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Abstract 
New theorems of asymptotical stability and uniformly asymptotical stability for nonautonomous 
difference equations are given in this paper. The classical Liapunov asymptotical stability theorem 
of nonautonomous difference equations relies on the existence of a positive definite Liapunov 
function that has an indefinitely small upper bound and whose variation along a given nonauto-
nomous difference equations is negative definite. In this paper, we consider the case that the Lia-
punov function is only positive definite and its variation is semi-negative definite. At these weaker 
conditions, we put forward a new asymptotical stability theorem of nonautonomous difference 
equations by adding to extra conditions on the variation. After that, in addition to the hypotheses 
of our new asymptotical stability theorem, we obtain a new uniformly asymptotical stability theo-
rem of nonautonomous difference equations provided that the Liapunov function has an indefi-
nitely small upper bound. Example is given to verify our results in the last. 
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1. Introduction 
Difference equations usually describe the evolution of certain phenomena over the course of time. These equa-
tions occur in biology, economics, psychology, sociology, and other fields. In addition, difference equations also 
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appear in the study of discretization methods for differential equations. Realizing that most of the problems that 
arise in practice are nonlinear and mostly unsolvable, the qualitative behaviors of solutions without actually 
computing them are of vital importance in application process. The stability property of an equilibrium is the 
very important qualitative behavior for difference equations. The most powerful method for studying the stabil-
ity property is Liapunov’s second method or Liapunov’s direct method. The main advantage of this method is 
that the stability can be obtained without any prior knowledge of the solutions. In 1892, the Russian mathemati-
cian A.M. Liapunov introduced the method for investigating the stability of nonlinear differential equations. 
According to the method, he put forward Liapunov stability theorem, Liapunov asymptotical stability theorem 
and Liapunov unstable theorem, which have been known as the fundamental theorems of stability. Utilizing 
these fundamental theorems of stability, many authors have investigated the stability of some specific differen-
tial systems [1]-[9]. 

We know that several results in the theory of difference equations have been obtained as more or less natural 
discrete analogues of corresponding results of differential equations, so Liapunov’s direct method is much more 
useful for difference equations. Actually, some authors have utilized the methods for difference equations suc-
cessfully [10]-[20]. Using the method, S. Elaydi [10] and J.P. Lasalle [11] gave the classical Liapunov stability 
theorem for autonomous difference equations. In [12] [13], the authors extended the technique to generalized 
nonautonomous difference equations and put forward the classical Liapunov stability theorem for nonautonom-
ous difference equations. In [14]-[17], the direct approach was extended to some special delay difference sys-
tems to investigate the stability properties. In [18]-[20], how to construct Liapunov function for difference sys-
tem or hybrid time-varying system was exploited. 

Consider the following nonautonomous difference system 

( )1 ,n nx f n x+ =                                     (1.1) 

where ( ): , , 0H Hf B B f n o× → = , ( ),f n x  is continuous in x and { }k
Hx B x x H∈ = ∈ ≤ . As shown 

in [12] [13], using Liapunov’s direct method to study the asymptotical stability of the zero solution of system 
(1.1) relies on the existence of a positive definite Liapunov function ( ), nV n x  which has indefinitely small 
upper bound and whose variation ( ), nV n x∆  along the solution of system (1.1) is negative definite. 

Sometimes it is not easy to determine the positive definite Liapunov function for a given equations in applica-
tions. If we further require that the function has indefinitely small upper bound besides its negative definite vari-
ation, the work would become more difficult to do. In this paper, we weaken the Liapunov function to positive 
definite and also weaken the negative definite variation to semi-negative definite on orbits of Equations (1.1), 
then we put forward a new Liapunov asymptotical stability theorem for difference Equations (1.1) by adding to 
extra conditions on the variation. Subsequently, provided that all the conditions of our new asymptotical stability 
theorem are satisfied, we obtain a new uniformly asymptotical stability theorem of nonautonomous difference 
equations if the Liapunov function has an indefinitely small upper bound. 

