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Abstract 
Let G = (V,E) be a graph, where V(G) is a non-empty set of vertices and E(G) is a set of edges, e = 
uv∈E(G), d(u) is degree of vertex u. Then the first Zagreb polynomial and the first Zagreb index 
Zg1(G,x) and Zg1(G) of the graph G are defined as ( )

( )∑ u v
u

d
v E G

dx +
∈

 and ( )( )∑ e uG vuv E d d
= ∈

+  respec- 

tively. Recently Ghorbani and Hosseinzadeh introduced the first Eccentric Zagreb index as 
( ) ( ) ( )( )( )∑ uv E GZg G ecc v ecc u1

∗
∈

+= , that ecc(u) is the largest distance between u and any other 

vertex v of G. In this paper, we compute this new index (the first Eccentric Zagreb index or third 
Zagreb index) of an infinite family of linear Polycene parallelogram of benzenoid. 
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1. Introduction 
By a graph, we mean a finite, undirected, simple graph. We denote the vertex set and the edge set of a graph G 
by V(G) and E(G), respectively. And the number of first neighbors of vertex u in G (the degree of u) is denoted 
by d(u). For notation and graph theory terminology not presented here, we follow [1]-[3]. All of the graphs in 

http://www.scirp.org/journal/ojapps
http://dx.doi.org/10.4236/ojapps.2016.65031
http://dx.doi.org/10.4236/ojapps.2016.65031
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/


M. Alaeiyan et al. 
 

 
316 

this paper are simple and a topological index of a graph is a number related to a graph which is invariant under 
graph automorphisms and is a numeric quantity from the structural graph of a molecule.  

One of the best known and widely used is the Zagreb topological index Zg1 introduced by I. Gutman and N. 
Trinajstić in 1972 as [1] [2] 

( ) ( ) ( )( )( )1 .e uv E GZg G d u d v
= ∈

= +∑  

Also, we know another definition of the first Zagreb index as the sum of the squares of the degrees of all ver-
tices of G. 

( ) ( )( )
2

1 v V GZg G d v
∈

= ∑  

where du denotes the degree of u. Mathematical properties of the first Zagreb index for general graphs can be 
found in [4]-[8]. 

Let x,y∈V(G), then the distance d(x,y) between x and y is defined as the length of any shortest path in G con-
necting x and y [9]-[11].  

In other words,  

( ) ( ) ( ){ }Max , |ecc v d u v u V G= ∀ ∈ . 

The radius and diameter of a graph G are defined as the minimum and maximum eccentricity among vertices 
of G, respectively. In other words,  

( ) ( ) ( ) ( ){ }Max ,  |v V GD G d u v u V G∈= ∀ ∈ , 

( ) ( ) ( ) ( ){ }{ }Min Max ,  |v V GR G d u v u V G∈= ∀ ∈ . 

Recently in 2012, M. Ghorbani and M. A. Hosseinzadeh introduced a new version of first Zagreb index (the 
Eccentric version and ecc(v) denotes the eccentricity of vertex v) as follows [12]: 

( ) ( ) ( )( )( )1 e uv E GZg G ecc v ecc u∗
= ∈

= +∑ . 

In this study, we call this eccentric version of the first Zagreb index by the third Zagreb index and denote by 
( ) ( )( )3 1Zg G Zg G∗= . And in continue, a formula of the third Zagreb index for an infinite family of linear Poly-

cene parallelogram of benzenoid by using the Cut Method is obtained. 

2. Results and Discussion 
In this sections, we compute the third Zagreb index M3(G) for linear Polycene parallelogram of benzenoid P(n,n) 
(∀n ≥ 1). This family of benzenoid graph has 2n(n+2) vertices/atoms and  

( ) ( )( )2 23 4 1 1 2 2 4 2 3 2 2n n n n + − = + + −   edges (bonds) [13]-[23]. The general representation of linear Po- 

lycene parallelogram of benzenoid P(n,n) is shown in Figure 1. 
Now, we can exhibit the closed formula of the third Zagreb index M3(Hk) in the following theorem. 
Theorem 1. Considering the linear Polycene parallelogram of benzenoid P(n,n) (∀n∈ℕ), then its third Zagreb 

index is equal to  

( )( ) 3 2
3 , 16 85 75 6Zg P n n n n n= + − + . 

Proof. ∀n∈ℕ, let P(n,n) be the linear Polycene parallelogram of benzenoid, as shown in Figure 1. To achieve 
our aims, we use of the Cut Method. Definition of the Cut Method and some of its properties are presented in 
[24]. Thus, we encourage readers to look at Figure 1 and see all cuts of the linear Polycene parallelogram of 
benzenoid P(n,n). 

So according to Figure 1, one can see that the eccentric vertices with degree two are between 2n+1, 2n+2, 
 , 4n−6, 4n−4, 4n−2, 4n−1 or the number set  

( ){ }th4 1,4 2 ,2 1|  be the I cut of , .n n i n i P n n− − +  

And also, the eccentric vertices with degree two are between 2n, 2n+1 to 4n−4, 4n−3 or in the number set  
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Figure 1. The eccentric of vertices of linear polycene parallelogram of benze-
noid P(n,n) [14].                                                                    

 

( ) ( ) ( ) ( ) ( ){ }h2 , 2 , 2 1, 2 2 , , 4 2 2, 4 2 1 , 4 4, 4 3 | 2, 1 be the i cut of ,n n n n n i n i n n i n P n n+ + − − − − − − = − . 

Therefore, by using above results and [14]-[23], we have the following computations for the third Zagreb in-
dex of the linear Polycene parallelogram of benzenoid P(n,n) as: 

( )( ) ( ) ( )( )( )( )
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