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Abstract 
The parallelization of the diagnostics for climate research has been an important goal in the per-
formance testing and improvement of the diagnostics for the Department of Energy’s (DOE’s) Ac-
celerated Climate Modeling for Energy (ACME) project [1]. The primary mission of the ACME 
project is to build and test the next-generation Earth system model for current and future genera-
tions of computing systems operated by the DOE office of science computing facilities, including 
the envisioned exascale systems foreseen in the early part of the next decade. As part of the un-
derpinning workflow environment, a diagnostics, model metrics, and intercomparison Python 
framework, called UVC Metrics was created to aid in testing and production execution of the model. 
This framework builds on common methods and similar metrics to accommodate and diagnose 
individual component models, such as atmosphere, land, ocean, sea ice, and land ice. This paper 
reports on initial parallelization of UVC Metrics for the atmosphere model component using two 
popular frameworks: MPI and SPARK. A timing study is presented to assess the performance of 
each method in which significant improvement was achieved for both frameworks despite I/O 
contentions with NFS. The advantages and disadvantages of each framework are also presented. 

 
Keywords 
Climate Diagnostics, Parallel, MPI, SPARK 

 
 

1. Introduction 
Research into climate change has many computational requirements starting with the execution of multi-physics 

http://www.scirp.org/journal/jsea
http://dx.doi.org/10.4236/jsea.2016.95016
http://dx.doi.org/10.4236/jsea.2016.95016
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/


J. McEnerney et al. 
 

 
200 

climate simulations [1]. Support for this project has evolved into a computing ecosystem, in the sense that all 
aspects of data, software, libraries and tools, network and transfer mechanisms, storage, as well as requirements 
for computing hardware are included. These have the potential impact for advancing the scientific mission of 
climate science. Data management has grown in size and geographical requirements that literally span the globe 
[2].  

There are several opportunities to parallelize applications that support climate research. While the phrase 
“embarrassingly parallel” is frequently used, it does not reflect the amount of effort required to succeed in the 
conversion of an application from serial to parallel. When confronted with such a project, there are important 
basic questions to answer. Is there some part of the algorithm that is parallelizable? Does it require reimplemen-
tation of any kind? What framework should be chosen for implementation? What performance increase should 
be expected? In the context of climate data a good application involves the reduction of a large quantity of data. 
At what point does saturation set in, beyond which no possible improvement can be gained, and perhaps, is there 
a performance degradation? 

While performance is the overarching goal, any implementation cannot ignore the data requirements. Specifi-
cally, terabytes and petabytes of data cannot be moved to local machines; remote processing for analysis and 
data reduction is imperative. This will only get worse with either higher resolution simulations as in the ACME 
project [1] or more long-term simulations as in CMIP [3] [4]. It is natural to reverse this thinking and push 
computations to the data, potentially across different geographical computing facilities [5]. Furthermore, due to 
the length of time to complete a simulation, it is a requirement to allow for “in situ analysis”, that is, performing 
analysis while the model is running. 

Constraints are often imposed with such requirements. For example, the computer architecture is already de-
fined with mainstream technologies, such as HPC, cloud clusters, linux clusters, GPUs, and CPUs. There are al-
so software constraints starting with languages. Python is the chosen language in this case and already there is a 
performance loss with an interpreter. While Python may not be the best language for parallelization, it does 
maintain the balance between performance and software maintainability. Also, Python, as does Scala, has a ben-
efit in supporting functional language features where these features facilitate runtime scheduling of computation 
kernels when defined within a function. The performance overhead would be negligible or latency hidden by I/O. 
While programming in a language compiled to traditional machine code may lack these overheads, much time 
would be spent blocking on I/O. Further constraints include compilers and libraries available on these systems, 
in addition to their versions. 

The intent of this paper is to provide insight into answers to these questions as applied to the component mod-
el diagnostics. To our knowledge, no effort has previously been made to evaluate parallel climate model output 
diagnostics, as presented here. 

