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Abstract
Let us define A=T, [aij] to be a nxn r -Toeplitz matrix. The entries in the first row of
A=T, [aij] are a;=F_; or a, =L, ; where F, and L, denote the usual Fibonacci and Lucas

numbers, respectively. We obtained some bounds for the spectral norm of these matrices.
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1. Introduction

Toeplitz matrices arise in many different theoretical and applicative fields, in the mathematical modeling of all
the problems where some sort of shift invariance occurs in terms of space or of time. As in computation of
spline functions, time series analysis, signal and image processing, queueing theory, polynomial and power se-
ries computations and many other areas, typical problems modelled by Toeplitz matrices are the numerical solu-
tion of certain differential and integral equations [1]-[5].

Lots of article have been written so far, which concern estimates for spectral norms of Toeplitz matrices,
which have connections with signal and image processing, time series analysis and many other problems [6]-[8].
Akbulak and Bozkurt found lower and upper bounds for the spectral norms of Toeplitz matrices with classical
Fibonacci and Lucas numbers entries in [9]. Shen gave upper and lower bounds for the spectral norms of Toep-
litz matrices with k-Fibonacci and k-Lucas numbers entries in [10].

In this paper, we derive expressions of spectral norms for r-Toeplitz matrices. We explain some preliminaries
and well-known results. We thicken the identities of estimations for spectral norms of r-Toeplitz matrices.
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2. Preliminaries
The Fibonacci and Lucas sequences F, and L, are defined by the recurrence relations
F,=0F=LF =F_ +F_, forn>2
and
L=2L=1L=L,,+L,, forn>2
The rule can be used to extend the sequence backwards. Hence
Fo=(-0)"F,

-n

and
L, =(-1)"L,

If start from n =0, then the Fibonacci and Lucas sequence are given by
0 1 2 3 4 5 6 7

n

F, 0 1 1 2 3 5 8 13
L, 2 1 3 4 7 11 18 29
F 0 1 -1 2 -3 5 -8 13

2 -1 3 —4 7 -11 18 -29
The following sum formulas the Fibonacci and Lucas numbers are well known [11] [12]:

n-1
zFiz = Fn Fn—l
i=1

n-1 )
SL=LL,,-2
i=1

ZH:F - F?-1 nodd
=i = neven
n L2+1 nodd
ZLK Ly = 12 _4
P} . n even
Amatrix T, = [tij } €M, ,(C) is called a r-Toeplitz matrix if it is of the form
t, i<
k ={ o 1)
rtH, 1> ]

Obviously, the r-Toeplitz matrix T is determined by parameter r and its first row elements t,,t_;,---t,_,,, thus
we denote T =T, (t,,t,,---,t, ). Especially, let r=1, the matrix T is called a Toeplitz matrix.

A matrix ST, = [tij ] eM,,(C) is called a symmetric r-Toeplitz matrix if it is of the form

rt;, i<j
=1, o )
ioj 12

Obviously, the symmetric r-Toeplitz matrix T is determined by parameter r and its last row elements
t 1t o, oty thus we denote T =ST, (t,_,t_,,---,t,). Especially, let r=1, the matrix T is called a Toep-

litz matrix.
The Euclidean norm of the matrix A is defined as

n 2 2
e ~( S

O,
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The singular values of the matrix A is

o =4 (AA)

where A is an eigenvalue of A"A and A" is conjugate transpose of matrix A. For a square matrix A, the

square roots of the maximum eigenvalues of A"A are called the spectral norm of A. The spectral norm of the
matrix A is

|Al, = max(c:).
The following inequality holds,

<[Al, <[|Al

1
1A,

Define the maximum column lenght norm ¢, , and the maximum row lenght norm r, of any matrix A by

rl(A) = mflx Zj:|aij

(81 AT

respectively. Let A, Band Cbe mxn matrices. If A=BoC then
|Al, <% (B)e.(C) [13].

|2

and

Theorem 1 [9]. Let A=T [aij] be a Toeplitz matrix satisfying a; = F_; , then

\’%( F”Z) < "A"Z < \/(1+ Fn Fn—l)(Fn Fn—l) n even

\’%( F”Z _1) < "A”z < \/(1+ I:n Fn—l)( Fn Fn—l) n odd

where ||[, is the spectral normand F, denotes the nth Fibonacci number.
Theorem 2 [9]. Let A=T [a ] be a Toeplitz matrix satisfying a; = L,_; , then

ij
2
n
/%(Lﬁ +1) <||A], <(LL; -1)(LL,,+2) nodd

where ||[, is the spectral normand L, denotes the nth Lucas number.