2. Some Lemmas 
In this section, we introduce the following lemmas, which play a key role in obtaining our results. 

Lemma 1 Suppose that there exists a function ( ), ng n x  satisfying the following conditions: 
(i) ( ): , , 0Hg B g n o× → =  , ( ), ng n x  is 1C  with respect to the second argument x, 
(ii) the sequence { }n Hx B⊆ , and 
(iii) ( )lim , nn

g n x
→+∞

 exists. 

Then, there exists a positive integer sequence { }in  with in → +∞  as i → +∞  such that  

( )lim , 0
ii ni

g n x
→+∞

∆ = . 

Proof. We first prove that for arbitrary constant 0a >  there exists a sufficient large integer 1N ∈  for 
every positive integer 1n N>  such that 

( ), .ng n x a∆ <


                                        (2.1) 

Suppose that this conclusion of inequality (2.1) does not hold, then there exist 0a >  such that for arbitrary 
N ′∈  there exists a positive integer m N ′>  such that 
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( ), .mg m x a∆ ≥                                   (2.2) 

By the continuity of g∆ , we obtain that either ( ), mg m x a∆ ≥   or ( ), mg m x a∆ ≤ −  . Without loss of 
generality, we only consider the first case. For the above a , there exists a positive integer increasing sequence 
{ }iN ′  such that ( ),

ii mg m x a∆ ≥   for arbitrary i im N ′> . Let P +∈  denote a constant. By the discrete 
analogue fundamental theorem of calculus [10], we get 

( ) ( ) ( )
1

0
, , , .

i i i

P

i m P i m i m j
j

g m P x g m x g m j x Pa
−

+ +
=

+ − = ∆ + ≥∑   

Note that { }iN ′  is a positive integer increasing sequence and i in N ′> , then the above inequality contradicts  
to the exists of ( )lim , .nn

g n x
→+∞

 Therefore, the conclusion of (2.1) is proved. 

Denote 1
2i ia =  with 1, 2 .i =   By the conclusion of (2.1), for each i, there exists a sufficiently large  

iN ∈  such that 

( ) 1, ,
2ii n ig n x∆ <                                   (2.3) 

for each positive integer i in N> . Then we can select special 1i in n +<  and construct an increase sequence  
{ }in . This implies in → +∞  as i → +∞  and ( )lim , 0.

ii ni
g n x

→+∞
∆ =  

Lemma 2 Assume that there exists a function ( ), ng n x  satisfying the following conditions: 
(i) ( ): , , 0Hg B g n o× → =  , ( ), ng n x  is ( )2kC k ≥  with respect to the second argument, 
(ii) the sequence { }n Hx B⊆ , and 
(iii) ( )lim , nn

g n x
→+∞

 exists. 

Then, for each fixed r ( )1 r k≤ ≤ , there exists a positive integer sequence ( ){ }r
in  with ( )r

in → +∞  as 
i → +∞  such that 

( )
( )( )lim , 0.r
i

rr
i ni

g n x
→+∞

∆ =  

Proof. We first prove that for arbitrary constants 0a >  there exists a sufficient large integer 2N ∈  such 
that for every 2n N>  there exists 

( ), .r
ng n x a∆ <


                                    (2.4) 

The case of 1r =  is proved by (2.1) in the proof of Lemma 2.1. Suppose that inequality (2.4) holds in the 
case of 1r −  ( )2 r k≤ ≤  but is not true in the case of r. Then there exist constants 0a >  such that for arbi-  
trary N ′∈  there exists a positive integer ( )rn N ′>  such that ( )

( )( ), r
rr

n
g n x a∆ ≥



  . Similarly to the state-  

ment below inequality (2.2), there exists a positive integer sequence ( ){ }r
in  such that ( ) ( )

1
r r

i in n+ >  . 