2. Climate Diagnostics 
The climate diagnostics are available in the Climate Data Analysis Tools (CDAT) framework. CDAT was de-
veloped at Lawrence Livermore National Laboratory (LLNL) for the analysis, visualization, and management of 
large-scale distributed climate data [6]-[8]. This toolkit is implemented in Python and incorporates many pack-
ages including numpy, vcs, and others. 

The atmospheric diagnostics package provides the climatologist a means to assess climate simulations relative 
to experimental data or another simulation. They are available from the command line or the UV-CDAT GUI. It 
is common to generate a graphical image in the form of a Mercator projection with the relevant parameters un-
der consideration. An alternate two-dimensional image showing latitude versus month of the year is displayed in 
Figure 1. This diagnostic is used in the study.  

Climate data are frequently 4 dimensional: latitude, longitude, altitude (level) and time. As a simulation ex-
ecutes, these data are recorded in history files for subsequent processing or a restart capability. Climatologies are 
averages over some number of coordinates listed above. Parallelizing the averaging process is our primary focus 
for parallelization in the climate project. 

The design of the diagnostics system for the ACME project is based on a central class that defines or stages 
the computation to be performed. All of the associated attributes including the name of the function used for the 
reduction and information for graphical output are defined. The actual computation is not performed during the 
initialization but later with a call to the objects results method. Once completed, graphical output is generated.  
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Figure 1. Annual cycle contour plot of zonal mean.                                                         

 
This structure of diagnostics enables the use of parallelization since each process can be assigned a different re-
duction. 

There are several types of reductions available. Each one is a function that reduces the data by averaging 
across some of the four axes and reduces to fewer axes for display purposes. The type of reduction depends on 
what is being studied and is specified in the object. Climate simulations produce significant amounts of data lo-
cated in several files and the reduction process span these files. Thus the current implementation of diagnostics 
has file I/O interleaved with the computation.  

3. The Performance Test 
This project was an initial parallelization project intended to penetrate the implementation of one diagnostic and 
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parallelize at more than a superficial level for the computation of climatologies. There are deeper, more difficult 
levels of the implementation where even more performance could be achieved but are outside the scope of this 
study. The diagnostic chosen is the Annual Cycle Contour Plot of Zonal means. The graphical output is a plot of 
latitude versus month, Figure 1. The reduction averages across longitude and altitude. 

There are 24 independent calculations: 12 models and 12 observations. The point where the parallelization 
occurs is where a dictionary is constructed with all of the 24 reduced variables defined and the reduction process 
begins. For MPI the scatter/gather pair is used. Once implemented for MPI, the SPARK implementation was 
straightforward for this application; this same loop was simply mapped and the entries in the dictionary were 
reduced. 

Data from CMIP5 was used for this study. CMIP5 is one project in a series aimed at multi-physics climate 
simulations to understand both near term (out to about 2035) and long term (out to 2100 and beyond) predictions 
[3]. The data used for the model are 17 GB. A separate copy of these data was used for the observation. This 
was done to bring the total amount of data to a reasonably high level. Note, while observational data is fre-
quently much smaller, there are future requirements for high resolution data. The simulations span the years 
from 2000 to 2670 for each month with a total of 67 files, one for each decade. The individual arrays have di-
mensions (time, level, latitude, longitude) with size (120, 17, 128, 256); 120 covers 10 years of simulated data. 

The test results reflect the time required for the loop over of the reduced variable dictionary, not the timing of 
the entire application. The test ensured that each core was processing the same number of months, that is, the 
same amount of data. For this study the 24 independent calculations enabled several different configurations. 
For MPI, the number of nodes and number of tasks per node are specified. For SPARK, the number of partitions 
is specified. For the purpose of comparison the number of partitions is simply the product of node number and 
task number. Each execution was repeated a nominal 5 times to identify inconsistencies and to compute means 
and standard deviation. A weak scaling test was also performed, wherein the workload started with 3 months 
and increased linearly as the number of nodes increased. 

