
Circuits and Systems, 2016, 7, 1113-1119
Published Online May 2016 in SciRes. http://www.scirp.org/journal/cs
http://dx.doi.org/10.4236/cs.2016.77095

How to cite this paper: Krishnamoorthy, G., UmaMaheswari, N. and Venkatesh, R. (2016) RoBAC—A New Way of Access
Control for Cloud. Circuits and Systems, 7, 1113-1119. http://dx.doi.org/10.4236/cs.2016.77095

RoBAC—A New Way of Access Control for
Cloud
G. Krishnamoorthy1, N. UmaMaheswari2, R. Venkatesh3
1Department of Information Technology, R.V.S College of Engineering, Dindigul, Tamil Nadu, India
2Department of Computer Science and Engineering, P.S.N.A. College of Engineering & Technology, Dindigul,
Tamil Nadu, India

3Department of Information Technology, P.S.N.A. College of Engineering & Technology, Dindigul, Tamil Nadu,
India

Received 29 March 2016; accepted 24 May 2016; published 27 May 2016

Copyright © 2016 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
Access control has made a long way from 1960s. With the advent changes of technologies pertain-
ing to location transparency in storage of data, there arises different access control scenarios.
Cloud storage, the predominant storage that is being in use currently, also paves way to various
access control problems. Though there are various access control mechanisms such as RBAC,
ABAC, they are designed on the user’s perspective such as the role held by the user or other
attributes assigned to the user. A new access control mechanism called object relationship based
access control (RoBAC) has been developed based on the relations held among the users. The pol-
icy decision of access control is based on the relationship among the classes followed in the Java
programming. Results have shown that this model best suits various scenarios in the cloud envi-
ronment, and it also shows that the time for making decision either to allow or to deny is reduced
compared to the existing system.

Keywords
Cloud, Access Control, Class Relations, Roles

1. Introduction
The way in which the cloud services are provided to the end user changes the storage method of the organiza-
tions and individuals, with the increased trend of organizations moving towards the cloud infrastructure under
different cloud models such as public, private and hybrid cloud; we concentrate on access control model in pri-
vate cloud. We consider a private cloud which is deployed in a company’s data centre and shared by the workers

http://www.scirp.org/journal/cs
http://dx.doi.org/10.4236/cs.2016.77095
http://dx.doi.org/10.4236/cs.2016.77095
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/

G. Krishnamoorthy et al.

1114

of the organization. The assumption that we have made here is a single tenant assigned for the whole organiza-
tion; this assumption is taken into consideration since cloud has a multitenant architecture. We formulate an
access control mechanism and see how well it adapts to the specified cloud environment. An access control me-
thod is one which accepts or denies an access to a particular resource [1] [2]. All the access control policies that
are in practice are based on the various policy specification languages. Extensible access control language
(XACML) [3] based on xml is one such language that has been used widely; another such policy specification
language is ponder [4] which is based on the object oriented technology. These kinds of languages need a new
learning curve and the access control policies are implemented separately; the policy decisions of access privi-
leges are designed based on the various relations that exist between classes in the java programming language,
i.e. the concept of a particular programming language is being used as policy specification language. With the
advent usage of automatic code generation and web services based development, our work will be of a starting
point to this type of policy specification.

2. Related Work
Access control mechanism had its beginning in the form of Access matrix, which is followed by lot other me-
chanisms, the major methods that were and in practice are as follows, discretionary access control [2] is the one
in which the owner of the data have all privileges over it and also he is capable of transferring the privileges he
posses to others, in mandatory access control [5] access controls are managed by the administrators, objects and
subjects are assigned with are security levels and based on it access is grant or denied. The next major Access
control mechanism that comes in to use is RBAC, role based access control which is followed by Attribute
Based Access Control (ABAC), RBAC [6] [7] is the method in which the access rights are provided on the basis
of the roles held by the user. There are many variations of RBAC such as Access controls based on time [8],
based on location [9], in order to handle roles across different organization, Role and Organization Based
Access Control (ROABC) is developed [10] [11] deals with access control model based on the relationships.
User to user relation and relation among users in social networks is handled in [12]. Similarly there are various
ABAC models [13], all flavors of both RBAC and ABAC depend on policy based access control, policies spe-
cify the rules based on which the access decision is made. The standard policy specification language that is in
use XACML, we are providing an alternate method of this policy generation. The following sections explain the
proposed work and result obtained.

