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Abstract 
Chains are typically used for tension load transfer. They are very flexible and allow easy length 
adjustment by hooking at the links. Steel is the traditional material for chains. Recently, synthetic 
link chains made from ultra-strong polyethylene fibers, branded as Dyneema®, are commercially 
available. These chains offer a highly improved strength to weight ratio. So far, one type of such 
chains is available, and it has a Working Load Limit of 100 kN. 50 of such chains, containing 6 links 
were tested to fracture. The strength of each chain and the location of the failed link were docu-
mented during testing for later interpretation. Weibull statistics was applied in order to extrapo-
late towards the allowable load for very low failure risks (high reliability). Two approaches were 
used. One extrapolation was based on all results; the other was applied after recognition that the 
end links failed under a slight negative influence by the connection to the testing equipment. Thus, 
in fact two populations are mixed, the chains with failing end links and the chains with failing cen-
tral links. So considering the population without the failing end links is more representative for 
pure chain behavior without clamping effects. The results from this latter consideration showed a 
higher Weibull exponent, thus a more realistic extrapolation behavior. Both methods indicate that 
the reliability at the working load limit of 100 kN is very good. 
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1. Introduction 
Carrying tension load is typically achieved with cables or chains. Cables offer the best strength to weight ratio, 
whereas chains offer the possibility to attach hooks in various chain links and thus adjust the working length 
quickly. Moreover, chains are highly flexible and thus easy to handle and store and they coil easy. This is espe-
cially relevant in heavy haulage by load securing of irregular shaped freight on ship decks, train wagons or road 
trailers. Steel is the traditional material for chains. Steel link chains are very heavy. Synthetic link chains made 
from ultra-high strength gel-spun polyethylene fibers are recently commercially available. The fibers used for 
the manufacturing of those chains are Dyneema® fibers. An introduction to these fibers is presented earlier [1] 
[2]. The present chains, recently introduced [3]-[7], are made by weaving narrow fabrics from UHMWPE Dy-
neema® fibers, stacking the obtained fabrics into wound chain links and stitching the end connections with a 
stitching yarn that is also made from Dyneema® fibers. The resulting synthetic link chains have a design Mini-
mum Breaking Load MBL = 200 kN (~20 metric tons) and a Working Load Limit WLL = 100 kN (~10 metric 
tons). Since the chain is a recent product, launched to global load securing market just in May 2015, there is a 
motif to quantify variation in break load for quality control. Therefore, strength scatter has been investigated and 
reported in the present paper. Figure 1 shows such a synthetic chain being tensioned for lashing a yacht on a 
ship deck. More details on the chains follow in Chapter 2. The tensile tests and results are presented in Chapter 
3. The Weibull data processing is discussed in Chapter 4. Some final discussions and conclusions are presented 
in Chapter 5. 

2. Description of Synthetic Link Chains 
Figure 2 visualizes a synthetic link chain as it was tested. The blueish label on the link shows the legally re-
quired product information. The eight layer stacked structure of each link provides a “capstan effect”, the fric-
tion under load causes load transfer between the layers. The right-hand side of Figure 3 shows the stacked fabric 
windings of a link, the mentioned capstan effect occurs mainly at the link-link interfaces. Thus the residual load 
on the stitched end termination is reduced down to less than 1% MBL, being much lower than the strength of the 
stitched connection. This makes each link highly reliable and intrinsically safe against unravelling. Figure 2 also 
shows that each link additionally contains a half twist. In fact each link is a Möbius ring (referring to a former 
19th century mathematician). The reason for this construction [6] is that for an untwisted link, the contour length 
along the inside is smaller than along the outside. The displacements upon loading are similar, thus the strain at 
the inside would be larger, so would be the stress, and fracture would occur at a rather early stage at the inside. 
In contrast, the Möbius ring is a structure where the inside plane and outside plane are in the same. Consequent-
ly, the stress concentration is reduced and a stronger chain is the result. The visualized and tested commercially 
available chain example, branded as TYCAN®, is certified by DNV-GL for heavy load securing, for tie down,  
 

 
Figure 1. Synthetic link chain in use on a ship deck. 
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Figure 2. Chain as tested. 

