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Abstract 
The classical composite rectangle (constant) rule for the computation of Cauchy principle value 

integral with the singular kernel x scot
2
−  is discussed. We show that the superconvergence rate 

of the composite midpoint rule occurs at certain local coodinate of each subinterval and obtain the 
corresponding superconvergence error estimate. Then collation methods are presented to solve 
certain kind of Hilbert singular integral equation. At last, some numerical examples are provided 
to validate the theoretical analysis. 
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1. Introduction 
Consider the Cauchy principle integral 

( ) ( ) ( ) ( )2π
; cot d , 0,2π

2
c

c

x sI f s f x x g s s
+ −

= = ∈∫                           (1) 

where 
2πc

c

+

∫  denotes a Cauchy principle value integral and s is the singular point. 
There are several different definitions which can be proved equally, such as the definition of subtraction of 

the singularity, regularity definition, direct definition and so on. In this paper we adopt the following one 
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( ) ( ) ( )2π 2π

00
cot d lim cot d cot d ,

2 2 2
c s

c s

x s x s x sf x x f x x f x x
ε

εε

+ −

+→

− − − = + 
 ∫∫ ∫             (2) 

Cauchy principal value integrals have recently attracted a lot of attention [1]-[5]. The main reason for this 
interest is probably due to the fact that integral equations with Cauchy principal value integrals have shown to 
be an adequate tool for the modeling of many physical situations, such as acoustics, fluid mechanics, elasticity, 
fracture mechanics and electromagnetic scattering problems and so on. It is the aim of this paper to investigate 
the superconvergence phenomenon of rectangle rule for it and, in particular, to derive error estimates. 

The superconvergence of composite Newton-Cotes rules for Hadamard finite-part integrals was studied in [6]- 
[8], where the superconvergence rate and the superconvergence point were presented, respectively. Lyness [9] 
derived the Euler-Maclaurin formula for Cauchy principal value integrals. Elliott and Venturino [2] employed 
sigmoidal transformations to obtain better approximation to Cauchy principal value integrals. In the reference 
Avram Sidi [10] [11] and [12] presented high-accuracy numerical quadrature methods for integrals of singular 
periodic functions. The classical Euler-Maclaurin summation formula [13] expressed the difference between a 
definite integral over [ ]0,1  and its approximation using the trapezoidal rule with step length 1h m=  as an 
asymptotic expansion in powers of h together with a remainder term. 

The extrapolation method for the computation of Hadamard finite-part integrals on the interval and in a circle 
is studied in [14] and [15] which focus on the asymptotic expansion of error function. Based on the asymptotic 
expansion of the error functional, algorithm with theoretical analysis of the generalized extrapolation is given. 

In this paper, the density function f(x) is replaced by the approximation function fC(x) while the singular kernel  

cot
2

x s−  is computed analysis in each subinterval, where fC(x) is the midpoint rectangle rule. This methods  

may be considered as the semi-discrete methods and the order of singularity kernel can be reduced somehow. 
This idea was firstly presented by Linz [16] in the paper to calculated the hypersingular integral on interval. He 
used the trapezoidal rule and Simpson rule to approximate the density function f(x) and the convergence rate was 
( ) , 1, 2kO h k =  when the singular point was always located at the middle of certain subinterval. This paper 

focuses on the superconvergence of mid-rectangle rule for Cauchy principle integrals. We prove both theoreti- 
cally and numerically that the composite mid-rectangle rule reaches the superconvergence rate when the local 
coordinate of the singular point s is 1± . Then a collation methods is presented to solve certain kind of Hilbert 
singular integral equation. 

The rest of this paper is organized as follows. In Sect. 2, after introducing some basic formulas of the 
rectangle rule, we present the main resluts. In Sect. 3, we perform the proof. Finally, several numerical examples 
are provided to validate our analysis. 

