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Abstract

In this paper, a class of the stochastic generalized linear complementarity problems with finitely
many elements is proposed for the first time. Based on the Fischer-Burmeister function, a new
conjugate gradient projection method is given for solving the stochastic generalized linear com-
plementarity problems. The global convergence of the conjugate gradient projection method is
proved and the related numerical results are also reported.
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1. Introduction

Suppose (€,,F,G,P) is a probability space with O, < R"; P is a known probability distribution. The sto-
chastic generalized linear complementarity problems (denoted by SGLCP) is to find x € R", such that

F(x0)=M,(0)x+q(0)>0,G(x,0)=M,(0)x+0,(®)20,F (x,0)G(x,)=0, 1)

where M, (®),M,(®)eR™ and ¢, (@),q,(@)eR" for weQ,, are random matrices and vectors. When
G(x,w)=x, stochastic generalized linear complementarity problems reduce to the classic Stochastic Linear
Complementarity Problems (SLCP), which has been studied in [1]-[7]. Generally, they usually apply the Ex-
pected Value (EV) method and Expected Residual Minimization (ERM) method to solve this kind of problem.

If Q, only contains a single realization, then (1) reduces to the following standard Generalized Linear
Complementarity Problem (GLCP), which is to find a vector x e R" such that
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F(X)=M;x+0 20,G(x):=M,x+0, >0,F" (x)G(x)=0,

where M;,M, e R™" and q,,q, e R".
In this paper, we consider the following generalized stochastic linear complementarity problems. Denote
Q ={w,0, o, tofindan xeR" such that

F(xo)=M(a)x+0(a)=0,
G(x,®)=M,(®)x+0,(w)=0, i=L-mm>1 )
FT(X,a)I)~G(X,a)i):O.

Let I\ﬁj:ipiMj(a)l),q_j :Zm:p,q (o), where p,=P(m eQ)>0, i=1---m, j=12. Then (2) is

equivalent to (3) and (4)
M,x+@, >0, M2x+_220,(Mlx+q_1)T-(M2x+c_]2)=O, ©))

(4)

In the following of this paper, we consider to give a new conjugate gradient projection method for solving (2).
The method is based on a suitable reformulation. Base on the Fischer-Burmeister function, x is a solution of (3)
< ¢(x)=0, where

qﬁ((l\ﬁlx+q‘l)l',(l\ﬁ2x+q_2 )1)

#(x)= :
¢((I\ﬁ1x+c71)n ,(M2x+q_2)n)
Define
1 2
9=l
Then solving (3) is equivalent to find a global solution of the minimization problem
min¥ (x).
So, (3) and (4) can be rewritten as
H(x,y)=0, y>0, ®)
where
$(x)
Ml(a)l)x+ql(a)1)_yl
H(X' y)= Ml( )X+Q1(0)m) Y |
Mz( )X+q2 (wl) Yma
Mz(a)m)x+q2 (a)m)_yZm
Y=Y Yom ]T R2™" s slack variable with y, e R", i=1---,2m.
Let x=x"—x", where x’,x"e®R" and X,X">0. Then we know that H(x',x",y)=0 has (2m+2)n

equations with (2m +2)n variables.
Let t=(x,x"y)eR"™" and define a merit function of (5) by
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9(t)=%||H [
If (2) has a solution, then solving (5) is equivalent to find a global solution of the following minimization
problem
min 6(t) (6)
st. teQ
where Q= {t ‘t = SR(fm*z)”} :

2. Preliminaries

In this section, we give some Lemmas, which are taken from [8]-[10].
Lemma 1. Let P be the projection onto Q, let t(s)=P(t+s) forgiven teQ and s e RE™2" then
1) <t(s) (t+s),y—t(s))=0,forall yeQ.
2) P is a non-expansive operator, that is, IP(y)-P(X)|<]ly-x| forall x, y e R
3) (~s,t-t(s))=t(s)-t"
Lemma2. Let V e(t) be the projected gradientof fat te Q.
1) min{vo(t),v:veT(t),|v]|<1}=-[v,0(t)|.
2) The mapping [V,6(: || is lower semicontinuous on Q, that is, if limt, —t,, then

Va0 ()] < liminf [V,0(t, )|

k—0

3) The point t" e Q is a stationary point of problem (6) < Vge(t*) =0.