 

  
Figure 3. Connection system of the testing machine to the first chain link with oval 
shaped red pin. 

 
as well for direct lashing. Some more details can be found on the TYCAN® website [7]. Synthetic link chains 
are attractive in use; the up to eight times lower weight as compared to steel chains, allows faster and safer han-
dling. Chains are often dropped during handling. Synthetic chains are considerably less noisy when falling than 
steel chains. They are also softer, so do not abrade or scratch cargo and they protect personnel and equipment 
against injuries and damages. The chains tested consisted of six links. The nominal length of the chains (pin to 
pin) was 0.6 meter. All chains were preloaded by the manufacturer to the WLL = 100 kN. The link dimension is 
100 mm × 25 mm × 12 mm. The used UHMWPE fibers in warp direction are Dyneema® DM20 dtex1760 and 
in weft direction Dyneema® SK62 dtex880. The sewing thread is GetaStrong® with Dyneema® from Grusch-
witz Fibers GmbH (D). For high reproducibility and reliability, the synthetic link chains are made in an auto-
mated way through a streamlined standardized DNV-GL assessed manufacturing process. 

3. Tensile Tests on Chains 
3.1. Description of the Tests 
A number of 50 TYCAN® chains was ordered from the manufacturer and tested as received. A tensile test 
bench with 900 kN load capacity at an independent external test house was used (Hijs Service Astea B.V., Ge-
leen, The Netherlands). The connection to the loading device was provided by an oval steel pin with a long axis 
of 60 mm and a short axis of 30 mm. Figure 3 presents an impression of the connection system. The choice for 
the oval shape was made for providing a large cross section area of the pin without applying a width that opens 
the link rings too much. Considering the final results it may be concluded in retrospect that still some more 
opening than desired was apparent. This will be discussed in more detail, later in Chapter 4. The loading rate 
was 50 mm/minute. This caused a time to fracture of about 50 seconds. The tests were performed at ambient 
temperature of 17˚C. All load displacement diagrams were recorded up to break. All failures occurred at a 
link-link interface, sometimes a few fabric layers remained intact after first fracture. In some cases a secondary 
failure occurred at the stitches, this may be explained by sudden loading of the stiches after first failure of the 
woven fabric layers. An example of a broken link is presented in Figure 4. 
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Figure 4. A broken link example chain tested as number 38 (Table 
1), with some remaining intact layers. 

3.2. Test Results 
As one out of the fifty, a typical test diagram is presented in Figure 5. The load displacement diagram of the 
tested chains showed a small initial area with low stiffness, followed by a reasonably linear region. Table 1 pro-
vides the measured raw breaking forces in order of the test number. The Weibull statistics rank numbers and R 
values (to be explained in Section 4) are also presented. The number of the broken link is added in the third 
column. Link numbering was arbitrarily chosen starting counting from driven side of the testing machine.  

4. Statistical Treatment 
Weibull statistics is often used in structural engineering and material science and was therefore also adopted for 
the present study. A reason is that it does not comprise negative strength values that are of course impossible 
and could result from using a Gaussian distribution, so the representation of low strength values (at low failure 
probabilities e.g. obtained by extrapolation) obtained from a Weibull distribution is expected to be more realistic 
than obtained from the Gaussian distribution. The original Weibull equation [8] can be written as: 

( ) ( ){ }1 exp   0 mR F Vi Ki Ni P P= − = −                             (1) 

where R is the reliability at load P, and F represents the failure probability. V accounts for effects of volume. For 
the present case it can be replaced by chain length L. N accounts for the number of chains, as is stated under ex-
pression 2 as well, and K for shape effects. Shape effects should be treated with mechanics, rather than statistics, 
so this facility should be skipped from the equation. Shape effects are anyhow not part of the present considera-
tion. The addition of i to V, K and N refers to the population considered. P0 is a reference strength level, close to 
the average strength. The exponent m is the so called Weibull modulus. The higher this value, the lower is the 
strength variability. Ignoring K, Equation (1) can be rewritten for the present chains as:  