3. Proposed Work
The proposed work is explained with an example scenario, this would facilitate to understand the concept much
better.

3.1. Example Scenario
Consider an educational organization where there are various departments, each department has a specific num-
ber of students say 60. Consider the educational institution has a method for mentoring the students called fa-
culty Advisor scheme, for each set of 20 students a Faculty Advisor will be allocated, to better understand the
scenario the following hierarchy would help. The institution has a head, named principal, whose hierarchy is
followed by the head of the departments which in turn followed by faculty (staff). Each faculty is responsible of
20 students.

The details of the particular set of students can only be accessed by their corresponding faculty Advisor and
remember these students belong to a particular department.

Here the access control policy followed is only the faculty advisor of a particular student can access his/her
details.

Solution in RBAC and ABAC
In case of the role based access control this can be achieved through assigning a role called faculty advisor to the
particular user, but this would lead to the problem that any user with the role faculty advisor can access this the
user may belong to a different department, a better method would be attribute based access control, in which an
attribute is added to the user role, for example an attribute named department would solve this issue. So in case

G. Krishnamoorthy et al.

1115

of ABAC a role called faculty advisor is created and then an attribute department is created for that user role, the
condition would be if the user is a faculty advisor and has a intended department name in the department
attribute, he would be allowed to access the data.

The thing that has to be considered here is a role called staff has to be created and a role called faculty advisor
should also be created since the entire faculty in the department cannot act as advisors, some have to play the
dual role, the faculty advisor is inherited from staff and a set of students should be associated with a particular
faculty advisor.

Analysis shows that the solution of the above specified scenario can be achieved with the class relations such
as association, composition, generalization, dependency in java. Based on this a new policy mechanism is
created. The users and the resources are mapped to the classes and access control decisions are based on the re-
lationship between the classes, a simple example for the above specified problem is as follows

If the user wishes to access a particular student record, the following conditions should be met
• The user should be a staff.
• The staff should be a faculty advisor.
• The faculty advisor should belong to the department to which the student belongs to.
• The faculty advisor should be associated with that student.

Relations of the above specified conditions
1) The user should be an instance of faculty advisor class-realization.
2) This faculty advisor should be inherited from the staff class which in turn should be associated with the

department class to which the student belongs—generalization and association.
3) The faculty advisor should be associated with that student—faculty advisor object instance should have a

association relation with the student instance—association.
Sample code for depicting the association relation between the student and the faculty advisor is as follows

Class student
{
....
}
Class Facultyadvisor
{
 Student s[20];

}

The above relation specifies that the faculty advisor and student are in association relation. Figure 1 depicts
this relation.

3.2. Implementation Details
Based on the above said requirements an access control model is created based on the class relations in Java.
This model would be more suitable for scenarios where a specified relation such as association is needed, as in
our example, 20 students are associated with a particular faculty advisor. Another example would be a particular
set of patients associated with a particular doctor in a multi specialty hospital. The following sections explain the
various stages in the process.

3.2.1. Role Object Creation
A class hierarchy is first created for the organization or concern to which the access control security must be
implemented; class hierarchy is based on the roles and relations between the roles. Every role that has been de-
fined is generated as a class and the users assigned with the roles are generated as the class instances and stored
with the concept of object serialization. The contents (for example, files) that are to be secured are also consi-
dered as objects.

Figure 1. Example association relation.