3. The Conjugate Gradient Projection Method and Its Convergence Analysis

In this section, we give a new conjugate gradient projection method and give some discussions about this me-

thod.
Given an iterate t, e Q= { ‘t R (2m2n } we let t(s,)=P[t -Vo(t)],
tk+1:tk(sk)_P[tk+sk]’ Q)
where s, = _ve(tk) K :1. Inspired by the literature [8]-[11], we take
-Vo(t )+Bd., k>1
— 2
G
Bl= ®)
Ty o)
with 1>0.
And d, isdefined by
de =t (S¢)—t, - 9)

Method 1. Conjugate Gradient Projection Method (CGPM)
Step0:Let t, €Q, 0<e<1, o0,0,€(01), f=0, dy=0,set k=1
Step 1: Compute ¢, , such that

O(t, +a,d, ) <O(t,) + o V() dy,
Vo(t +ad,) d >o,Vo(t,) d, .

Set t.,, =t +ad,.

Step 2: If |ka ~t (s )| <& stop, t'=t,(s).

Step 3: Let k:=k+1, and go to Step 1.

In order to prove the global convergence of the Method 1, we give the following assumptions.
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Assumptions 1

1) 6(t) has a lower bound on the level set L, = Lti e R™ 9 (1) < Q(H?j , where t; is initial point.

2) o(t) is continuously differentiable on the Lo, and its gradient is Lipschitz continuous, that is, there exists
a positive constant L such that

lo(u)-g(v)|<Lu-v] Vuvel,.
Lemma 3. If t is not the stability point of (6), t, =t, (s, ), then search direction d, generated by (9) descent
direction, which is (Vo(t,),d ><——||V0 || <0.

Proof. From (7), Lemma 1, and (8), we have
(vo(y).d,)= < A (s)-t)
=[(vot).e >> (Vo). (s)-4)]

<|ve( k”“tk () —tk(sk)“—<V¢9(k),tk—tk(sk)>
||V ot o[t (s) -]

<(m— )Hwk)—tkuz

—Iwotf <
1+l

Lemma 4. [11] Suppose that Assumptions 1 holds. Let &(t) continuously differentiable and lower bound on
the Q, VO(t) isuniformly continuous on the Q and {V¢9(tk )} is bounded, then {t,} generated by Method 1
are satisfied
lim|t, —t, (s, )|=0, lim

k—o0 k—o0

t -t (s)| =0

Theorem 1. Let #(t) continuously differentiable and lower bound on the Q, V@(t) is uniformly conti-

nuous on the Q, {t.} is a sequence generated by Method 1, then I|m||V o(t ||_0 and any accumulation
pointof {t,} isa stationary point of (6).
Proof. By Lemma 2, we have Ve >0, 3v, T, (), |v]<1, satisfy
Va0 k)||_<_ 0(t).v )+, (10)

for VzeQ, by Lemma 1, we know that (sk) (t+s.),2—t, (s )> >0, and we have

(0.2t (5)) < (t ()t 2=t (5)) <[t ()t 2 =t (1) - s0.

(s 2=t () <[t () -tz =t ()] - (11)

Let v, =2z-t, (Sk)ETQ (tk+1) ! |

V, 4|[<1, from (11), we have
<Sk 'Vk+1> = <_v‘9(tk )+ﬂkdk—l’vk+1> = ||tk (s0) -t " .
By the above formula, (8) and Lemma 1, we get

<—V9(t Vk+1> ||t (s¢)- t” | e 1"
s"tk sk)—tk||+

—(1+/1)||V¢9(tk k(-]
<[t (s0)-t+ 5 e (st

Taking limit on both sides and by Lemma 4, we know that
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M;SUM—VH(tk ) Vi1 ) =0. (12)
Because
<—V9(tk (s )),vk+1> = <V€(tk )-Vo(t (s, )),vk+1>+<—V€(tk ) Viewr)
(13)
<|[vo(t)-vo(t (s))+(-Vo(t)%..)
and Lemma 4, we have
lim|t, —t, ()| =0. (14)
By (12), (13), (14) and V@(t) is uniformly continuous on the Q, we get
I!ilgosup<—V6(tk (s )),vk+1> =0.
By (10), we know that
lim[V,0(t, )| =0 (15)

Let lim t =t,where N, < N,byLemma 2 and (15), we have

keNg k—o

Voo (1)< lim inf[v,0(t)|=0.

keNg.k—o

From Lemma 2 3), we get any accumulation point of {t } is a stationary point of (6).