( ) ( ){ }1 exp 0 mR F L Ni P P= − = −                              (2) 

where L is the effective span length of one chain and N is the number of chains. Accordingly, when a number Ni 
of chains with length L is considered, the total chain length considered Li is: 

 Li L Ni=                                         (3) 
Equation (3) can be substituted in Equation (2), reducing the first part between the brackets to total chain 

length only. A Graphical representation of a Weibull distribution can be made by plotting the natural logarithm 
of minus the natural logarithm of R on the vertical axis and the natural logarithm of the measured load P on the 
horizontal axis. R is than calculated from the rank number n (from strongest to weakest) of the rest result and the 
number of tests N according to: 

( )0.5R n N= −                                      (4) 
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Figure 5. Example of one load displacement diagram of the test on 
chain test number 38 (Table 1). 

 
Table 1. Tensile test results on chains. 

Test  
number 

Breaking 
load [kN] 

Broken link 
number 

Rank  
no. n Reliability R Test  

number 
Breaking 
load [kN] 

Broken link 
number 

Rank  
no. n Reliability R 

1 216.4 2 27 0.53 26 226.8 4 12 0.23 

2 220.3 5 20 0.39 27 227.5 3 11 0.21 

3 217.0 2 25 0.49 28 220.1 4 21 0.41 

4 193.3 1 48 0.95 29 220.9 6 18 0.35 

5 235.6 4 4 0.07 30 215.7 2 28 0.55 

6 211.7 3 39 0.77 31 220.9 1 19 0.37 

7 219.1 6 22 0.43 32 228.2 5 10 0.19 

8 233.0 5 5 0.09 33 216.6 6 26 0.51 

9 199.4 1 47 0.93 34 223.4 3 16 0.31 

10 212.9 4 34 0.67 35 238.4 4 2 0.03 

11 223.3 3 15 0.29 36 230.2 5 8 0.15 

12 187.7 6 50 0.99 37 218.1 1 23 0.45 

13 210.4 1 40 0.79 38 208.2 6 44 0.87 

14 214.8 4 29 0.57 39 232.7 3 6 0.11 

15 206.7 6 46 0.91 40 213.7 4 33 0.65 

16 211.8 1 38 0.75 41 209.0 5 43 0.85 

17 207.5 2 45 0.89 42 212.9 5 36 0.71 

18 209.0 2 42 0.83 43 214.0 5 32 0.63 

19 224.2 3 13 0.25 44 214.1 6 31 0.61 

20 237.6 5 3 0.05 45 222.4 6 17 0.33 

21 212.6 2 37 0.73 46 214.8 6 30 0.59 

22 212.9 4 35 0.69 47 231.2 1 7 0.13 

23 209.2 3 41 0.81 48 224.0 6 14 0.27 

24 192.0 6 49 0.97 49 217.2 6 24 0.47 

25 228.5 3 9 0.17 50 248.9 3 1 0.01 
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Equation (4) is identical to Weibull’s original work. It can be understood such that the “reliability space” is 
divided in N blocks with rank n. The R value is placed in the center of each nth-block, adding −0.5 provides that 
placement in the middle. A graphical representation is made as a first consideration for all as measured data 
from Table 1, and presented in Figure 6. The axis values in Figure 6 are chosen such that an extrapolation to R 
= 0.999999 is visible. In other words a failure probability F of one out of a million can be seen. Of course such a 
far extrapolation is not accurate anymore. It is just a reasonably probable expectation for the strength at very low 
failure probabilities. It should be noted that none of the chain links broke at the interface with the steel pin. All 
breaks were at link-link interfaces. Thus the two link-steel interfaces were such strong (due to the large radius of 
the oval pin of 35 mm), that they were not representative and equivalent to not tested one. Two not tested inter-
faces are equivalent to one link (as each link comprises two interfaces). So the plot in Figure 6 is not represent-
ative for a 6-link chain of 0.6 meter, but for a 5-link chain that is 0.5 meter, so L = 0.5. The fit of the line to the 
data, is just the linear fit from the MS Excel program. The rounded values for this situation are: P0 = 216.5 kN 
and m = 22.6. Figure 6 in a mathematical representation is presented below: 