2. Main Result 
Let 0 1 1 2πn nc x x x x c−= < < < < = +  be a uniform partition of the interval [ ], 2πc c +  with mesh size 

2πh n= . Define by ( )Cf x  the piecewise constant interpolant for ( )f x  

( ) ( ) 1ˆ ˆ, , 1, 2, ,
2C j j j
hf x f x x x j n−= = + =                                 (3) 

and a linear transformation 

( ) ( )( ) [ ]1ˆ : 1 2 , 1,1 ,j j j jx x x x xτ τ τ+= = + − + ∈ −                             (4) 

from the reference element [ ]1,1−  to the subinterval 1,j jx x +   . Replacing ( )f x  in (2) with ( )Cf x  gives 
the composite rectangle rule: 

( ) ( ) ( ) ( ) ( ) ( )2π

1
ˆ; : cot d ; , ,

2

nc
n j j nc

i

x sI f s f x x s f x I f s E f sω
+

=

−
= = = −∑∫                 (5) 

where ( ),nE f s  denotes the error functional and ( )i sω  is the Cote coefficients given by 

( )
ˆ

cot .
2

j
j

x s
s hω

−
=                                         (6) 
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We also define 

( )cot , ,
( ) 2

2, .
s

x sx s x s
k x

x s

− − ≠= 
 =

                                  (7) 

Theorem 1: Assume ( ) [ ]1 , 2πf x C c c∈ + . For the rectangle rule ( ),nI f s  defined as (5). Assume that 
( )1 2ms x hτ= + + , there exist a positive constant C, independent of h and s, such that 

( ) ( )( ), ln ln ,nE f s C h hγ τ≤ +                                   (8) 

where 

( )
0

1
min .

2
j

j n

s x

h
τ

γ τ
≤ ≤

− −
= =                                        (9) 

Proof: Let ( ) ( ) ( )CR x f x f x= − , then we have ( ) .R x Ch≤  As 

( ) ( )

( ) ( )

( ) ( ) ( )

2π

2π

2π 2π

, cot d
2

2 cot d
2

2
2 d d

c
n c

c

c

c c s
c c

x sE f s R x x

R xx sx s x
x s

R x k x
x R x x

x s x s

+

+

+ +

−
=

−
= −

−
−

= +
− −

∫

∫

∫ ∫

                       (10) 

For the first part of (10), we have 

( )

( )( )
( )( )

( )( )

1

1

1 2π

0,

1

1 1d d d

2π
ln

ln ln

i m

i m

n x x c

x c x
i i m

m m

R x
x Ch x x

x s s x x s

c s s c
Ch

x s s x

C h hγ τ

+

+

− +

= ≠

+

 ≤ + − − − 

+ − −
=

− −

≤ +

∑ ∫ ∫ ∫

                       (11) 

For the second part of (10), 

( ) ( ) ( ) ( ) ( )1 1 1d ln lnm m

m m

x x m
x x

m

R x R x R s x s
x R s Ch

x s x s s x
γ τ+ + +− −

≤ + ≤
− − −∫ ∫                 (12) 

( ) ( ) ( ) ( )2π 2π2 2
d d ln .

c cs s
c c

k x k x
R x x Ch x Ch

x s x s
γ τ

+ +− −
≤ ≤

− −∫ ∫                    (13) 

Combining (11) and (13) together, the proof is completed. 
Setting 

( )

1

1
,

ˆ
cot cot d , ,

2 2
ˆ

cot cot d , .
2 2

m

m

j

i

x m
x

n j
x j

x

x sx s x j m
I s

x sx s x j m

+

+

 −− − =   =  − − − ≠   

∫

∫
                      (14) 

Lemma 1: Assume ( )1 2ms x hτ= + +  with [ ]1,1τ ∈ − . Let ( ),n jI s  be defined by (14), then there holds 
that 

( ) ( ) ( )( ) ( ), 1 1
1 1

1 ˆcos cos sinn j j j j
k k

I s k x s k x s h k x s
k

∞ ∞

+ +
= =

= − − − − −∑ ∑              (15) 

Proof: For i m= , by the definition of cauchy principal value integral, we have 
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( ) ( )1
, 0

1

ˆ
lim cot cot d

2 2
ˆ

2ln 2sin 2ln 2sin cot
2 2 2

m

m

s x m
n m x s

m m m

x sx sI s x

x s x s x s
h

ε

εε

+−

+→

+

−− = + −  
− − −     = − −          

∫ ∫
             (16) 

For i m≠ , taking integration by parts on the correspondent Riemann integral, we have 

( ) 1
,

ˆ
2 ln 2sin 2ln 2sin cot

2 2 2
i i i

n i
x s x s x s

I s h+− − −     = − −          
              (17) 

Now, by using the well-known identity 

1

1ln 2sin cos
2 n

x nx
n

∞

=

= −∑                               (18) 

and 

1

1 cot sin
2 2 n

x nx
∞

=

= ∑                                    (19) 

