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Abstract 
Diabetes mellitus is a metabolic disorder that the cells cannot uptake and use glucose as a source 
of energy. Many dysfunctions in mitochondria biogenesis/activity and some glycolysis enzymes in 
diabetic patients have been reported. The aim of this mini-review is to elucidate the cross-talk 
between signaling pathway which involved in developing of diabetes. Here, there are a related, 
documented reasons and evidences which investigate energy deficiency in this disease. It seems 
that a cascade of signaling such as transcription factors (MEF2, CREB, NFAT, P38, MAPK, AMPK) 
co-activators (PGC-1α) such as calcium ion, protein dependent calcium(CAMK, calcineurine) and 
Na+-K+ pump have a main role in cell energy regulation. Any dysfunction in these factors can de-
velop diabetes and here, Na+-K+ pump is known as a start point of this diagram. 
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1. Introduction 
Step-by-step development of diabetic disorder proposed a schematic “Energy homeostasis diagram” and accor-
dingly, we suggested that alteration in Na+-K+ pump structure/function might cause further modification towards 
diabetics. Diabetes mellitus is a disorder that involve whole metabolism of body [1], glucose uptake strength is 
low in diabetic patients [2]. In these individuals’ energy charges, ATP/ADP is imbalance opposed to normal in-
dividuals [3]. Individuals that taken diabetes might have disordered in signal transduction [4], mitochondrial 
dysfunction [5], imbalance in calcium level in cytoplasm [6] or dysfunction in membrane proteins such as 
Na+-K+ pump [7]. The goal of this short-communication is to unveil the cross-talk between signaling which is 
involved in energy homeostasis and finds the initiate point of this pathway as well as citric acid cycle which de-
termines oxaloacetate as a critical point of cycle. There are some evidences that identify Na+-K+ pump as a 
source of this impairment [8]. It is suggested that compensation of Na+-K+ pump activity in diabetic patients 
might improve illness status through increasing of calcium level in cytoplasm [9]; activating of calcium signal-
ing pathway proteins such as calmudulin-dependent kinase (CAMK) and calcineurine (a protein phosphates) [10] 
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and these factors cause MEF2 (myocyte enhancer factor 2), NFAT (nuclear factor T-cell) activation [11] [12] 
which is accompanied by overexpression of PGC-1α (peroxisome proliferators-activated receptor gamma coac-
tivator-1 alpha) [13], then up-regulation of NRF-1(nuclear respiratory factor A) [14] and ultimately mitochon-
drial biogenesis has been observed [15]. On the other hand, concomitant collaboration between PGC-1α with 
MEF2 leads to both up-regulation and transportation of GLUT4 (glucose transporter-4) toward cell membranes 
[16]. Furthermore, the interaction between PGC-1α and PPAR (peroxisome proliferator activated recep-
tor-Alpha) in turn modulates the expression of PPRES (PPAR Response elements) which lead to increase of 
enzymes overexpression which is involved in glucose and fatty acid oxidation [17]. In this so called schematic 
view, a reversible equilibrium among Na+-K+ pump and mitochondrial biogenesis/activity is observed. In the 
absence of suitable function of this pump, the amount of Na+ is overloaded in cytoplasm and this results in cal-
cium penetration from mitochondria and also deficiency of calcium availability of cytoplasm. It should be 
pointed out that many calcium-dependent enzymes are working in mitochondria and decrease of matrix calcium 
has deleterious effects on them [18] [19]. On the other hand, harmful effects of lowering-calcium on intracellu-
lar energy production cause failure of Na+-K+ pump. It should be noted that about 4% - 50% of basal energy ex-
penditure is used to maintain physiological intracellular sodium (Na+) and potassium (K+) concentrations [20]. 
Finally, we could found a series of related signals which cooperate altogether and result in cell energy homeos-
tasis as it can be seen in Figure 1. 
 

 
Figure 1. As it has been shown in the figure, there are some negative feed-
backs such as NEFA (non-esterifies fatty acid), cabin1, HDACII and positive 
feedbacks like insulin, exercise, AMPK, P38, MAPK. According to the dia-
gram the key point which can be considered as a starting and extending di-
abetes disease is disorder in Na+-K+ Pump. As it has been shown ,the activa-
tors can increase intracellular level of calcium concentration (inhibitors can 
act inversely), at the second step, temporal and prolong increase in calcium 
concentration can led to activation of CAMK and calcineurin, protein-protein 
interaction between the mentioned proteins can activate a series of signals 
such as MEF2, NFAT which in turn leading to increase in PGC-1α expres-
sion level, the role of the last factor is energy cell homeostasis and inducing 
NRF-1, NRF-2 activity/expression level. Also NRFs has a positive effect on 
nuclear genome which involved in expression of respiratory factors. Then, 
these factors will effect on mTFA (mithochondrial transcription factor), both 
factors can increase mitochondria biogenesis/activity. The backward arrow 
between Na-K pump and mitochondria at the top of figure reveals direct ef-
fect of increasing Na concentration on exiting Ca from mitochondria and in-
activation of Ca-dependent mitochondorial enzymes. 
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Abbreviation 
MEF2 (myocyte enhancer factor 2), CREB (cAMP response elements), NFAT (nuclear factor of activated 
T-cells), MAPK (mitogen-activated protein kinases), AMPK (5’ adenosine monophosphate-activated protein 
kinase), PGC-1α (peroxisome proliferator-activated receptor gamma coactivator 1-alpha), CAMK (Ca2+/calmo- 
dulin-dependent protein kinase), Calcineurin (calcium and calmodulin dependent serine/threonine protein phos-
phatase), PPAR (peroxisome proliferator activated receptor-Alpha), GLUT4 (glucose transporter-4), NRF-1 
(nuclear respiratory factor A), PPAR (peroxisome proliferator activated receptor-Alpha). 
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