( ) ( ){ }22.61 exp 0.5 216.5R F Ni P= − = −  (for 0.5 meter chains).                (5) 

It can be seen in Figure 6 that the data points can reasonably fitted with a straight line, so indeed the data are 
reasonably be described with the Weibull distribution. The fit to the straight line is not perfect. This is normal 
for such plots. A perfect fit would be an extreme coincidence. Nevertheless, it is interesting to compare the 
Weibull fit to another commonly used fit, the normal distribution. The lower tail of the data set is most interest-
ing, because this comprises the higher reliabilities, so this is considered only. Table 2 presents the four lower 
data sets, together with the R-values from Table 1 as experimental values and the calculated R-value according 
to Equation (5) and additionally according to a normal distribution with the average of 217.9 kN, and the stan-
dard deviation of 11.7 kN. It can be observed in Table 2, that the Weibull fit agrees somewhat better to the ex-
perimental values, so it should be preferred indeed. 

Ni is the number of chains of 0.5 meter. Indeed, inserting for Ni = 1 Million as an example for P = 121 kN, 
the resulting reliability R = 0.38. So suggesting a considerable chance of failure of one from those million chains, 
occurring at P = 121 kN. Another way of interpretation, is that a million times a chain of 0.5 meter, implies a 
total chain length of 500 km. So also a 500 km long chain, loaded with P = 121 kN has a reliability of 0.38. 
Loading of such a 500 km total chain length with the certified WLL = 100 kN still implies a reliability R = 
0.987. 
 

 
Figure 6. Weibull plot of the as measured data from Table 1, 
representative for chains of 0.5 meter. 
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Table 2. Comparison of reliabilities for a normal and Weibull distribution to experimental values. 

Rank Number Fracture load [kN] R experiment R Weibull R normal 

47 199.4 0.93 0.925 0.944 

48 193.3 0.95 0.962 0.983 

49 192.0 0.97 0.967 0.987 

50 187.7 0.99 0.980 0.995 

 
An alternative consideration can be made after studying Table 1. It turns out that the number of breaks in the 

first and last outer links is relatively high. This in spite of the fact that these outer links comprise one critical 
textile-textile interface only instead of two textile-textile interfaces for the adjacent links. Also the average 
breaking force is lower, when fracture occurred at outer link 1 or at outer link 6. So the outer links are another 
weaker sub population. It was demonstrated in [9] that mixing different sub populations causes a non-represent- 
ative reduction of the Weibull exponent, so a seemingly increasing scatter. Table 3 presents strength data and 
failure numbers for the individual links. Indeed the outer link fractures occur at a lower average load. Moreover, 
Table 1 shows that the five lowest breaking forces (Test 15, 9, 4, 24 and 12 in order of decreasing strength) be-
long to this affected sub population. The strength values in the non-affected sub population are all well above 
MBL > 200 kN. The earlier fracture of the outer links can be explained by additional tension, introduced by the 
thickness of 30 mm of the pin at the opposite side of the fractured links. This thickness being larger than the link 
width under load causes a small V-shape for the two sides of the link, they are not parallel anymore. The 
V-shape points towards the critical link-link interface. This may cause a slight increase of the stress concentra-
tion at that interface, so earlier fracture may occur. The 30 mm thickness of the pin was chosen for making it 
sufficiently strong and especially to prevent fracture at the pin-link interface. In retrospect, a smaller width may 
be a better choice. It appears obvious that the original dataset is a structured data set that consists of two sub 
populations. 