The proof is completed. 
By the identity in [17] 

1π cot π ,
l

l
x

x l

=∞

=−∞

=
+∑                                  (20) 

then we get 

1 1

2 2 2cot
2 2 π 2 πl l

x s
x s x s l x s l

∞ ∞

= =

−
= + +

− − − − +∑ ∑                       (21) 

and 

( )
( )( )

( )
( )( )

( )
( )( )

1 1

1 1

1

1

ˆ 2 2 2cot cot
2 2 2 π 2 π

2 2 2
ˆ ˆ ˆ2 π 2 π

ˆ ˆ2 2
ˆ ˆ2 π 2 π

ˆ2
ˆ2 π 2 π

m

l l

l lm m m

m m

lm m

m

l m

x sx s
x s x s l x s l

x s x s l x s l

x x x x
x s x s x s l x s l

x x
x s l x s l

∞ ∞

= =

∞ ∞

= =

∞

=

∞

=

−−
− = + +

− − − − +

 
− + + − − − − + 

− −
= +

− − − − − −

−
+

− + − +

∑ ∑

∑ ∑

∑

∑

                (22) 

For j m= , by the definition of cauchy principal value integral, we have 

( ) ( )
( ) ( )

( )( )
( )

( )( )
( )

( )( )

1

1

1

1

, 0

0

1

1

ˆ
lim cot cot d

2 2
ˆ2

lim d
ˆ

ˆ2
d

ˆ2 π 2 π

ˆ2
d .

ˆ2 π 2 π

m

m

m

m

m

m

m

m

s x m
n m x s

s x m
x s

m

x m
x

l m

x m
x

l m

x sx sI s x

x x
x

x s x s

x x
x

x s l x s l

x x
x

x s l x s l

ε

εε

ε

εε

+

+

+

+

−

+→

−

+→

∞

=

∞

=

−− = + −  
−

= +
− −

−
+

− − − −

−
+

− + − +

∫ ∫

∫ ∫

∑∫

∑∫

                     (23) 

Let ( )nQ x  be the function of the second kind associated with the Legendre polynomial ( )nP x , defined by 
(cf. [17]) 
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( ) ( ) ( )0 1 0
1 1ln , 1.
2 1

xQ x Q x xQ x
x
+

= = −
−

                          (24) 

We also define 

( ) ( ) ( ) ( ) ( )
0

, : 2 2 , 1,1 .
i

W f f f i f iτ τ τ τ τ
∞

=

= + + + − + ∈ −  ∑                   (25) 

Then, by the definition of W, 

( )( )0
1

1 1 1 2 1 2 1ln ln ln
2 1 2 2 1 2 1
1 2 1lim ln 0,
2 2 1

i

i

i iW Q
i i

i
i

τ τ ττ
τ τ τ

τ
τ

∞

=

→∞

+ + + − − = + + − − + + − 
+ +

= =
+ −

∑
 

( )( )
( ) ( )

( )

0 2 2 2
1

2 2
1 2 1 2 1

π 11 1 πlim tan ,
12 2 2
2 2

i

k n

n k n

i iW xQ
i i

k

τ τ ττ
τ τ τ

τ
τ

∞

=

=

→∞ =−

 + − +′  = − +
 − + − − + − 

+
= = −

+ +

∑

∑
 

it follows that 

( ) ( )
0 0

π 1
, π tan .

2
W Q xQ

τ
τ

+
′+ = −                                (26) 

Theorem 2: Assume ( ) [ ]2 , 2πlf x C c c∈ + . For the rectangle rule ( ),nI f s  defined as (5). Assume that 
( )1 2ms x hτ= + + , there exist a positive constant C, independent of h and s, such that 

( ) ( ) ( ) ( )
π 1

, π tan ,
2n nE f s f s s
τ +

= − +                            (27) 

where 

( ) ( ){ } ( )( ) 2max ln ln l
n ss C k x h hγ τ≤ +                        (28) 

( )γ τ  is defined as (9). 
It is known that the global convergence rate of the composite rectangle rule is lower than Riemann integral. 

3. Proof of the Theorem 
In this section, we study the superconvergence of the composite rectangle rule for Cauchy principle integrals. 

Preliminaries 
In the following analysis, C will denote a generic constant that is independent of h and s and it may have 
different values in different places. 