Let x    denote the maximum integer not exceeding x and P +∈   denote a constant. Same as above, 
without loss of generality, we only consider the case ( )

( )( ), r
rr

n
g n x a∆ ≥



  . By the discrete analogue fundamental 
theorem of calculus [10], we get 

( ) ( )
( )( ) ( ) ( )

( )
( ) ( )

( )( )
( ) ( )

( )

1
2

1 1

2

1

2

, , ,
2

, ,
2 2

r rr
i ii

r
i

P

r r r r r r
i i iPn t n jn j t

r r
i Pn

Pg n t x g n x g n j x

P Pg n x a t

 
− 

 
− −

 + ++  =
 

−
 

+ 
 

   ∆ + = ∆ + − ∆ +    
       ≤ ∆ + − −           

∑





 









  

 

 

        (2.5) 

where 0,1,2, , 1
2
Pt

   ∈ −  
   



 . 
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( ) ( )
( )( ) ( ) ( )

( )
( ) ( )

( )( )

( ) ( )
( )

1
1 1

2
2

1

2

, , ,
2

, ,
2 2

r rr
i ii

r
i

t
r r r r r r

i i iPn t n jn Pj

r r
i Pn

Pg n t x g n x g n j x

P Pg n x a t

−
− −

 + ++   
=   
 

−
 

+ 
 

   ∆ + = ∆ + + ∆ +    

       ≥ ∆ + + −           

∑


 











  

 

 

          (2.6) 

where , 1, 2, ,
2 2 2
P P Pt P

       ∈ + +      
       

  



 . 

If ( ) ( )
( )

1

2

, 0
2 r

i

r r
i Pn

Pg n x−
 

+ 
 

   ∆ + ≤    






  and 0,1,2, ,
4
Pt

   ∈  
   



 , from inequality (2.5), we obtain 

( ) ( )
( )( )1 , .

4r
i

r r
i n t

Pg n t x a−

+

 
∆ + ≤ −  

 



                             (2.7) 

If ( ) ( )
( )

1

2

, 0
2 r

i

r r
i Pn

Pg n x−
 

+ 
 

   ∆ + ≥    






  and 3 3 3, 1, 2, ,
4 4 4
P P Pt P

       ∈ + +      
       

  



 , from inequality (2.6), we 

obtain 

( ) ( )
( )( )1 , .

4r
i

r r
i n t

Pg n t x a−

+

 
∆ + ≥  

 



                              (2.8) 

Inequalities (2.7) and (2.8) imply that 

( )
( )( )1 3 3, , 0,1, , , , 1, , .

4 4 4 4r
i

rr
i n t

P P P Pg n t x a t P−

+

         ∆ + ≥ ∀ ∈ +        
         

   




          (2.9) 

Since ( )r
in → +∞  as i → +∞ , we select ( )

2
r

in t N+ > . This leads to a contradiction because of the inductive 
assumption for (2.4) in the case of 1r − . Therefore, the conclusion of (2.4) is proved. 

Similarly to the second part of the proof of Lemma 2.1, for each r ( )1 r k≤ ≤ , we can construct a sequence  
( ){ }r
in  with ( )r

in → +∞  as i → +∞  such that ( )
( )( )lim , 0.r
i

rr
i ni

g n x
→+∞

∆ =  This completes the proof of Lemma 

2.2. 
According to Lemma 2.2 we prove the following result. 
Lemma 3 Assume that there exists a function ( ), ng n x  satisfying the following conditions: 
(i) ( ): , , 0Hg B g n o× → =  , ( ), ng n x  is ( )1 1kC k+ ≥  and ( ),k

ng n x∆  is uniformly continuous with 
respect to the second argument x, 

(ii) the sequence { }n Hx B⊆ , and 
(iii) ( )lim , nn

g n x
→+∞

 exists. 

Then, there exists a positive integer sequence { }it  with it → +∞  as i → +∞  such that 

( ) ( ) ( ) ( ){ }2 1lim , , , , 0.
i i i i

k k
i t i t i t i ti

g t x g t x g t x g t x+

→+∞
∆ + ∆ + + ∆ + ∆ =            (2.10) 

Proof. Let us first prove 
( )lim , 0.k

nn
g n x

→+∞
∆ =                                 (2.11) 