Removal of the first and last link fractures from the data set, so removal of a non-representative sub popula-
tion can be explored. The consequence of that segmentation is, that chains of 0.4 meter are remaining, so L = 
0.4. It may be argued that removing lower values from the original data set causes an artificial non-realistic im-
provement. However, the removed links are not chosen based on their lower fracture load, but based on their 
position (the lower fracture load is only used for recognizing the non-representative positions). Moreover, the 
removal effect itself is compensated by correcting for a lower representative chain length in the Weibull equa-
tion. Also in practice a 16mm pin is used for load transfer into steel hooks. An additional argument for the seg-
mentation is that the unfavorable interface fracture implies that the remaining interface of the removed links will 
have a fracture force, larger than the measured fracture force that was limited by the broken outer link. So po-
tential high fracture loads belonging to the sub population of the considered central chain part were omitted, and 
the consideration may even be conservative. Summarizing, removal of the outer link fractures from the data set 
is defendable for providing a description of intrinsic chain behavior without any external outside world influence 
like end connections. Performing a Weibull fit on the remaining data for the central part yields: 

( ) ( ){ }27.41 exp 0.4 217.7R F Nj P= − = −  (for 0.4 meter chains, no end connections).         (6) 

This new Equation (6) shows a higher Weibull exponent indeed as compared to Equation (5). The index i has 
been replaced by index j in order to indicate a different population. It may be explored by inserting some num-
bers and comparing the result with the result of Equation (5). A length of 500 km chain is equivalent to Nj = 
1,250,000. For a load of P = 121 kN, the reliability is R = 0.95, so considerably larger than according to Equa-
tion (5) representing the mixed population. A reliability of R = 0.38 as obtained with Equation (5) for a load of P 
= 121 kN for the mixed population, requires a load of P = 134.5 kN on the population of the central links ac-
cording to Equation (6). Indeed this is a more attractive value than according to the first consideration, but not 
largely different (134.5 kN is only about 10% larger than 121 kN). The reliability according to Equation (6) for 
500 km total chain length at WLL = 100 kN, now is R = 0.9997, so very close to R = 1. Figure 7 presents the 
data of the central links in a Weibull plot, compared to the plot of the outer links. Again a linear fit appears rea-
sonable. However, the lower end of the plot of the central links suggest a steeper line in this area (more favorable  



R. Marissen et al. 
 

 
245 

Table 3. Number of fractures and average fracture load per link. 

Link Number Number of fractures Average Load [kN] Standard Deviation [kN] 

1 7 212.2 12.9 

2 6 213.0 4.0 

3 9 225.8 11.6 

4 8 221.9 10.5 

5 8 223.2 10.5 

6 12 212.0 11.6 

 

 
Figure 7. Weibull plots of data for the central links, and outer 
links as separate sub populations. 

 
for low risk extrapolations). The main part of this steeper trend is set by three data points only. So, this deviation 
may still be judged coincidental and a linear fit for extrapolation is still adopted as a reasonable procedure. 

5. Discussions and Conclusions 
Weibull statistics is applied on a set of 50 tensile tests on novel light weight synthetic link chains made from 
UHMWPE fiber instead of traditional steel wire. During tensile testing, a slight adverse measuring effect of the 
connection to the tensile test equipment became apparent. The effect was not found at the end termination itself, 
but at the opposite site of the link-machine interface. It can be explained by the deformation of the end links due 
to the thickness of the required connection pin. Two Weibull distributions were created that are used for extra-
polation, one by fitting the data sets to all 50 results and one by fitting to a dataset without the outer links at-
tached to the test equipment. The latter showed a higher Weibull exponent. The data sets were used for extrapo-
lation to low failure risks or to very long total chain lengths (so the total length of a number of chains). The re-
sult is that the reliability of the chains is high, if the Work Load Limit WLL = 100 kN is respected. The extrapo-
lations of the central part represent the intrinsic chain behavior. Additional effects like connection effects are 
excluded. So effects as caused by end connections and possible hooks are excluded. Of course such effects are 
relevant in practice, but beyond the scope of the present study. The present study indicates that the intrinsic con-
sistency of chain properties is highly sufficient for safe use. Table 4 presents a number of calculated failure 
probability values for chains of different length, loaded at WLL according to both considerations: the mixed 
population and the population with excluded outer links.  
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Table 4. Examples of calculated reliabilities at a WLL of 100 kN, for various 
total chain lengths, using two different considerations. 

Chain length [m] 
Estimated failure probability 

according to the mixed  
population. Equation (5) 

Estimated Failure probability  
for the central link population. 