Lemma 2: Under the same assumptions of Theorem 2, it holds that 

( ) ( )

( )

( ) ( ) ( ) ( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )

2 1

1

2 2
221 2

ˆ
cot cot

2 2
ˆ

cot cot
2 2

ˆ
ˆcot cot

! 2 2

ˆ
ˆcot cot .

2 ! 2 2 ! 2

j
C

j

il ii j
j

i

l l
ll j

j

x sx s f x f x

x sx s f s

x sf s x sx s x s
i

x sf s f sx sx s x s
l l

−

=

−−
−

− −
= − 
 

− −
+ − − − 

 
−−

+ − − −

∑
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where ( ) ( )1 2ˆ , , ,js x s s x s∈ ∈ . 
Proof: Performing Taylor expansion of ( )Cf x  at the point x, we have 

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( )
22 1 21

1

ˆ
ˆ ˆ ˆ cot

! 2 ! 2

i ll i l j
C j j j

i

x sf s f s
f x f s x s x s

i l

−

=

−
= + − + −∑               (29) 

and 

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( )
22 1 22

1
cot .

! 2 ! 2

i ll i l

i

f s f s x sf x f s x s x s
i l

−

=

−
= + − + −∑                   (30) 

Combining (29) and (30) together we get the results. 
Proof of Theorem 2: we have 

( ) ( ) ( )

( ) ( )

( )

( ) ( ) ( )

1

1

1

1

12π

0,

1

0,

1

0,

2 1 1

1 0,

cot d cot
2 2

ˆ
ˆcot cot d

2 2

ˆ
cot cot d

2 2

ˆ
ˆcot cot

! 2 2

m

m

j

j

j

j

j

j

nx c j
jc x

j j m

n x j
jx

j j m

n x j

x
j j m

il n x i j

x
i j j m

x sx s f x x h f x

x sx s f x f x x

x sx s f s x

x sf s x s x s x
i

+

+

+

+

−+

= ≠

−

= ≠

−

= ≠

− −

= = ≠

−−
+ −

− −
= − 

 
− −

= − 
 

−−
+ − −

∑∫ ∫

∑ ∫

∑ ∫

∑ ∑ ∫ ( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )1

2 21 221 2

0,

d

ˆ
ˆcot cot d .

2 ! 2 2 ! 2
j

j

i
j

l ln lx l j
jx

j j m

s x

x sf s f sx sx s x s x
l l

+
−

= ≠

 
− 

 
 −−

+ − − − 
  

∑ ∫

            (31) 

For i m= , we have 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 1

1 1

1

2 1

1

2 2
221 2

ˆ ˆ
ˆ ˆcot d cot cot cot d

2 2 2 2
ˆ ˆ

ˆcot cot d cot cot d
2 2 2 2

ˆ
ˆcot cot

2 ! 2 2 !

m m

m m

m m

m m

m

m

x xm m
m mx x

lx x iim m
mx x

i

l l
lx l

jx

x s x sx s x sf x x h f x f x f x x

x s x sx s x sf s x x s x s x

f s f sx sx s x s
l l

+ +

+ +

+

−

=

− −− −
− = −

− −− −   = − + − − −      

−
+ − − −

∑∫

∫

∫ ∫

∫

d
2

jx s
x

 −
 
  

      (32) 

Putting (31) and (32) together yields 

( ) ( )

( ) ( )

( )

( ) ( ) ( ) ( )

( ) ( )

1

1

1

12π

0

1

0

1

0

1

1 0,

0

ˆ
ˆcot d cot

2 2
ˆ

ˆcot cot d
2 2

ˆ
cot cot d

2 2

ˆ
ˆcot cot d

! 2 2

j

j

j

j

j

j

nc j
jc

j

n x j
jx

j

n x j

x
j

i n ix i j
jx

i j j m

i

x sx s f x x h f x

x sx s f x f x x

x sx s f s x

x sf s x s x s x s x
i

S f sτ

+

+

+

−+

=

−

=

−

=

∞ −

= = ≠

=

−−
−

− −
= − 

 
− −

= − 
 

− −
+ − − − 

 

= +

∑

∑∫

∑∫

∑ ∫

∫

∑
( ) ( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1

1

2 1 1

1 0

2 21 221 2

0

ˆ
ˆcot cot d

! 2 2

ˆ
ˆcot cot d .