Suppose that this is not true. Then there exist a constant c > 0 and a strictly increasing integer sequence { }*
in   

such that *
in → +∞  as i → +∞  and ( )*

* ,
i

k
i n

g n x c∆ > , 1, 2,i =  . By the uniform continuity of ( ),k
ng n x∆ , 

there exists a constant 0δ > , when *
i

n n
x x δ− <  for any 1,2,i =  , then ( ) ( )*

* , ,
2i

k k
i nn

cg n x g n x∆ −∆ < . 
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From the above inequalities, we get ( ),
2

k
n

cg n x∆ > . This is a contradiction to (2.4). Then equation (2.11) is 

proved. 
The result of (2.11) implies the boundedness of ( ),k

ng n x∆  on HB× . It follows that ( )1 ,k
ng n x−∆  is  

uniformly continuous on the same domain. And as shown above, we obtain ( )1lim , 0.k
nn

g n x−

→+∞
∆ =  Then we see 

recursively that 
( )lim , 0. 1r

nn
g n x r k

→+∞
∆ = ≤ ≤                             (2.12) 

On the other hand, by Lemma 2.2, there exists a sequence { }it  with it → +∞  as i → +∞  such that 

( )1lim , 0. 1
i

k
i ti

g t x r k+

→+∞
∆ = ≤ ≤                            (2.13) 

From (2.12) and (2.13) we easily get (2.10). The proof of Lemma 2.3 is complete . 

3. New Asymptotical Stability and Uniformly Asymptotical Stability Theorems 
In this section, we propose and prove the new asymptotical stability and uniformly asymptotical stability 
theorems of system (1.1). First of all, we introduce a special class of function and then give the definition of 
positive definite function. Subsequently, we introduce the various stability notions of the equilibrium point *x  
of system (1.1). These definitions are very useful for obtaining our results besides the above Lemmas. 

Definition 1 A function φ  is said to be class of K if it is continuous in [ )0, H , strictly increasing, and 
( )0 0φ = . 
Definition 2 The function ( ), nV n x  is positive definite if there exists a function Kφ ∈  such that 

( ) ( ), n nV n x xφ≥  

for all ( ), n Hn x B∈ × . 
Definition 3 Let ( )

00 nx n x=  be an initial condition of system (1.1) and ( )00, , nx n n x  be a solution such 
that ( )0 00 0, , n nx n n x x= . The equilibrium point *x  of system (1.1) is said to be: 

(i) Stable if given 0ε >  and 0 0n ≥  there exists ( )0,nδ δ ε=  such that 
0

*
nx x δ− <  implies 

( )0

*
0, , nx n n x x ε− <  for all 0n n≥ , uniformly stable if δ  may be chosen in dependent of 0n . 

(ii) Attracting if there exists ( )0nµ µ=  such that 
0

*
nx x µ− <  implies ( )0

*
0lim , , nn

x n n x x
→+∞

= , uni-  

formly attracting if the choice of µ  is independent of 0n . 
(iii) Asymptotically stable if it is stable and attracting, and uniformly asymptotically stable if it is 

uniformly stable and uniformly attracting. 
Theorem 1 Consider nonautonomous difference Equations (1.1), where : H Hf B B× →  is ( )1kC k ≥  

with respect to the second argument x and satisfies ( ), 0f n o = . Suppose that there exists a 1kC +  positive 
definite function ( ), :n HV n x B +× →   such that 

(i) ( ), 0V n o ≡ , 
(ii) ( ), 0nV n x∆ ≤ , where ( ) ( ) ( )1, 1, ,n n nV n x V n x V n x+∆ = + − , 
(iii) ( )1 ,k

nV n x+∆  is bounded on the set HB× , 
(iv) ( ) ( ) ( ) ( ) ( )( ) ( )2 1, : , , , ,k k

n n n n n nU n x V n x V n x V n x V n x xφ+= − ∆ + ∆ + + ∆ + ∆ ≤ − , where the func- 

tion φ  defined by Definition 1. 
Then the zero solution of system (1.1) is asymptotically stable. 
Proof. By conditions (i) and (ii), the origin of system (1.1) is stable according to the references [12] [13]. 

