  can be written in terms of 0e  and 1e  as  

( ) ( ) ( ) ( )
2 2

11 1
1 0 2 1 1

31 1 1 1 ,
2 8L RSS
e ey k Y e k Xe eθ θα α θ −  

 = + − − + + − +   
  

             (21) 

where 
( )

aX
aX b

θ =
+

. 

Solving (21), we have  

( ) ( ) 2 2
1 1 1 1 1 1 0

2
1 0 1 2 1 2 1

51 1 1
2 8

1 1 .
2 2

L RSSy Y Y k k Y e k Y e k Ye

k Y e e k Xe k X e

α αθ θ

α αθ θ

    − = − − − + − +       
   − − − + −        

               (22) 

Taking expectation of both sides of above equation, we get bias of ( )L RSSy , given by  

( )( ) ( ) ( ) ( )

( )

2 2 2
1 1 1

2 2
2

51 1 1
8 2

1 .
2

x x yx yxL RSS

x x

Bias y Y k k Y C W k Y C W

k X C W

α αθ γ θ γ

αθ γ

   = − + − − − − −   
   

 + − − 
 

         (23) 
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Squaring both sides of Equation (22) and ignoring higher order terms of e’s, we have  

( )( ) ( )

( )

( )

22 22 2 2 2 2 2
1 1 0 1 0 1

2 2 2 2 2 2
2 1 1 1 1 1

2 2
2 1 1 1 1 2 1 0 1

1 1 2 1
2 2

52 1 1 1
8 2

2 1 1 2 1 .
2 2

L RSSy Y Y k k Y e e e e

k X e k k Y e e

k k YX e e k k YX e e e

α αθ θ

α αθ θ

α αθ θ

     − = − + + − − −    
     
    + + − − − −    
    

      + − − − + − −      
      

 

Taking expectation of both sides of above equation, we obtain the MSE of ( )L RSSy  as given by  

( )( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

22 2 2
1 1 2 1 1

2 1 1 2

1 2 1

2 1 2 ,

s w s w s wL RSS

s w s w

MSE y Y k k E E k F F k k G G

k k H H k k I I

= − + − + − + − −

+ − − + −
          (24) 

where  
2

2 2 2 21 2 1 ,
2 2s y x yxE Y C C Cα αγ θ θ

    = + − − −    
     

 

2
2 2 2 21 2 1 ,

2 2w y x yxE Y W W Wα αθ θ
    = + − − −    

     
 

2 2 ,s xF X Cγ=  

2 2 ,w xF X W=  

2 2 251 1 ,
8 2s x yxG Y C Cα αγ θ θ    = − − −        

 

2 2 251 1 ,
8 2w x yxG Y W Wα αθ θ    = − − −        

 

21 ,
2s xH XY Cαγ θ = − 

 
 

21 ,
2w xH XY Wα θ = − 

 
 

21 ,
2s x yxI XY C Cαγ θ  = − −    

 

( )
21 .

2w yxx iI XY W Wα θ  = − −    
 

We discuss two cases. 
Case 1: Sum of weights is unity (i.e. 1 2 1k k+ = ). 
The optimum value of 1k , is given by  

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2

1 2

2

2 2 2
s w s w s w s w

opt
s w s w s w s w s w

Y F F G G H H I I
k

Y E E F F G G H H I I

 + − + − − − − − =
 + − + − + − − − − − 

 

Thus, the minimum MSE of ( )L RSSy , is given by  

( )( ) ( ) ( ) ( ){ } ( ) ( ){ }
( ) ( ) ( ) ( ) ( )

22

1 2

2

2 2 2
s w s w s w s w s w

L RSS min
s w s w s w s w s w

E E Y H H F F I I G G
MSE y

Y E E F F G G H H I I

− − − + − − − − −
≅
 + − + − + − − − − − 

      (25) 
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Case 2: Sum of weights is flexible (i.e. 1 2 1k k+ ≠ ). 
For ( )1 2 1k k+ ≠ , the MSE of ( )L RSSy  in Equation (24) is minimized for  

( )
( ) ( ){ } ( ) ( ) ( ){ }

( ) ( ) ( ){ } ( ) ( ){ }

2

1 22 2
s w s w s w s w s w

opt
s w s w s w s w s w

F F Y G G H H H H I I
k

F F Y G G E E H H I I

− + − − − − + −
=

− + − + − − − + −
 

and  

( )
( ) ( ) ( ){ } ( ) ( ){ }

( ) ( ) ( ){ } ( ) ( ){ }

2

2 22
.

