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Abstract 
The quantum electrodynamic (QED) behaviour is studied for quantum Hall effect (QHE). Quantum 
theory with conjecture of fractional charge quantization (quantum dipole moment), eigenfunctions 
for fractional charge quantization at the surface of a twisted and twigged electron quanta and above 
its surface, fractional Fourier transform and Hermite function for fractional charge quantization is 
developed. With energy eigen value equation for QHE and with energy operator on an eigenfunction 
of a twisted and twigged electron quanta, the corresponding eigenfunctions are normalized with 
Schrodinger’s quantum wave mechanical equation for electric scalar and magnetic potentials, re-
spectively (QED behavior). The fractional electric and magnetic fields with their corresponding 
potentials for the quantized fractional states in semiconducting hereto structures are theoretically 
calculated. Such mathematical expressions are in good agreement with experimental results of No-
bel Prize winning scientists Klitzing, Haroche, Peter and Gruebber. Our results can also explain the 
hybridized states of orbits with emphasis on sigma and pi bonding and their corresponding anti-
bonding orbitals as a manifestation of electrophilic and nucleophilic chemical reactions. 
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1. Introduction 
Von Klitzing in the year 1987 won the Nobel Prize for physics on deciphering quantum Hall effect in heteoro- 
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structures (sandwich like) semi conductors [1]. With this discovery, Van Wees et al. [2] reported “quantum 
conductance” in a two dimensional electron gas of GaAs-AlGaAs heteorostructure. Serge Haroche and David J. 
Wineland produced exciting experimental results on “individual quantum systems”, without destroying the 
particle or quanta which led for them the Nobel prize winning award in physics 2012 “for ground-breaking 
experimental methods that enable measuring and manipulation of individual quantum systems” [3] [4]. To our 
understanding, the cavity quantum electrodynamics is a manifestation of fractional charge quantization or quantum 
dipole or quantum multi-pole moments [5]-[7]. We recently proposed with our conjuncture of fractional charge 
quantization, the measuring techniques of quantum behaviour for electric resistivity, dielectricity, giant magneto 
resistances (GMR) [8], Hall effect and conductance [9]. 

A new theory describing how charge being a constant physical entity on an electron in the momentum space 
is fractionally quantized, is presented [10] [11]. The eigen functions for a free electron quanta, twisting and 
twigging effects, at the surface, above the surface and inside the surface for the resuting electron quanta sring 
and twigs (sub-quanta) are determined [12]. With theory of fractional charge quantization for a free electron 
quanta above the surface, the shape of eigen functions, the energy eigen values and the quantum scattering for 
absorption in the matter are studied [13]. We conjuncture that the twisted and twigged electron quanta which 
appears in the form of an electron quant string with twigs (sub-quanta) on its lateral surface will be fractionally 
quantized in heterostructures semi conductors, as a consequence of which, quantum Hall effect due to fractional 
electric fields is observed with a gap of quantum Hall resistance, i.e., 2~ ~ 25813qR h e Ω  [9]. This is why 
quantum electrodynamic behaviour of fractionally quantized single or many electrons in the semiconducting 
heteorostructures is crucial especially for learning the behaviour of electric and magnetic fields, and their 
corresponding potentials. 

The magnetoresistance in quantum Hall effect (QHE) is of two types, one is longitudinal and the other is 
transverse. The longitudinal magnetoresistance is associated with magnetic field parallel to the current. The 
excitonic quantized Hall state becomes maximum at the total Landau level with vanishing longitudinal 
component and overwhelming transverse magnetoresistance [14]. This shows that the giant magnetoresistance 
(GMR) in quantum Hall effect (QHE) is due to transverse component of magnetic fields. There is no electron- 
electron interaction in quantum Hall effect (QHE). We conjuncture that (GMR) is due to fractionalized electric 
fields and a manifestation of gyroscopic constant, 2g c , i.e., 20.02 0.08g c≤ ≤  [7]. The QHE is discussed 
in detail by Gievin and McDonald [15]. The preliminary equations of quantum electrodynamics (QED) in our 
calculations are considered [16] [17].  