Therefore for any 0n N∈  and ( )0,h H∈  there exists ( )0 , 0n hδ δ= >  such that a solution ( )00, ,n nx x n n x=  
of system (1.1) satisfies nx h≤  for all 0n n>  if 

0nx δ< . In the following part, we prove that every solu-  
tion nx  with 

0nx δ<  satisfies lim 0.nn
x

→+∞
=  

By condition (ii) we know that ( ), nV n x  is monotonically nonincreasing. Hence the ( )lim , nn
V n x

→+∞
 exists.  

From condition (iii) we know that ( )1 ,k
nV n x+∆  is bounded, which implies that ( ),k

nV n x∆  is uniformly con- 
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tinuous. According to Lemma 3, there exists a integer sequence { }in  with in → +∞  as i → +∞  such that 

( ) ( ) ( ) ( ){ }2 1lim , , , , 0.
i i i i

k k
i n i n i n i ni

V n x V n x V n x V n x+

→+∞
∆ + ∆ + + ∆ + ∆ =               (3.1) 

According to the definition of function ( ), nU n x  and Equation (3.1), we get ( )lim , 0
ii ni

U n x
→+∞

= , which 

implies 
lim 0.

ini
x

→+∞
=                                        (3.2) 

Now we prove 
lim 0.nn

x
→+∞

=                                        (3.3) 

Suppose that (3.3) is not true. Then there exist a constant 0 c h< <  and an integer sequence { }lm  with 
lm → +∞  as l → +∞  such that 

lmx c≥  1, 2,l∀ =  . Then, by the definition of positive definite ( ), nV n x  

( ) ( ): inf , inf 0
l ll m ml l

v V m x xφ= ≥ >                                (3.4) 

On the other hand, by (3.2) there is an integer j such that ( ),
2jj n
vV n x < . This is because V is continuous 

with respect to the second argument and ( ), 0.V n o ≡  Thus, by condition (ii), ( ),
2n
vV n x <  for all jn n> . 

Clear, l jm n>  for sufficiently large l such that ( ),
2ll m
vV m x < , which contradicts to the definition of v given  

by (3.4). Therefore, (3.3) is proved. According to Definition 3, we obtain that the zero solution of system (1.1) is 
asymptotically stable. 

In addition to the hypotheses of Theorem 1, we can obtain that the zero solution of system (1.1) is uniformly 
asymptotically stable if ( ), nV n x  has an indefinitely small upper bound as in the classical Liapunov 
asymptotical stability theorem of nonautonomous difference equations. 

Theorem 2 Provided that the hypotheses of Theorem 1 are satisfied, the zero solution of system (1.1) is 
uniformly asymptotically stable if positive definite function ( ), nV n x  has an indefinitely small upper bound. 

Proof. Since ( ), nV n x  is positive definite and has an indefinitely small upper bound, there exist functions  
, Kϕ ψ ∈  such that ( ) ( ) ( ),n n nx V n x xϕ ψ≤ ≤  for all ( ), n Hn x B∈ × . For each ( )0, Hε ∈ , there exists a  

( )δ δ ε=  such that ( ) ( )ψ δ ϕ ε< . Denote 1 0n n≥  and 
1nx δ< , then we have nx ε<  for all 1n n≥ . If  

this is not true, then there exists a 2 1n n>  such that 1 0n n≥  and 
1nx δ<  imply 2x Hε ≤ < . However,  

( ), 0nV n x∆ ≤  implies that ( ) ( )11, ,n nV n x V n x≤  for 1n n> . Then we obtain that 

( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2 1 12 1, , .n n n nx V n x V n x xϕ ε ϕ ψ ψ δ ϕ ε≤ ≤ ≤ ≤ ≤ <  

This is a contradiction. Since all the conditions of Theorem 1 are satisfied, the zero solution of system (1.1) is  
asymptotically stable. Therefore, for the above ε , ( )δ ε , there exists ( )0 0lim , , 0

n
x n n x

→+∞
=  when 

0nx δ< . 