2
s w s w s w s w s w

opt
s w s w s w s w s w

H H E E G G I I Y G G
k

F F Y G G E E H H I I

− − + − − − + −
=

− + − + − − − + −
 

Substituting the optimum values of 1k  and 2k  in (24), we get  

( )( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )

22 2 2
2 1 1 2

1 1 2 1

1 2

1

2 1 2 1

2 .

s w s wL RSS opt opt optmin

s w s wopt opt opt opt

s wopt opt

MSE y Y k k E E k F F

k k G G k k H H

k k I I

= − + − + −

+ − − + − −

+ −

         (26) 

Note: It is difficult to make the theoretical comparison due to complexity, therefore we adopt the numerical 
study. 

5. Simulation Study  
We use the same data set as earlier used by [1], and perform some simulation study to investigate the per- 
formances of the estimators.  

Population (source: [13]). 
Y = Number of acres devoted to farms during 1992 (ACRES92). 
X = Number of large farms during 1992 (LARGEF92). 

3059 0.677428

308582.4 56.5
425312.8 72.3

yx

y x

N

Y X
S S

ρ= =

= =
= =

 

We set 10r =  and 5m =  to select a sample of 50n mr= =  units from the population of size 3059N = . 
To compute the values of 2

yW , 2
xW  and yxW  by simulation, we explain our simulation methodology as 

follow. 
Here 2

yW , 2
xW  and yxW  can be written as  

[ ]( )22
2

1

1 1 ,
m

y
i

W RDY i
m r =

= −∑  

( )( )22
2

1

1 1 ,
m

x
i

W RDX i
m r =

= −∑  

and  

( )( ) [ ]( )2
1

1 1 1 ,
m

yx
i

W RDX i RDY i
m r =

= − −∑  

where  

[ ] [ ] ( ) ( )and , 1, 2, , .y i x iRDY i RDX i i m
Y X

µ µ
= = =   

To find the possible values of the ratio [ ]RDY i  for 5m = , we generate ( )~ 0,1ie N  and calculate 
[ ] 11 0.25 0.08RDY e= + , [ ] 22 0.50 0.08RDY e= + , [ ] 33 1.00 0.08RDY e= + , [ ] 44 1.25 0.08RDY e= + , and 
[ ] 55 1.75 0.08RDY e= + . It means that when the first smallest value is selected from the ranked set sample, the 

expected ratio of that value to the population mean could be close to 0.25, and when the second smallest value is 
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selected the ratio of that value to the population mean could be close to 0.50, and when the third smallest value 
is selected the expected ratio of that value to the population mean will close to 1. Similarly, the expected ratio of 
the fourth and fifth values could be close to 1.25 and 1.75 respectively. In each case we weighted error term ie  
with a small number 0.08 to make sure that the ratio [ ]RDY i  remains positive. In other words, it means that 
we are generating ( )~ 0,0.08ie N . Thus, the possible values of the ratio [ ]RDY i  are expected to remain close 
to those we are considering here. Similarly, for the possible values of the ratio ( )RDX i , we consider  

( ) 11 0.25 0.05RDX e= + , ( ) 22 0.50 0.05RDX e= + , ( ) 33 1.00 0.05RDX e= + , ( ) 44 1.25 0.05RDX e= + , and 
( ) 55 1.75 0.05RDX e= + , where ( )~ 0,1ie N . Here we weighted ie  with a small number 0.05 because it may 

be less risky to rank the auxiliary variable X than the study variable Y. Thus the values of [ ]
2

y iW , ( )
2

x iW , and 
( )yx iW  are obtained through this simulation and are represented in the last three columns of Table 1.  

 
Table 1. PREs of proposed class of estimators through simulation.                                                           