(Lﬁ —4) <| Al s\/(LnLW1 -1)(L, L, +2) neven

n—n-1

3. Result and Discussion

Theorem 3. Let A=T, [aij] be a r-Toeplitz matrix satisfying a;, = F_;, where reC.

' Va(F -0 <A <R F nodd
o [rl>]
VE(FD) <Al <y DRF, neven
Zef (F2 1) <|Al, <J(n-DFF, nodd
o Irl<]
ey
2 (F2) <Al < DRFL  neven

O,
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where ||[, is the spectral normand F, denotes the nth Fibonacci number.
Proof. The matrix A is of the form

I:O F—l T I:Z—n I:1—n ]
rFl I:o o F3—n F2—n
T
rk, rFy - K F,
|"Fy R, - 1R R

Then we have,

Al =nFst+ 20 (n =) F2 + X0 (n=1)FS

hence, when |r|>1 we obtain

n-1 n-1 i n
|AJL = nFZ + 2§(n —)F2=nF2+2Y YR = zéFk Fo,

i=1 k=1
that is
%(Fn2 —1) n odd
I, 1
H( Fnz) n even

On the other hand, let the matrices B and C as

F 1 1 i
r K 1
B= : :
ror F 1
L ror r R
and
[ I:0 F—l F2—n Fl—n ]
Fl FO F3—n I:2—n
C= : : :
Fn—Z Fn—3 FO F 1
L n1 I:n—2 Fl FO i

suchthat A=BoC . Then

I’l(B)z miax /Zj:|bij 2 _ ’?Z:: bnj 2 _ [|r|2(n—l) :|I’|m

Cl(C):maX Z|Cij i = nZincin i = §E2 = \/FnFn—l'
1\ i=0 i=0

and

We have

Al <Irly(n-1)F.F,

when |r|<1 we also obtain

|ALZ = nFZ +2|rf ?le(n ~i)F?=nF +2|r[ nfil:kz =2|rf* ng Fo,

i=1 k=1
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that is

E|r|2 (F?-1) nodd

LS
H|r| (Fn ) n even
On the other hand, let the matrices B and C as
(F, 1 1 i
r K 1
B= : :
rr F 1
| ror rFj
and
[ I:O F—l F2—n Fl—n ]
Fl F0 F3—n I:2—n
C= : : :
Fn—2 Fn—3 FO F—l
L Tt n-2 Fl Fo i

suchthat A=BoC . Then

r, (B) =max Zj:|bij|2 = :Z;bnjz =Jn-1
and
We have

|Al, <J(n-1)FF,..

Thus, the proof is completed.
Corollary 4. Let A=ST,(F,_,,F,_,,~,F,) bea symmetric r-Toeplitz matrix, where r C, then

2(rz-1) <[], <[rlJ(n-DFF  nodd
2(r7) <|al </-DRF,  neven

/%|r|2 (F?-1) <|A, <y(n-1)F,F,, nodd
2\ (F) <A, <y(n-DFF,  neven

where ||[, is the spectral normand F, denotes the nth Fibonacci number.
Proof. Owing to the fact that the sum of all elements squares are equal in matrices (1) and (2), the proof is
concluded analogously in the proof of previous theorem. |

Theorem 5. Let A=T, [aiJ be a r-Toeplitz matrix satisfying a; = L,_;, where reC.