4. Example 
In this section, we provide an example to illustrate the feasibility of our results. 

Example 4.1. Consider the following difference equations 

( ) ( )

( ) ( )

3
2 2 2

1
3

1 2 2 2

2
:

2

n n n nn

n
n n n n

w h n w u wu
f

w
u h n u u w

+

+

 
− + +  

=   
    − + 

                          (4.1) 

where ( ) ( ) ( )
( )

2 tanh arctan1 1
2 π 1

n n n
h n

n
 ⋅ ⋅

= +  + 
 and ( ) ( ){ }2 2 2, ,n n H n n n nu w B u w u w H∈ = ∈ + ≤ . Obviously,  
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f is C1 with respect to ( ),n nu w  on HB×  and satisfies ( ),0,0 0.f n =  Denote ( ) 2 2, ,n n n nV n u w u w= +  and 
( )T,n n nW u w= . This function which satisfies ( ),0,0 0V n ≡  is clearly positive definite on 2  and is 2C  

along the solutions of system (4.1), and 

( ) 2, , 2n n nV n u w W≤                                (4.2) 

Moreover, 

( )

( ) ( ) ( ) ( )

( )( ) ( )( )

( )( ) ( )( )

2 2 2 2
1 1

2 23 3
2 2 2 2 2 22 2

5 42 2 2 2 22

5 3
2 2 2 22 2

, ,

2 2

4 4

4 1 .

n n n n n n

n n n n n n n n n n

n n n n

n n n n

V n u w u w u w

w h n w u w u h n u u w u w

h n u w h n u w

h n u w h n u w

+ +∆ = + − −

   
= − + + + − + − −   
   

= − + + +

 
= − + − + 

 

 

For ( ), ,n n Hn u w B∈ ×  and 
2
35

8
H  =  

 
, we obtain ( ), , 0n nV n u w∆ ≤ , then the zero solution of system (1.1) 

is stable. At the same condition, we also get 

( ) ( )( ) ( )( )
( ) ( )( )
( ) ( )

5 42 2 2 2 2 2 2 2 22
1 1

42 2 2 2 2

2 2
1

4 4

4

5 , , .

n n n n n n n n

n n n n

n n n n

u w u w h n u w h n u w

u w h n u w

u w u w B

+ ++ = + − + + +

≤ + + +

≤ + ∀ ∈

 

Now, we calculate ( )2 , ,n nV n u w∆ . For ( ) 1,n nu w B∈ , we have 

( ) ( ) ( )

( )( ) ( )( )

( )( ) ( )( )

2
1 1

5 42 2 2 2 22
1 1 1 1

5 42 2 2 2 22

, , 1, , , ,

4 1 4 1

4 4 .

n n n n n n

n n n n

n n n n

V n u w V n u w V n u w

h n u w h n u w

h n u w h n u w

+ +

+ + + +

∆ = ∆ + − ∆

= − + + + + +

+ + − +

 

Then we get ( ) ( ) ( ) ( )2 2 2 2 2 2 2
1 1, , 8 8 48n n n n n n n nV n u w u w u w u w+ +∆ ≤ + + + ≤ + , which means that ( )2 , ,n nV n u w∆  

is bounded on the set HN B× . Now, we only need to verify the example whether satisfies condition (iv) of  

Theorem (3.1). Denote ( )
5 3
2 22 1r r rφ
 

= −  
 

, 
2
350,

8
r

 
  ∈     

 

. Then ( )rφ  is a class of K function. From the 

above analysis, we obtain 

( ) ( )( ) ( )( )

( ) ( ) ( ) ( )

5 3
2 2 2 22 2

5 3
2 2 2 2 2 22 2

, , 4 1

2 1 , , .

n n n n n n

n n n n n n n n H

V n u w h n u w h n u w

u w u w u w u w Bφ

 
∆ = + − + 

 
 

≥ + − + ≥ + ∀ ∈ 
 

 

Then, 

( ) ( ) ( )

( ) ( ) ( )

2

2 2

, , , , , ,

, , , , .

n n n n n n

n n n n n n H

U n u w V n u w V n u w

V n u w u w u w Bφ

= ∆ + ∆

≥ ∆ ≥ + ∀ ∈
 

Thus condition (iv) of Theorem (3.1) is fulfilled. The zero solution of Example 4.1 is asymptotical stable. 
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Inequation (4.2) implies that ( ), ,n nV n u w  has an indefinitely small upper bound. Then the zero solution of 
Example 4.1 is also uniformly asymptotically stable. 