2. Results and Discussions 
Saleem Iqbal et al. [9] obtain the eigen functions for a twisted and twigged electron quanta on its surface by 
using the fractional Fourier ransform (FRFT) of order α  (rotational angle) [18],  
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.                                   (1) 

Equation (1) represents plane wave for a rotation vector α  in radians, on the surface of a twisted and 
twigged electron quanta (almost a quanta electron string), with fractional quantum numbers, i.e.,  

0.1 0.9 and 0.17 1.53fn α≤ ≤ ≤ ≤ .                              (2) 

The Hermite function for the fractional quantum states [9] is  
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The normalized eigenfunction for a twisted and twigged electron quanta above its surface [12] is given below:  
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Equation (4) yields theoretical eigenvalues  
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φ , the azimuthal angle in Equation (4) is related to Gyroscopic constant, where as Equation (5) refers to 
fractional quantum scattering of energy profiles for reduced mass µ  of an electron. The enegy profile at the 
surface of the twisted and twigged electron quanta is fractionally quantized while the energy above its surface is 
consumed for quantizing the fractional states and appeared in the form of partial waves. This is experimentally 
evidenced [5]. For a twisted and twigged electron quanta in semiconductor heteorostructures one would like to 
know the quantum electrodynamic behaviour, especially in this study for QHE.  

Rewriting the equation of QHE [9], we have  
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where α  is rotational angle of FRFT in time-frequency plane, 
fnψ  the energy profile for fractional quantum 

states, k  the crystal momentum of the electron, τ  the relaxation time, cω  the cyclotron frequency and  

fnQ Q≡ , i.e., 0.9
0.1f fn nnQ q

=
= ∑ . The Hamiltonian in Equations (6a) and (6b) can be made Hermitian provided  

we know the values of x and y and change the crystal momentum with their corresponding momentum operators. 
With Hermitian Hamiltonian operator, energy eigen values can be determined. The QED behaviour of a 
quantized twisted and twigged electron quanta in the semi conductor heteorostructurescan be envisaged with 
electric fields (fractionally quantized in QHE). Writing the electric filed, ( ),E r t  which is quantized due to a 
twisted and twigged electron quanta in semi conducting heteorostructures [16] [17].  
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                             (7) 

where ( ),A r t  is the magnetic vector potential, ( ),r tφ  the electric scalar potential and ( ) ( ), div ,r t r tφ φ∇ ⋅ ≡ . 
With twisted and twigged electron quanta in semiconductor hetreostructure, dipole radiations with helicon 
energy profiles on either or both sides are produced. Rewriting the Schrodinger’s quantum wave mechanical 
equation for dipole radiations [16] [17].  

( )
2 2 2

2 ,
2 2f f f f fn n n n n

e e e

ie eA A r t e E i
m m m t
ψ ψ ψ φψ ψ ψ∇ ∂

− − ⋅ ⋅∇ + − = =
∂

 

             (8) 

where ),( trA  in Equation (8) for dipole radiations, is:  
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where ( )λε  the permittivity of the semiconducting heteorostructure, k the wave vector bounded with in the  

matter, i.e., 
( )2m E V

k
−

=


 and oε  are the permittivity of free space. Equation (7) in compliance with  

Equation(8) for dipole radiation yields  
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  .           (10) 

The last term in Equation (10) is oscillatory with natural frequency oω ,. i.e., ( ) ( )2 22 e ei kr t i kr t
o o oA Aω ωω − − −+ − +  

  

which is neglected in our calculations. The part of some energy above the surface of the twisted and twigged 
electron quanta with its equivalent frequency coincides with natural frequency of the sample (resonance or 
damped oscillation), as a consequence of which, the energy associated with resonance is dissipated in free space 
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where as the remaining energy is used to quantize the twisted and twigged electron quanta [Equation (5) is 
applicable with Equation (4)]. Equation (10) becomes  
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In our case, we have fractional electric fields appearing due to fractional charge quantization on twigs (sub- 
quanta) which are at the lateral surface of an electron string quanta.  
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Changing the x- and y-components of crystal momentum, k  with their corresponding operators, i.e.,  
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On comparison of Equations (13) and (14), we have  
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Equation (15) on rearrangement for 
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d
fnψ  on LHS and RHS of Equation (16) is canceled  
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Equation (17) on simplification yields  
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Subtracting Equation (16) from itself for both LHS and RHS, we have  
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Putting Equation (19) in Equation (18) for determining the electric scalar potential due to a quantized twisted 
and twigged electron quanta in semiconductor heteorostructures, we get on simplification  

( ), 0r tφ =                                     (20) 

Equation (20) shows that the scalar electric filed potential is zero for fractional charge quantization, i.e., for 
QHE  

Adding Equation (16) from its self for both LHS and RHS, we get on simplification  
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which is similar to Equation (19). Thus, the validity of ( ), 0r tφ =  is proved. Now, considering Equation (6c), 
i.e.,  
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On comparison of RHS of Equations (13) and (14), we can put the equality of RHS to the equality of the 
above expression:  
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Using Parseval’ formulas,. i.e.,  
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The 
fnψ  in Equation (23) with its complex conjugate (linear inverse operator for mirror reflection) is 

normalized to identity operator. Thus Equation (23) takes the shape  
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Integrating this expression with respect to time  
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For oscillatory effect in semi conductor hetreostructure the energy is dissipated, i.e.,  