Faculty Advisor Students
1 1..20

G. Krishnamoorthy et al.

1116

3.2.2. Defining Rules
When the data objects are created it is embedded with the details of the object instances that can access it is also
saved in a separate xml file.

Sample Access rule for accessing the file of student1
<fileobject>student1</fileobject>
<accessclass> class name </accessclass>
<relntoaccessclass>
 <relation>Association</relation>
 <relation>Generalization</relation>

</relntoaccessclass>

So when a user intends to access a particular resource the xml file would be checked for the conditions and
based on this access control decision is made either to allow or deny.

3.2.3. Decision Making
Access requestor is a one who wishes to access the data. The requestor will send a request to access the intended
data. The request consists of <requestor name, Data to be accessed>. This request will be in its native form, the
work of the request handler is to convert the native format to an object i.e. the object type is identified; and this
type is send to the decision maker.

Example request consists of <Bob, Student23>
The Request Handler identifies the various object instances corresponding to the access requestor and the

student and sends it to the decision maker based on the rule from the rule storage for the corresponding student
object an evaluation is done and the decision of whether to allow or deny the access request is made.

The following Figure 2 depicts the architecture of the above explained concepts.
For the educational institution scenario we have taken, the Figure 3 is the class diagram which depicts the en-

tire role hierarchy as classes. These classes and the relations between them are used for making the decision.
For every access request the relation between the object instance and the data request is found, and if the rule

permits such a relation to access the request the request is granted else it is denied.

4. Experimental Results
The experiment is done in a system with Intel i3 processor and 4 GB RAM and 32 bit operating system, Java is
used for developing the scenario and since we have used java class relation as a rule creator for access control
instead of a separate policy language it’s easier to develop a rule engine to make decision. For a comparative
study the same process is also implemented with sun XACML instances with the concepts of attribute based

Figure 2. Proposed architecture.

Rule Generation
& Storage

Decision Maker

Request
Handler

Access
Requestor

Data Storage
Object
Generation

User role
creation

Rule

Request Reply

Access Request

Allow/Deny

G. Krishnamoorthy et al.

1117

Figure 3. Class diagram of the example scenario.

access control, studies have shown that the time increases with the increase in number of attributes, considering
our relation as attributes added to the roles and using XACML policy language, Figure 4 shows the comparative
chart of our proposed method, it shows the response time of a request made by a client and the corresponding
reply.

Since our access control model is based on the Relationship between the classes, a study of difference in the
time of Authorization between two relations is done, as a sample the following graphs (Figure 5(a) and Figure
5(b)) represent the difference in time in terms of mean and standard deviation when an authorization is made
based on association and authorization is made based on generalization

Though there is variation in time in which the access control decision is taken it is negligible, and since we
have taken two relations (association and generalization) which is the dominant relation in the available scenario,
we hope it is not necessary to analyze the time difference of other relations.

5. Conclusion and Future Work
A new access control mechanism is framed based on the existing relations available between classes in Java,
This work will be a stepping stone towards creating a standard framework for access control; only preliminary
access control mechanism is discussed in this work and our future work includes various other facilities such as
generating dynamic rules and making dynamic request handling process. We also look forward to create a

*

*

College

HoD

Student Staff

Dept

Faculty Advisor

Has

Has

Assigned to
Member

Attends

Offers

1

1..20

1

1..6
Takes

1..*
1..*

1..*

1

1..*

1..*

1 1..*

Subjects

G. Krishnamoorthy et al.

1118

Figure 4. Time comparison between XACML and RoBAC.

(a)

(b)

Figure 5. (a) Mean time comparison between association and genera-
lization; (b) Standard deviation comparison between association and
generalization.

standard for this kind of access control.