4. Performance Configuration Setup 
The hardware configuration used in the study is a Linux cluster. The master node has 4 Quad core 2.6 GHz Intel 
Xeon E5-2670 CPUs and 256 GB RAM with hyper-threading enabled. The worker nodes have 2 8-Quad core 
2.4 GHz Intel Xeon E5-2650 CPUs and 128 GB RAM, running on a private 10 Gigabit-Ethernet network, with 
CentOS Linux 6.x, and hyper-threading disabled. The master node has an NFS drive running version 4.x. This 
performance study is executed as the only user of these cluster nodes; the NFS mount is accessed in a shared en-
vironment on other servers, which is standard practice in most computing environments. 

MPI is an established standard for parallel computing that has origins dating to the early 1990s, [9]-[13]. The 
python package is mpi4py version 1.3 [14]-[16]. There are many options that can be specified with MPI. The 
two most relevant used are number of nodes and number of tasks per node. Job management was accomplished 
with SLURM. It is a resource manager that was first developed at LLNL and provides the basics needed to run a 
parallel job, namely, resource allocation, job executing/monitoring and queue managing of pending jobs, [17]- 
[19]. When coupled with MPI it provides a complete environment for parallel computing.  

SPARK is an implementation of the map/reduce paradigm [20] and boasts impressive performance improve-
ments over Hadoop. At some level SPARK incorporates both the functionality of MPI and SLURM. Although it 
makes the architecture of the cluster more opaque, it requires only the number of partitions or cores to be used. 
Each node has an executor that manages the node. One advantage of this framework is that jobs far too massive 
for the resources will be broken down into “bite size” chunks and executed in out-of-core fashion. You can 
make the chunks too large for a single worker process, but having more workers wouldn’t make a difference. 
For the study version 1.5.2 was used.  

5. Timing Results 
Timing for the serial calculation was 1902 seconds. For MPI, simply increasing the number of nodes does not 
necessarily improve performance, Figure 2 and Table 1. With the increase from 3 to 4 nodes and a single task 
per node, the performance inexplicably degrades by about 10%. This decline appears to be some sort of conten-
tion accessing the NFS drive. However, as the number of nodes continues to increase the performance does also, 
although it appears to be only a marginal increase with 2 tasks per node. Also comparing 1 task per node versus 
2 tasks per node, there is mostly a uniform improvement. 
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Figure 2. MPI mean time vs. number of nodes.                                                                                       

 
Table 1. MPI timing table.                                                                                

#nodes #tasks mean std 

1 1 1904.8 6.58 

1 2 935.04 0.53 

2 1 1043.41 1.33 

2 2 517.57 1.1 

3 1 697.38 1.56 

3 2 346.02 0.73 

4 1 769.99 27.33 

4 2 358.01 22.75 

6 1 528.25 27.88 

6 2 244.06 23.84 

 
The SPARK timing is displayed in Figure 3 and Table 2 as two separate curves. The red curve is the result of 

restricting the configuration on the worker nodes so that only a single process operates at a time. This was done 
for a comparison with MPI to be discussed shortly. The configuration for the blue curve was unrestricted but 
only two tasks per node actually executed. Note the following specifics of the measurement: the x-axis 
represents the number of partitions running, rather than the number of nodes (which may each have one or more 
tasks) as shown in Figure 2; this setup is only valid for this test and it would not be used in practice. Nonethe-
less, our observations give an indication of what should be the best way of configuring SPARK for this applica-
tion. 

The second configuration with more than one task per node gives the best performance, which improves stea-
dily as the number of partitions increases, although it too seems to be close to steady state with 3 or more parti-
tions. There is anomalous timing in the 4 node/1 task versus 2 nodes/2 tasks. The standard deviations are quite 
large and is interpreted as an NFS issue as in the case of MPI. 