( )2
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fn
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becomes negligible. Equation (25) becomes  

( ) ( ), fA r t n tα  .                                  (26) 

Equation (26) shows that the magnetic vector potential for fractional quantized states depends on twisting 
angle α  with its twisting time and that it is also related to quantum action in twigs (sub-quanta) for QHE in 
semiconductor hetreostructure. Knowing ( ),r tφ  and ( ),A r t , it is easy to calculate the ( ),E r t  and 
( ),B r t , which are the eigen values of QHE provided the QED behaviour is accounted for fractional 

quantization of electric fields and indeed the fractional charge quantization due to twisted and twigged electrons 
quanta in semiconductor heteorostructure. Using Equation (10) for QED behaviour of fractional charged 
quantization on twigs,. i.e.,  
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[from Equation (26)]  

( ) ( ) ( ) ( )( ) 2 2 2 2 2 2, , f f f fA r t A r t n t n t n nα α α α+ ≅ − = − =     
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( ), 2 fE r t n αω≅  .                                  (27) 

Equation (27) shows the quantization of fractional electric field for 0.1 0.9fn≤ ≤  and 0.17 1.53α≤ ≤ . 
( ),E r t  also depends on frequency, ω  of the fractional quantized states, i.e., twigs on the lateral surface of an 

electron quanta string. Equation (3) is self explanatory to reflect that twigs(sub-quant) although integrated on an 
electron quanta string are oscillating with different frequencies [pl see Equation (3)]. This confirms the fact that 
the fractional quantization is both adiabatic and harmonic time-dependent perturbation. Equation (27) can be 
correlated with Equation (12) for electric fields due to fractional charge quantization.  
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where 
fQν  is the frequency of twigs (sub-quanta), 

fqV  the potential energy of twigs on an electron quanta 
string and ( )λε  the permittivity of semiconducting heteorostructure. λ  can have two values, i.e., 1 and 2 for 
monopoles and dipoles respectively. Now, we calculate the magnetic fields due to each twig on an electron 
quanta string. Using Maxwell’s equation:  
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( ), 2 sinf rB r t n θ θ α≅ − ∇ . 

The negative sign shows induced magnetic fields due to twisting and corresponding phase changes (energy 
changes) on twigs. Neglecting the negative sign, we have  

( ), 2 sin
fQ f rB r t n θ θ α≅ ∇ .                             (30) 

Equation (30) shows that  

sin rθ θ α∇  

follows the helical pattern for dipole radiations due to twisted magnetic fields for each of the twigs on the lateral 
surface of an electron string quanta in semiconducting hetreostructures for QHE. sin sint tθ θ ω ω≡  which if 
multiplied by rα∇  will corresponds to phase changes as a manifestation of change of α  (rotation vector) 
with curvatures in space. The helical like dipole radiation from twigs due to their corresponding magnetic fields 
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make them (twigs) to remain oscillatory. The oscillatory effect of twigs with their corresponding characteristic 
frequencies on an electron quanta string follows an adiabatic perturbation and is a manifestation of fractional 
charge quantization. The evidence of this phenomena is supported by the discovery of GMR by Albert Peter and 
Paul Gruebber and this led them to winning the Nobel prize in the year 2007 [8]. Similarly, the single electron 
tunneling across the interface state of a transistor will follow a helicon profile with each turn of the helix 
corresponding to fractional quantum states (spintronics). The fractional Hall electric fields are like pearls beaded 
in an electron quanta string and each string is connected to another electron string with twisting effects as a 
manifestation of QED behaviour. Thus, we have a quantum Garland beaded twigs (sub-quanta) on a single or 
many electron quanta strings.  

3. Conclusion 
With conjecture of fractional charge quantization, eigenfunctions for a bounded, stretched, twisted and twigged 
electron quanta are obtained. The fractional electric and magnetic fields at each of the twigs of a bounded, 
stretched, and twisted electron quanta, and the corresponding scalar electric and magnetic vector potentials for 
the quantized fractional states in semiconducting heterostructures are theoretically calculated and explained with 
obtained mathematical relations. Our results can also explain the hybridized states of orbits with emphasis on 
sigma and pi bonding and their corresponding antibonding orbitals as a manifestation of electrophilic and 
nucleophilic chemical reactions. 
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