We also can utilize Polar coordinate transformation to prove the above conclusion. Let cosn n nu r θ=  and 
sinn n nw r θ= , then system (4.1) transforms the following form: 

( )
( )

4
1 1

4
1 1

cos sin 2 sin ,

sin cos 2 cos .
n n n n n n

n n n n n n

r r r h n

r r r h n

θ θ θ

θ θ θ
+ +

+ +

= − +

= −
                            (4.3) 

The square of the first equation adding the square of the second equation in system (4.3) yields 

( ) ( )2 2 5 2 8
1 4 4 .n n n nr r h n r h n r+ = − +  

Denote 2
n nz r=  and we get ( ) ( )

5
2 42

1 4 4 .n n n nz z h n z h n z+ = − +  Under the conditions of 
4
350 1

8nz  ≤ ≤ < 
 

 

and ( )1 1
2

h n≤ ≤ , we obtain 1n nz z+ <  and lim 0nn
z

→+∞
= . By Definition 3, we obtain the zero solution of the  

original system (4.1) is asymptotical stable and uniformly asymptotically stable. This confirm the correctness of 
utilizing Theorem 3.1 and Theorem 3.2 to judge Example 4.1. 

Funding 
This work was supported by the National Natural Science Foundation of China (Grant No.31170338), the 
General Project of Educational Commission in Sichuan Province (Grant No.16ZB0357) and the Major Project of 
Sichuan University of Arts and Science (Grant No.2014Z005Z). 

References 
[1] Melvin, W. (1975) Liapunov’s Direct Method Applied to Neutral Functional Differential Equations. Journal of Ma-

thematical Analysis and Applications, 49, 47-58. http://dx.doi.org/10.1016/0022-247X(75)90161-4 
[2] Leipholz, H. (1984) An Alternative to Liapunov’s Stability Method and Its Application to Higher-Order Systems. 

Computer Methods in Applied Mechanics and Engineering, 47, 299-314.  
http://dx.doi.org/10.1016/0045-7825(84)90081-1 

[3] Noldus, E. and Loccufier, M. (1994) An Application of Liapunovs Method for the Analysis of Neural Networks. 
Journal of Computational and Applied Mathematics, 50, 425-432. http://dx.doi.org/10.1016/0377-0427(94)90318-2 

[4] Xu, R., Chaplain, M. and Davidson, F. (2004) Persistence and Global Stability of a Ratio-Dependent Predator-Prey 
Model with Stage Structure. Applied Mathematics and Computation, 158, 729-744.  
http://dx.doi.org/10.1016/j.amc.2003.10.012 

[5] Ionescu-Kruse, D. (2007) Liapunov’s Direct Method for Birkhoffian Systems: Applications to Electrical Networks. 
Journal of Geometry and Physics, 57, 2213-2228. http://dx.doi.org/10.1016/j.geomphys.2007.06.005 

[6] Shi, R. and Chen, L. (2008) Staged Structured Lotka-Volterra Predator-Prey Models for Pest Management. Applied 
Mathematics and Computation, 203, 258-265. http://dx.doi.org/10.1016/j.amc.2008.04.032 

[7] Zhang, L. and Zhang, C. (2010) Rich Dynamic of a Stage-Structured Prey-Predator Model with Cannibalism and Peri-
odic Attacking Rate. Communications in Nonlinear Science and Numerical Simulations, 15, 4029-4040.  
http://dx.doi.org/10.1016/j.cnsns.2010.02.009 

[8] Fu, S., Zhang L. and Hu, P. (2013) Global Behavior of Solutions in a Lotka-Volterra Predator-Prey Model with Preys-
tage Structure. Nonlinear Analysis: Real World Applications, 14, 2027-2045.  
http://dx.doi.org/10.1016/j.nonrwa.2013.02.007 

[9] Hamada, Y. (2014) Liapunov’s Stability on Autonomous Nuclear Reactor Dynamical Systems. Progress in Nuclear 
Energy, 73, 11-20. http://dx.doi.org/10.1016/j.pnucene.2013.12.012 

[10] Elaydi, S. (2005) An Introduction to Difference Equations. 3rd Edition, Springer, New York. 
[11] Lasalle, J. (1976) The Stability of Dynamical Systems. Siam, Philadelphia. http://dx.doi.org/10.1137/1.9781611970432 
[12] Agarwal, R. (2000) Difference Equations and Inequations. 2nd Edition, Marcel Dekker, Inc., New York.  
[13] Lakshmikantham, V. and Trigiante, D. (2002) Theory of Difference Equations Numerical Methods and Application. 