The only fair comparison between MPI and SPARK is to consider the case of a single task per node in the 
case of MPI and the number of nodes is treated as the number of partitions for SPARK. This contrived setting is 
only valid for a performance test and it is invalid in an operational situation. In Figure 4 it is evident that the 
two are comparable. SPARKs performance in the best case is very similar to MPIs, seen by comparing 12 parti- 
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Figure 3. SPARK mean time vs. partition count.                                                                                       

 

 
Figure 4. MPI/SPARK timing comparison.                                                                                        

 
Table 2. SPARK timing table.                                                                              

#nodes #tasks #partitions mean std 

1 1 1 2099.05 11.6 

1 2 2 1045.92 2.49 

2 1 2 1055.62 1.22 

2 2 4 571.6 76.25 

3 1 3 764.0 107.81 

3 2 6 388.61 50.32 

4 1 4 706.35 153.15 

4 2 8 363.52 45.57 

6 1 6 411.19 22.25 

6 2 12 248.4 15.69 
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tions for SPARK and 6 nodes/2 tasks for MPI. Note in this case there is a little more consistency for SPARK 
over MPI; the standard deviations are different. 

To study the weak scaling, the amount of work for each processor was linearly increased starting with 3 
months for a single processor up to 18 months for 6 processors. By doing this only the length of computation 
was being measured, not all of the 24 months were computed. Again 5 executions were performed. It would be 
unexpected to see the amount of time to perform the computation to be constant, the perfect expectation. A 
comparison indicates that SPARK is more consistent, Figure 5. For MPI there is a noticeable degradation as the 
node count increases from 3 to 4. Note this anomaly appears in the MPI timing, see Figure 2. 

6. Experience with Parallel Frameworks  
Troubleshooting in either framework reflects a significant issue found in any parallel framework. The methods 
used for serial applications to troubleshoot provide only the basics for parallel applications. Both frameworks 
have many moving parts and diagnosing issues is difficult. For example, when a node is down it is difficult to 
determine where the problem is and there is little evidence for troubleshooting. SLURM provides rudimentary 
diagnostics for system status. SPARK’s web interface for running applications is quite good, which is much 
better than MPI. If you need to use a specific Python the PYSPARK_PYTHON environment works fine. How-
ever, if the workers on each node need to use this same Python, a typical situation, there is a configuration issue. 
This does not fit a multi user environment. In both cases there was a limitation on the number of jobs that can 
run simultaneously on this cluster; 2 was the maximum. There was no real indication what the underlying reason 
was. In fact, it may be associated with one of the packages used by UVCDAT.  

MPI has a high level of configurability, which translates into more complexity for a developer. One observa-
tion apparent from the graphs is that it requires experimentation to see what is the best configuration of number 
of nodes and the number of tasks per node. It seems that the developer must know the architecture of the net-
work and the same holds for a user, to a lesser extent. 

SPARK works best with a well-defined encapsulated computation. For example, perform file I/O to stage data 
in the mapper and the actual computation in the reducer. There are several configuration parameters available to 
the application from each framework. Some experimentation is required to identify the best setting. With 
SPARK, the output from workers is not integrated with the master output, although there are techniques for 
doing this.  

7. Conclusions  
Data ingesting with NFS is a known problem. Too many processes accessing data cause bottlenecks in these 
systems and using centralized disk storage are definitely a problem. This showed up with as few as 12 processes 
in either MPI or SPARK. Using a file system other than NFS such as HDFS, Tachyon (with SPARK), or a 

 

 
Figure 5. MPI/SPARK weak scaling comparison.                                                     
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bona fide parallel file system (using MPI-IO) such as Lustre or GPFS should be considered to improve the situa-
tion. If successful this may be part of a justification for a move to other technologies. Several authors have had 
similar experience with NFS limitations in comparable parallel access environments [6]. 

A more granular computation can be employed to increase parallelization even further. Specifically, push the 
parallelization to a deeper level such in the libraries. For example the CDMS library, which provides all of the 
functionality to manipulate climate data arrays, is a likely target. Internal memory analysis would be needed to 
identify how to achieve the best performance. 

Both frameworks have a broad development community. A developer new to parallel programming should 
consider SPARK. It’s more user-friendly than MPI, although the newness of SPARK places the burden of ad-
ministration on the developer. SPARK provides arbitrary scalability without the user needing to write special 
out-of-core data processing code as would be required for MPI. This is a distinct advantage available to novice 
users that would be difficult to match even by a seasoned MPI developer.  
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