2 ! 2 2 ! 2

j

j

j

j

il n ix i j
jx

j

l ln lx l j
jx

j

x sf s x s x s x s x
i

x sf s f sx sx s x s x
l l

+

+

− −

=

−

=

− −
− − − 

 
 −−

+ − − − 
  

∑ ∑∫

∑∫

              (33) 
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Here 

( ) 1
1

0
0

ˆ
cot cot d

2 2
j

j

n x j

x
j

x sx sS xτ +
−

=

− −
= − 

 
∑∫  

with the linear transformation from 1,j jt t−    to the identity interval [ ]1,1− . As for the last part of 

( ) ( )1
1

0

ˆ
ˆcot cot d

2 2
j

j

n ix i j
jx

j

x sx s x s x s x+
−

=

− −
− − − 

 
∑∫  

which can be considered as the error estimate of left rectangle rule for the definite integral ( ) 1 d , 2
b i

a
t s t i−− ≥∫ . 

Obviously,by the Theorem, it can be expanded by the Euler-Maclaurin expansions and we have 

( ) ( ) ( ) ( )( ) ( )( )1 1 1

1
, d , 1

!
b i k kki k

n a
k

B
E f h t s t b s a s h k i

k
θ∞

− − −

=

 = − + − − − ≤ − ∑∫        (34) 

It is easy to see that there are not relation with the singular point s  which can be written as 

( ) ( ) 1

1
, d , 1.

b ii k
n ka

k
E f h t s t c h k i

∞
−

=

= − + ≤ −∑∫                         (35) 

The proof is complete.                                                                      
We actually obtain the error expansion of the rectangle rule and moreover, get the explicit expression of the 

first order term. So it is easy for us to get the superconvergence point with ( )0 0S τ = , which means that 
1τ = ±  is the superconvergence point in subinterval not near the end of the interval. 

Based on the theorem 1, we present the modify rectangle rule 

( ) ( ) ( ) ( )π 1
; ; π tan .

2n nI f s I f s f s
τ +

= −                           (36) 

4. Numerical Example 
In this section, computational results are reported. 

Example 1: We consider the Hilbert singular integral with ( ) cos sin 0f x x x c= + = .  
[ ] ( )4 1 2ns c x hτ= + + +  with 1τ = ±  is the superconvergence point. 

From Table 1 and Table 2, we know that the superconvergence point is 1±  with the coordinate location of 
singular point equal zero, while for the local coordinate of singular point do not equal zero,it is not convergence 
in general which coincides with our analysis. 

For the modify classical rectangle rule, from Table 3 and Table 4, for the non-superconvergence point and 
the supersonvergence point, we all get the supercocergence phenomenon. 

In this section, we consider the integral equation 

( ) ( ) ( )2π

0

1 cot d , 0,2π ,
2π 2

x sf x x g s s−
= ∈∫                        (37) 

with the compatibility condition 

( )2π

0
d 0.g x x =∫                                      (38) 

As in [5], under the condition of (38), there exists a unique solution for the integral Equation (37). In order to 
get a unique solution, we adopt the following condition 

( )2π

0
d 0.f x x =∫                                      (39) 

By choosing the middle points ( )1ˆ 2 1,2, ,k kx x h k n−= + =  , we get the composite rectangle rule ( );nI f s  
to approximate the Hilbert singular integral in (37), then the following linear system is obtained 

( )
1

ˆ1 ˆcot , 1, 2, , ,
2

n
m k

m k
m

x x
h f g x k n

π =

−  = =  
∑                       (40) 
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Table 1. An error estimate of the rectangle rule [ ] ( )4 1 2ns x hτ= + + .                                                     

 1τ =  1τ = −  2
3

τ =  1
2

τ =  

8 −1.7764e−015 0 6.6963e−001 1.7335e+000 

16 −1.7764e−015 0 2.2690e+000 4.1887e+000 

32 0 0 2.9882e+000 5.2932e+000 

64 −5.3291e−015 2.6645e−015 3.3190e+000 5.8039e+000 

128 −4.4409e−014 −4.3521e−014 3.4762e+000 6.0477e+000 

256 1.3323e−014 −9.7700e−015 3.5526e+000 6.1665e+000 

 
Table 2. An error estimate of the rectangle rule ( )0 1 2s x hτ= + + .                                                  