Equation (6) 

1 2.7 × 10−8 10−9 

5 1.4 × 10−7 3 × 10−9 

50 1.4 × 10−6 2.8 × 10−8 

500 1.4 × 10−5 2.8 × 10−7 

10,000 2.8 × 10−4 5.6 × 10−6 

500,000 1.4 × 10−2 2.8 × 10−4 

5,000,000 1.3 × 10−1 2.8 × 10−3 

 
Obviously, the failure probabilities remain low, so the reliabilities at WLL (100 kN) remain high, even for 

very long total chain lengths (5000 km). It was mentioned before that this far extrapolation is not an accurate 
prediction, but rather a reasonable expectation. Moreover, all chains are loaded at WLL = 100 kN, before leav-
ing the factory, so fractures at WLL would occur before chains become in use. On the other hands, chains with a 
slightly larger strength than 100 kN would become in use. It is beyond the scope of this paper to speculate on the 
consequences of these effects, because reliability at 100 kN is high anyhow, even for large total chain lengths. It 
can be observed in Table 4 that the failure probabilities for the central link population and the mixed population 
become more different for extreme total chain lengths (or numbers, the total length is the important parameter). 
The failure probability of the central link population remains very close to 0, even for 5000 km total chain 
length. So the reliability will remain close to 1. 

References 
[1] Marissen, R. (2011) Design with Ultra Strong Polyethylene Fibers. Materials Sciences and Applications, 2, 319-330.  

http://dx.doi.org/10.4236/msa.2011.25042 
[2] Meuwissen, M., Glasbergen, D., Kosters, M., Bosman, R. and Smeets, P. (2013) On the Origin of Lifetime Extension 

for HMPE Ropes in Bending Operations. Conference Proceedings of H. OCEANS 2013 MTS/IEEE - San Diego: An 
Ocean in Common, San Diego, 23-27 September 2013, 1-10. 

[3] Wienke, D., Bosman, R., Veka, K.M., Marissen, R. and Homminga, R. (2014) Steel Chain Replacement with New 
TYCAN® Synthetic Link Chains, Made with Dyneema®, The World Strongest Fiber™ for Heavy Duty Lashing 
Tasks. The 8th Aachen-Dresden International Textile Conference, Book of Abstracts, Dresden, 27-28 November 2014, 
133. 

[4] Wienke, D., Dirks, C.H. and Jacobs, M. (2008) Chain Comprising a Plurality of Interconnected Links. Patent WO 
20081089798. 

[5] Veka, K.M., Rock, A., Wienke, D., Bosman, R., Coolen, S. and Crane, M. (2015) Break Bulk Conference & Trade 
Show. Antwerp Exhibition Center & Catalogus, Antwerp, Belgium, 18-22 May 2015. 

[6] Bosman, R., Wienke, D., Kersjes, J., Homminga, R., Marissen, R. and Dirks, C.H. (2013) Endless Shaped Article. Pa-
tent WO2013186206. 

[7] TYCAN® Chain Homepage. http://www.tycan.com/tycan-chain/ 
[8] Weibull, W. (1951) A Statistical Distribution Function of Wide Applicability. Journal of Applied Mechanics, 18, 293- 

297. 
[9] Marissen, R. and Linsen, J. (1999) Variability of the Flexural Strength of Sheet Moulding Compound. Composites 

Science and Technology, 59, 2093-2100. http://dx.doi.org/10.1016/S0266-3538(99)00068-8 

http://dx.doi.org/10.4236/msa.2011.25042
http://www.tycan.com/tycan-chain/
http://dx.doi.org/10.1016/S0266-3538(99)00068-8

	Weibull Statistics Strength Investigation of Synthetic Link Chains Made from Ultra-Strong Polyethylene Fibers
	Abstract
	Keywords
	1. Introduction
	2. Description of Synthetic Link Chains
	3. Tensile Tests on Chains
	3.1. Description of the Tests
	3.2. Test Results

	4. Statistical Treatment
	5. Discussions and Conclusions
	References