a b g α  ( )0,1R  ( )0,2R  ( )0,3R  ( )0,4R  ( )0,5R  ( )0,6R  ( )
2

x iW  ( )
2

y iW  ( )yx iW  

−1.5 −1.5 −1 0.1 140.6 103.2 160.9 161.4 153.2 164.5 0.00573 0.00574 0.00573 

−1.5 −1.5 −1 0.5 139.3 103.2 159.9 160.5 163.8 164.4 0.00590 0.00604 0.00596 

−1.5 −1.5 −1 0.9 148.1 103.4 167.1 167.5 165.5 171.8 0.00462 0.00404 0.00431 
−1.5 −1.5 1 0.1 144.5 103.3 164.1 164.8 157.3 167.8 0.00516 0.00485 0.00499 
−1.5 −1.5 1 0.5 132.4 103.0 154.5 156.8 157.5 158.7 0.00689 0.00764 0.00725 
−1.5 −1.5 1 0.9 144.6 103.3 164.2 168.6 163.4 168.8 0.00514 0.00482 0.00497 
−1.5 0 −1 0.1 136.9 103.1 158.0 158.6 148.0 161.5 0.00625 0.00658 0.00641 
−1.5 0 −1 0.5 137.6 103.1 158.6 159.2 162.0 163.0 0.00615 0.00642 0.00628 
−1.5 0 −1 0.9 142.5 103.3 162.4 162.9 162.7 167.0 0.00546 0.00530 0.00538 
−1.5 0 1 0.1 130.1 103.0 152.8 153.7 141.0 156.1 0.00520 0.00816 0.00766 
−1.5 0 1 0.5 140.9 103.2 161.2 163.5 164.9 165.7 0.00568 0.00567 0.00567 
−1.5 0 1 0.9 137.2 103.1 158.3 162.7 159.5 162.9 0.00620 0.00651 0.00635 
−1.5 1.5 −1 0.1 140.8 103.2 161.1 161.6 150.5 164.8 0.00569 0.00570 0.00569 
−1.5 1.5 −1 0.5 140.3 103.2 160.7 161.2 164.1 165.3 0.00576 0.00582 0.00578 
−1.5 1.5 −1 0.9 135.2 103.1 156.7 157.3 158.7 161.1 0.00649 0.00697 0.00673 
−1.5 1.5 1 0.1 138.2 103.2 159.1 159.9 147.8 162.7 0.00605 0.00629 0.00616 
−1.5 1.5 1 0.5 139.2 103.2 159.8 162.2 163.0 164.3 0.00592 0.00602 0.00598 
−1.5 1.5 1 0.9 143.3 103.3 163.1 168.0 163.9 168.2 0.00533 0.00513 0.00522 
1.5 −1.5 −1 0.1 133.4 103.1 155.4 156.0 142.9 158.8 0.00672 0.00743 0.00706 
1.5 −1.5 −1 0.5 140.8 103.2 161.1 161.6 164.5 165.7 0.00569 0.00578 0.00576 
1.5 −1.5 −1 0.9 140.3 103.2 160.8 161.3 162.0 165.4 0.00575 0.00578 0.00576 
1.5 −1.5 1 0.1 142.3 103.2 162.4 163.1 152.1 166.1 0.00546 0.00540 0.00541 
1.5 −1.5 1 0.5 145.3 103.3 164.7 167.1 168.7 169.5 0.00504 0.00467 0.00484 
1.5 −1.5 1 0.9 139.1 103.2 159.9 164.3 161.1 164.6 0.00592 0.00605 0.00598 
1.5 0 −1 0.1 133.4 103.0 155.4 156.0 144.4 158.8 0.00672 0.00743 0.00658 
1.5 0 −1 0.5 140.8 103.2 161.1 161.6 164.8 165.6 0.00569 0.00568 0.00566 
1.5 0 −1 0.9 145.9 103.3 165.2 165.6 164.8 169.6 0.00496 0.00453 0.00473 
1.5 0 1 0.1 142.3 103.3 162.4 163.1 153.6 166.1 0.00545 0.00540 0.00540 
1.5 0 1 0.5 141.6 103.2 161.8 164.1 165.6 166.3 0.00557 0.00551 0.00553 
1.5 0 1 0.9 140.3 103.2 160.7 165.1 161.4 165.3 0.00576 0.00582 0.00578 
1.5 1.5 −1 0.1 139.2 103.2 159.9 160.4 151.8 163.5 0.00591 0.00605 0.00597 
1.5 1.5 −1 0.5 133.0 103.0 155.1 155.7 158.1 159.2 0.00679 0.00749 0.00713 
1.5 1.5 −1 0.9 137.3 103.1 158.4 158.9 159.0 162.7 0.00619 0.00650 0.00634 
1.5 1.5 1 0.1 141.7 103.2 161.9 162.4 154.4 165.5 0.00555 0.00551 0.00520 