4. Numerical Results

In this section, we give the numerical results of the conjugate gradient projection method for the following given
test problems, which are all given for the first time. We present different initial point ty, which indicates that
Method 1 is global convergence.
Throughout the computational experiments, according to Method 1 for determining the parameters, we set the
parameters as
0,=049, 0,=05 1=1.067.

The stopping criterion for the method is ||g, [ <10 or k,, =100000.
In the table of the test results, t, denotes initial point, x denotes the solution, val denotes the final value of

o(t)= %"H (t)||2 , Itr denotes the number of iteration.
Example 1. Considering SGLCP with

M, (0)=| -1 %+a) -1 |, g(o)= %+a),

0 -1 —+o —+o
—+o -1 0
5 l+w
M,(w)=| -1 P -1 |, q,(0)=|1+w]|,
l+w
0 -1 E+a)
2

Q ={w,0,}={0,1} and p, =P(w, €Q)=05, i=12.

The test results are listed in “Table 1” using different initial points.
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Table 1. Results of the numerical Example 1-2 using method 1.

Problem to X" val Itr
05%(1,1,-,1) (-0.8385,-1.0548,-0.8385) 33x10° 1465
(11,1 (-0.8385,-1.0548,-0.8385) 33x10° 1701
5x(1,1,--+,1) (-0.8385,-1.0548,-0.8385) 33x10° 2670
Example 1
10x(1,1,--+,1) (-0.8385,-1.0548,-0.8385) 33x10° 3261
20%(1,1,--+,1) (-0.8385,-1.0548,-0.8385) 33x10° 3847
50x(1,1,-++,1) (-0.8385,-1.0548,-0.8385) 33x10° 4704
05x(1,1,---,1) (-0.3747,0.1516,-0.0276,-0.0770,0.2306,-0.9539,1.4488) 0.7299 62788
(11,1 (-0.3746,0.1516,-0.0276,-0.0770,0.2306,-0.9539,1.4488) 0.7299 65528
5x(1,1,---,1) (~0.3746,0.1516,-0.0276,-0.0770,0.2306,-0.9539,1.4488) 0.7299 66962
Example 2
10x(1,1,---,1) (-0.3746,0.1516,-0.0276,-0.0770,0.2306,-0.9539,1.4488) 0.7299 100,000
20%(1,1,--+,1) (-0.3746,0.1516,-0.0276,-0.0770,0.2306,-0.9539,1.4488) 0.7299 100,000
50%(1,1,+-,1) (-0.3746,0.1516,-0.0276,-0.0770,0.2306,-0.9539,1.4488) 0.7299 100,000
Example 2. Considering SGLCP with
Ste 2 2 2 2 2 2 -—+o
0 Z+o 2 2 2 2 2 -—+w
1
0 0 ) +o 2 2 2 2 —+o
Ml(a))= 0 0 0 —+o 2 2 2 |, ql(a))= -——+w
0 0 0 0 —+o 2 2 -—+o
0 0 0 0 0 Z+o 2 -—+o
0 0 0 0 0 0 Z+o -——+o
—+o 2 2 2 2 2 2
0 —+o 2 2 2 2 2
-1+
3 -
0 0 40 2 2 2 2 Lo
2 -1+
M,(@)=| 0 0 0 =+o 2 2 2 | q(o)=|-1l+o
-l+w
0 0 0 0 —+o 2 2 1t
-l+w
0 0 0 0 0 —+o 2
0 0 0 0 0 0 —-+o
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Q, ={w,0,} ={0,1} and p, =P(w, €Q,)=05, i=12.

The test results are listed in “Table 1” using different initial points.

5. Conclusion

In this paper, we present a new conjugate gradient projection method for solving stochastic generalized linear
complementarity problems. The global convergence of the method is analyzed and numerical results show that
Method 1 is effective. In future work, large-scale stochastic generalized linear complementarity problems need
to be studied and developed.
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