©,

o 1|21,

o |r|<1,




H. Gokbas, R. Tirkmen

" s||A||2s\/[|r|2(n—1)+1][LnLnfl+2] n odd

2(L2 -4

n

. |r|21,

~—

<|A], < \/[|r|2 (n—1)+1}[Lanl +2] neven

2| (12 +1)+4n(1—|r|2)
n
2| (12 —4)+4n(l—|r|2)

n

<||A, <n(L,L,,+2) nodd

. |r|<1,

n—n-1

_ =

s||A||2s n(LL,,+2) neven

where ||[, is the spectral normand L, denotes the nth Lucas number.
Proof. The matrix A is of the form

[ L(J L—l I-Z—n Ll—n 1
rL1 Lo LS—n I‘2—n
an—z I‘Ln_3 Lo L 1

n-1 an—Z e rLl LO a

then we have
-1

||A||i:nLg+?zll|r|2(n_i)Lf+ (n-i)L,

i=1

>

hence when |r|>1 we obtain

|ALL = nL2 + 2nf(n —i)2=nl%+ 2nzlk'2L§ =nl?+ Zan:Lk L,
i=1 i=1 k=1 =1
that is
2
2(L2 +1) e
A1
Z(Ln _ 4) neven
n
On the other hand let matrices B and C be as
11 11
r 1 11
B= :
rr 11
rr r 1

and
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suchthat A=BoC . Then

()= max (S = (S~ (00 -3

A, < \/[|r|2 (n-1)+1][L, Ly, +2]

and

We have

when |r|<1 we also obtain
||A||§ 2 nlg + 2|r|2 ni(n —i)Lf =nLg + 2|r|2 nii'-z =4n+ 2|r|2 Zn:Lk Ly
i=1 i=1 k=1 k=1

that is

\/2|r|2(Lﬁ +1)+4n(1-|rf

n odd
VRS M :
\/2|r| (L2 -4)+4n(L-|r[) e
n
On the other hand, let matrices B and C be as
1
r
B=|: :
rr
rr r

and

suchthat A=BoC . Then

6(8)=max [S[n[ = (S, =¥
! i j=0
a(C)=max [Yle,f = [Sle, =[S = JEF w2
] i i=0 i=0

A, s‘/n(LnLM +2)

<,

and

We have
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Thus, the proof is completed.
Corollary 6. Let A=ST, (L, ;,L,,,- L) beasymmetric r-Toeplitz matrix, where reC, then

2(L2 +1)

n

' <[l <[ I (-0 +1][L, L, +2] nodd
e [rl>]

2 —
M <|Al, < \/[|r|2 (n—1)+1J[LnLn_l +2] neven

2| (12 +1)+4n(1—|r|2)
- <|Al, <n(L,L,.+2) nodd

J2|r|2<tﬁ—4>+4n(1—|rr)

n

o |r<1,

n—n-1

§||A||Zs n(L,L,;+2) neven

where ||[, is the spectral normand L, denotes the nth Lucas number.
Proof. Owing to the fact that the sum of all elements squares are equal in matrices (1) and (2), the proof is
concluded analogously in the proof of previous theorem. |

4. Numarical Examples

Example 7. Let A=T (F,F,,--,F_,) be a r-Toeplitz matrix, in which F, (i=0,1---,n—1) denotes the
Fibonacci number, where reC. From Table 1, it is easy to find that upper bounds for the spectral norm, of
Theorem 3 are more sharper than Theorem 1 (see Table 1).

Table 1. Numerical results of a;, =F_,, r=1.
n Theorem 1 Theorem 3
2 V2 Nl
3 V6 Ja
4 V42 Jis
5 240 60
6 V1640 200

n (1+FF.)(FF.) (n-1)FF,,

Table 2. Numerical results of a; =L_;, r=1.

n Theorem 2 Theorem 5

2 J10 V10

3 V154 Va2

4 810 120

5 6004 395

6 /39400 <1200

n (L"Lnil—l)(LnLh71+2) (n—l)(LhLH+2)
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Example 8. Let A=T, (L, Ly, -+, L,_,) bear-Toeplitz matrix, in which L; (i=0,1---,n—-1) denotes the
Lucas number, where r e C. From Table 2, it is easy to find that upper bounds for the spectral norm, of Theo-
rem 5 are more sharper than Theorem 2, when n > 2 (see Table 2).
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