2nd Edition, Marcel Dekker, Inc., New York. http://dx.doi.org/10.1201/9780203910290 

http://dx.doi.org/10.1016/0022-247X(75)90161-4
http://dx.doi.org/10.1016/0045-7825(84)90081-1
http://dx.doi.org/10.1016/0377-0427(94)90318-2
http://dx.doi.org/10.1016/j.amc.2003.10.012
http://dx.doi.org/10.1016/j.geomphys.2007.06.005
http://dx.doi.org/10.1016/j.amc.2008.04.032
http://dx.doi.org/10.1016/j.cnsns.2010.02.009
http://dx.doi.org/10.1016/j.nonrwa.2013.02.007
http://dx.doi.org/10.1016/j.pnucene.2013.12.012
http://dx.doi.org/10.1137/1.9781611970432
http://dx.doi.org/10.1201/9780203910290


L. M. Zhang, C. F. Zhang 
 

 
1031 

[14] Zhang, S.N. (2001) Stability of Neutral Delay Difference Systems. Computers and Mathematics with Applications, 42, 
291-299. http://dx.doi.org/10.1016/S0898-1221(01)00154-7 

[15] Zhang, S. and Zheng, G. (2002) Almost Periodic Solutions of Delay Difference Systems. Applied Mathematics and 
Computation, 131, 497516. http://dx.doi.org/10.1016/S0096-3003(01)00165-5 

[16] Wei, G. and Shen, J. (2010) Boundedness and Asymptotic Behavior Results for Nonlinear Difference Equations with 
Positive and Negative Coefficients. Computers and Mathematics with Applications, 60, 2469-2475.  
http://dx.doi.org/10.1016/j.camwa.2010.08.046 

[17] Wei, G. (2011) Asymptotic Behavior Results for Nonlinear Neutral Delay Difference Equations. Applied Mathematics 
and Computation, 217, 7184-7190. http://dx.doi.org/10.1016/j.amc.2011.02.004 

[18] Giesl, P. (2007) On the Determination of the Basin of Attraction of Discrete Dynamical Systems. Journal of Difference 
Equations and Applications, 13, 523-546. http://dx.doi.org/10.1080/10236190601135209 

[19] Giesl, P. (2008) Construction of a Local and Global Lyapunov Function for Discrete Dynamical Systems Using Radial 
Basis Functions. Journal of Approximation Theory, 153, 184-211. http://dx.doi.org/10.1016/j.jat.2008.01.007 

[20] Malisoff, M. and Mazenc, F. (2008) Constructions of Strict Lyapunov Functions for Discrete Time and Hybrid Time-
varying Systems. Nonlinear Analysis: Hybrid Systems, 2, 394-409. http://dx.doi.org/10.1016/j.nahs.2006.12.005 

http://dx.doi.org/10.1016/S0898-1221(01)00154-7
http://dx.doi.org/10.1016/S0096-3003(01)00165-5
http://dx.doi.org/10.1016/j.camwa.2010.08.046
http://dx.doi.org/10.1016/j.amc.2011.02.004
http://dx.doi.org/10.1080/10236190601135209
http://dx.doi.org/10.1016/j.jat.2008.01.007
http://dx.doi.org/10.1016/j.nahs.2006.12.005

	New Asymptotical Stability and Uniformly Asymptotical Stability Theorems for Nonautonomous Difference Equations
	Abstract
	Keywords
	1. Introduction
	2. Some Lemmas
	3. New Asymptotical Stability and Uniformly Asymptotical Stability Theorems
	4. Example
	Funding
	References