 1τ =  1τ = −  2
3

τ =  1
2

τ =  

8 −1.1102e−015 −6.2172e−015 5.0863e+000 8.7150e+000 

16 −3.1086e−015 −7.1054e−015 4.6011e+000 7.8365e+000 

32 −8.8818e−015 −4.3521e−014 4.1701e+000 7.1371e+000 

64 −2.6645e−015 −1.7764e−014 3.9119e+000 6.7284e+000 

128 −2.6645e−015 −3.8192e−014 3.7729e+000 6.5102e+000 

256 2.9310e−014 1.0658e−013 3.7010e+000 6.3978e+000 

 
Table 3. An error estimate of the modify rectangle rule [ ] ( )4 1 2ns x hτ= + + .                                             

 1τ =  1τ = −  2
3

τ =  1
2

τ =  

8 −1.7764e−015 0 −1.7764e−015 3.5527e−015 

16 −1.7764e−015 0 −5.3291e−015 7.1054e−015 

32 0 0 −3.5527e−015 2.3093e−014 

64 −5.3291e−015 2.6645e−015 1.0658e−014 3.0198e−014 

128 −4.4409e−014 −4.3521e−014 −4.7962e−014 −1.3323e−013 

256 1.3323e−014 −9.7700e−015 −6.0396e−014 2.8422e−014 

 
Table 4. An error estimate of the modify rectangle rule ( )0 1 2s x hτ= + + .                                              

 1τ =  1τ = −  2
3

τ =  1
2

τ =  

8 −1.1102e−015 −6.2172e−015 −8.8818e−016 0 

16 −3.1086e−015 −7.1054e−015 −2.8866e−015 −3.5527e−015 

32 −8.8818e−015 −4.3521e−014 −9.5479e−015 −1.5099e−014 

64 −2.6645e−015 −1.7764e−014 −7.3275e−015 −3.6637e−015 

128 −2.6645e−015 −3.8192e−014 4.4409e−015 −2.6645e−014 

256 2.9310e−014 1.0658e−013 3.1974e−014 1.2212e−014 
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and written as the matrix expression as 

,a e
n n nA F G=                                      (41) 

where 

( )

( ) ( ) ( ) ( )( )TT
1 2 1 2

,

ˆ1 cot , , 1, 2, , ,
π 2

ˆ ˆ ˆ, , , , , , , ,

n km n n

j k
km

a e
n n n n

A a

x x
a h k m n

F f f f G g x g x g x

×
=

− 
= = 

 

= =



 

                  (42) 

here ( )1,2, ,kf k n=   denotes the numerical solution of f at ˆkx . By directly calculation, we get nA  that is 
not only a symmetric Toeplitz matrix but also a circulant matrix. As for any 1,2, ,k n=  , 

1 1

ˆ1 cot 0,
π 2

n n
m k

km
m m

x x
a h

= =

− = =  
∑ ∑                               (43) 

from (43), we know that nA  is singular matrix, then we cannot use system (40) or (41) to solve the integral 
Equation (37). 

In order to get a well-conditioned definite system, we introduce a regularizing factor 0nγ  in (40), which 
leads to linear system 

( )0
1

1

ˆ1 ˆcot ,
π 2

0,

n
m k

n m k
m

n

m
m

x x
h f g x

f

γ
=

=

 − + =    

 =

∑

∑
                           (44) 

where 0nγ  defined by 

( )0
1

1 ˆ .
2π

n

n k
k

g x hγ
=

= ∑                                      (45) 

Then the matrix form of system (44) can be presented as 

1 1 1,a e
n n nA F G+ + +=                                         (46) 

where 
T

0
1 1 1

00
, , ,na en

n n na e
n nn n

e
A F G

F Ge A
γ

+ + +

     
= = =     

    
                        (47) 

and 
T

1,1, ,1n
n

e
 

=  
 


 . 

Example 2: Now we consider an example of solving Hilbert integral equation by collocation scheme. Let 
( ) cos sing s s s= − , the exact solution is ( ) cos sinf x x x= + . 
We examine the maximal nodal error, defined by 

( )
1
min ,i ii n

e f x f∞ ≤ ≤
= −                                    (48) 

where ( )1,2, ,if i n=   denotes the approximation of ( )f x  at ˆix . Numerical results presented in Table 5 
show that both the maximal nodal errors are as follow. 
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Table 5. Errors for the solution of the Hilbert integral equation of 
first kind.                                                       

n e∞  

32 2.2204e−16 

64 1.9984e−15 

128 3.9968e−15 

256 8.8818e−15 

512 1.4433e−14 
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