1.5 1.5 1 0.5 142.3 103.3 162.3 164.6 166.4 166.8 0.00548 0.00534 0.00540 

1.5 1.5 1 0.9 135.2 103.1 156.8 161.0 157.8 161.2 0.00648 0.00701 0.00672 
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We investigate the percentage relative efficiency (PRE) of ratio estimator 1̂rRSSy θ=  (say), the Searls 
estimator 2̂sRSSy θ= , the difference estimator 3̂dRSSy θ= , [1] estimator ( ) 4̂S RSSy θ=  when 1 2 1λ λ+ ≠  with 
respect to conventional estimator 0̂RSSy θ=  (say). We also calculate PRE of the proposed class of estimators, 
say, ( ) 51

ˆ
L RSSy θ=  when ( )1 2 1k k+ =  and when ( )1 2 1k k+ ≠ , say, ( ) 62

ˆ
L RSSy θ= , with respect to 0̂RSSy θ= . 

The PRE of our proposed estimator and other existing estimators ˆ
jθ , 1, 2, , 6j =  , with respect to con- 

ventional estimator 0̂RSSy θ= , is defined as  

( ) ( )
( )

0
0

ˆ
ˆ ˆ, 100, 1, 2, , 6.

ˆj
j

MSE
PRE j

MSE

θ
θ θ

θ
= × =                         (27) 

The PREs of our proposed estimator and other existing estimators with respect to conventional estimator are 
given in Table 1. 

6. Conclusions  
Since , ,a b g  and α  are the fixed constants in [1] estimator and in the proposed class of estimators. There can 
be a large number of combinations for different values of these constants. Here, only limited number of results 
are reported in Table 1. Obviously, it can be observed through the simulation study in Table 1, that the 
proposed class of estimators is more efficient than all considered estimators. Its PRE increases from 164.5 to 
171.8 when α  changes from 0.1 to 0.9 but decreases slightly when α  is close to 0.5. Generally, we can say 
PRE of proposed class increases as value of α  increases for fixed values of constants a, b and g [1]. Class of 
estimators has maximum PRE 167.5, but it is less efficient as compared to the proposed class of estimators for 
all the choices of constants reported in Table 1. Also from the Table 1, we can see that other competitor 
estimators are also less efficient than the proposed class of estimators. If we make comparison between the two 
proposed cases then the class of estimators in Case 2 ( )1 2 1k k+ ≠  is more precise than the Case 1 
( )1 2 1k k+ = . We can see from Table 1 that by fixing the values of a and b at 1.5− , the proposed classes of 
estimators give more precise results when the value of α  is away form 0.5 , either close to 0 or 1. While by 
fixing positive values of the constants a and b, we get more precise results for α  close to 0.5.  

Therefore, the proposed class of estimators can be preferred over its competitive estimators in application 
under RSS. 
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Appendix 
Table A1. Some special cases of the proposed class of estimators.                                                              

1k  2k  α  a  b  Estimator Remarks 

1 0 0 0 1 ( ) [ ]s RSS rssy y=  Usual RSS mean estimator 

1 0 0 1 0 ( ) [ ]
( )

r RSS rss
rss

Xy y
x

 
 =  
 

 Usual RSS ratio estimaotr 

λ  0 0 1 0 ( ) [ ]
( )

sr RSS rss
rss

Xy y
x

λ
 
 =  
 

 Kadilar et al. (2009) ratio 
type estimator 

1 β  0 0 1 ( ) [ ] ( )( )reg RSS rssrssy y X xβ = + −   Regression type estimator 

1 2k  0 0 1 ( ) [ ] ( )( )2d RSS rssrssy y k X x = + −   Difference type estimator 

1 2k  0 1 0 ( ) [ ] ( )( )
( )

2=dr RSS rssrss
rss

Xy y k X x
x

 
   + −   

 
 Difference-ratio estimator 

1k  2k  0 1 0 ( ) [ ] ( )( )
( )

1 2gdr RSS rssrss
rss

Xy k y k X x
x

 
   = + −   

 
 Generalied difference-ratio 

estimator 

1 β  0 1 0 ( ) [ ] ( )( )
( )

regr RSS rssrss
rss

Xy y X x
x

β
 

   = + −   
 

 Regression-ratio estimator 

1 0 1 1 0 ( ) [ ]
( )

( )

exp rss

e RSS rss
rss

X x
y y

X x

 −
 =  + 

 Exponential type estimator 

1 β  1 1 0 ( ) [ ] ( )( ) ( )

( )

exp rss

rege RSS rssrss
rss

X x
y y X x

X x
β

 −
   = + −   + 

 Regression-exponential type 
estimator 
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