References
[1] Samarati, P. and Vimercati, S.D.C.D. (2001) Access Control: Policies, Models, and Mechanisms. Springer-Verlag,

London, 137-196. http://dx.doi.org/10.1007/3-540-45608-2_3

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5
Re

sp
on

se
 T

im
e

in
 S

ec
on

ds

No. of Request

RoBAC

XACML

2

2.5

3

3.5

4

4.5

5

5.5

6

Association Generalization

M
EA

N

Association Vs Generalization

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Association Generalization

St
an

da
rd

 D
ev

ia
tio

n

Association Vs Generalization

http://dx.doi.org/10.1007/3-540-45608-2_3

G. Krishnamoorthy et al.

1119

[2] Sandhu, R. and Samarati, P. (1994) Access Control: Principle and Practice. IEEE Communications Magazine, 32, 40-
48. http://dx.doi.org/10.1109/35.312842

[3] OASIS Standard (2015). https://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
[4] Damianou, N., Dulay, N., Lupu, E. and Sloman, M. (1995) The Ponder Policy Specification Language. Workshop on

Policies for Distributed Systems and Networks, Bristol, 29-31 January 2001, 18-39.
[5] Sandhu, R.S. (1993) Lattice Based Access Control Models. IEEE Computer, 26, 9-19.

http://dx.doi.org/10.1109/2.241422
[6] Ferraiolo, D.F., Sandhu, R., Gavrila, S., et al. (2001) Proposed NIST Standard for Role Based Access Control. ACM

Transactions on Information and System Security, 4, 224-274. http://dx.doi.org/10.1145/501978.501980
[7] Sandhu, R.S., et al. (1996) Role-Based Access Control Models. IEEE Computer, 29, 38-47.

http://dx.doi.org/10.1109/2.485845
[8] Hansen, F. and Oleshchuk, V. (2003) SRBAC: A Spatial Role-Based Access Control Model for Mobile Systems. Pro-

ceedings of the 7th Nordic Workshop on Secure IT System, Karlstad, 129-141.
[9] Joshi, J., Bertino, E., et al. (2005) A Generalised Temporal Role-Based Access Control. IEEE Transactions on Know-

ledge and Data Engineering, 17, 4-23. http://dx.doi.org/10.1109/TKDE.2005.1
[10] Zhang, Z., Zhang, X. and Sandhu, R. (2006) ROABC: Scalable Role and Organization Base Access Control Models.

2006 International Conference on Collaborative Computing: Networking, Applications and Worksharing, November
2006.

[11] Fong, P.W.L. (2011) Relationship-Based Access Control: Protection Model and Policy Language. Proceedings of the
First ACM Conference on Data and Application Security and Privacy, San Antonio, 21-23 February 2011, 191-202.
http://dx.doi.org/10.1145/1943513.1943539

[12] Cheng, Y., Park, J. and Sandhu, R. (2012) Relationship-Based Access Control for Online Social Networks: Beyond
User-to-User Relationships. 2012 International Conference on Privacy, Security, Risk and Trust (PASSAT), Amster-
dam, 3-5 September 2012, 646-655. http://dx.doi.org/10.1109/SocialCom-PASSAT.2012.57

[13] Jin, X. (2014) Attribute-Based Access Control Models and Implementation in Cloud Infrastructure as Service. Disser-
tation, The University of Texas at San Antonio, San Antonio.

http://dx.doi.org/10.1109/35.312842
https://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://dx.doi.org/10.1109/2.241422
http://dx.doi.org/10.1145/501978.501980
http://dx.doi.org/10.1109/2.485845
http://dx.doi.org/10.1109/TKDE.2005.1
http://dx.doi.org/10.1145/1943513.1943539
http://dx.doi.org/10.1109/SocialCom-PASSAT.2012.57

	RoBAC—A New Way of Access Control for Cloud
	Abstract
	Keywords
	1. Introduction
	2. Related Work
	3. Proposed Work
	3.1. Example Scenario
	Solution in RBAC and ABAC

	3.2. Implementation Details
	3.2.1. Role Object Creation
	3.2.2. Defining Rules
	3.2.3. Decision Making

	4. Experimental Results
	5. Conclusion and Future Work
	References

