

Combustion Characteristics of Tree Woods

Suryakant Chakradhari, Khageshwar Singh Patel*

School of Studies in Environmental Science, Pt. Ravishankar Shukla University, Raipur, India Email: ^{*}patelks_55@hotmail.com

Received 29 February 2016; accepted 9 May 2016; published 12 May 2016

Copyright © 2016 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

Abstract

Biomass is a renewable energy source because sun energy is stored in the form of biomass which regrows over a relatively short period as compared to fossil fuel. The biomass on burning released energy with emission of carbon dioxide, volatile organic compounds, particulate matters and ash residue. The combustion characteristics of biomass depends on several factors of plants *i.e.* bulk density, moisture, organic matter and metal content. In this work, the combustion characteristics *i.e.* heat value, moisture, volatile matter and ash content as well as emission fluxes of particulate matters (PM_{10}) of trees grown in central India are described. The calorific value (CV) of 53 trees was ranged from 5190 - 8130 kcal/kg with mean value (p = 0.05) of 6380 ± 170 kcal/kg. Bahera tree showed the highest CV, 8130 kcal/kg, and hence, it was chosen for the detailed studies.

Keywords

Tree, Heat Value, Moisture, Volatile Matter, Particulate Matter, Ash Residue

1. Introduction

Biomass contains stored energy which is a versatile fuel for energy and power generation in many countries [1] [2]. Wood remains the largest biomass energy source today and several different kinds of biomass, such as wood chips, corn, and some types of garbage, are used to produce electricity. The biomass is converted into liquid fuels called biofuels that can power cars, trucks, and tractors. Leftover food products like vegetable oils and animal fats can create biodiesel, while corn, sugarcane, and other plants can be fermented to produce ethanol. The combustion characteristics of trees in various parts of the world were reported [3]-[13]. The calorific value (CV) of the biomass depends on several physiological and climatic factors. However, the bio-power has environmental risks and may damage ecosystems, produce harmful air pollution, consume large amounts of water, and produce net global warming emissions [14]. In this work, the combustion characteristic of 53 topical trees (*i.e.* Amla, Amaltas, Asoka, Bachain, Badam, Bael, Bamboo, Babool, Bahera, Ber, Bija, Chhatim, Chironji, Dhawda, Dumar, Gandherwa, Goriar, Guava, Gulmohar, Harra, Haldu, Imli, Jamun, Jungle jalebi, Kadambh, Kahuaa,

How to cite this paper: Chakradhari, S. and Patel, K.S. (2016) Combustion Characteristics of Tree Woods. *Journal of Sustainable Bioenergy Systems*, **6**, 31-43. <u>http://dx.doi.org/10.4236/jsbs.2016.62004</u>

^{*}Corresponding author.

Karanj, Karra, Kasahi, Khamar, Kumahi, Kusum, Mahua, Mango, Menda, Mithineem, Munga, Neem, Nilgiri, Palas, Ramphal, Sagwan, Saja, Sal, Salai, Samel, Seetaphal, Shisham, Siris, Shoe babool, Sonpatti, Tendu and Unjain) grown in Raipur area, CG, India is described in order for sustainable renewal energy demand of the country. Among them, the most energetic Bahera tree is described in the details.

2. Materials and Methods

2.1. Collection of Tree Sample

The Chhattisgarh state, central India is situated in Deccan bio-geographical area with rich in unique biological diversity. The forest of the State is extended over $\approx 5.5 \times 10^4$ km² area. At least 1500 plants exist in this area. The tree species were identified by using physico-genetic characteristics prescribed in the literatures [15] [16]. The wood of 53 trees grown in Raipur area, capital, Chhattisgarh state, India (21°15′0″N, 81°37′48″E) were collected manually in December, 2015 randomly. The different tree parts of the most energetic Bahera tree were collected for determining calorific value. They were dried in oven at 50°C for one day. All wood samples were crushed and sieved out particles of size ≤ 0.25 mm.

2.2. Determination of Bulk Density, Moisture, Calorific Value and Ash Residue

The bulk density (BD) of the biomass affect significantly the heat value. The BD of the biomass was measured by the water replacement method [17]. A 50 mL pure water was taken into a 100-mL graduated cylinder. A 10 g of the sample was poured in the cylinder by noting the volume enhancement. The mass of the displaced water was calculated by multiply with water density at the particular working temperature.

The moisture content of the tree samples was analyzed by heating it at $105^{\circ}C \pm 2^{\circ}C$ for a period of 60 min. The ash content of the materials was determined by heating the sample at 600°C for 4 hr [18].

The calorific value was determined experimentally using a Digital Microprocessor Based Bomb CalorimeterUTS 1.34, Advance Research Instruments Co, New Delhi as described in the literature. A 1.0 g of wood sample was weighed and placed in the combustion capsule. The sample was then lowered in the wire bomb head while the bomb head was on its support. A 10 cm long fuse wire was firmly fixed to the electrodes to facilitate complete combustion by adding 1 mL of water to the bomb cylinder and moistening the sealing ring of the bomb head. The bomb was carefully lowered into the cylinder with tightly closing the sealing ring. The oxygen gas was flowed into the combustion cylinder. The bomb cylinder was then lowered into the calorimeter bucket. The calorimeter cover was carefully placed and the thermometer bucket lowered. The power was then switched on to start the auto temperature adjustment and the stirring motor. The initial temperature was recorded after equilibrium attained *i.e.* after 5 min. The bomb was then fired using the ignition switch. The bucket temperature *i.e.* final temperature was recorded after stabilization *i.e.* after 5 min. The difference between the original length and the new length was multiplied by 0.335 to obtain the number of calories liberated by combustion of the fuse (fuse wire correction). For every sample, calorific value in kcal/kg was calculated using the following equation [19]:

$$GCV = \left[\left\{ We \cdot \Delta T \right\} - \left\{ W_1 \left(4.18 \right) + W_2 \left(0.335 \right) \right\} \right] / M$$

where, GCV, M, We, W_1 , W_2 and ΔT represent gross calorific value of species (kcal/kg), weight of sample, water equivalent, weight of cotton thread, weight of fuse wire and rise in temperature, respectively.

The content of volatile compounds including moisture was analyzed by using a Mettler Thermogravimetric Analyzer-TG-DGA-2 at heating rate of 20°C/min.

2.3. Emission Fluxes of Particulate Matters

The flux of PM_{10} was determined by burning the Bahera sample in a closed chamber ($0.5 \times 0.5 \times 0.5 \text{ m}^3$) equipped with the exhaust fan and UC Davis (USA) portable air sampler in December, 2015. The PM_{10} emitted in a closed chamber was collected over the weighted 47-mm quartz filter. The PM_{10} mass was weighted out, and the flux was evaluated by dividing the PM_{10} mass with amount of the material burnt.

2.4. Segregation of Particulate Matters

The Anderson sampler (1531-107B-G289X) with eight stage cartridge: PM_{10.0-9.0}, PM_{9.0-5.8}, PM_{5.8-4.7}, PM_{4.7-3.3},

 $PM_{3,3-2,1}$, $PM_{2,1-1,1}$, $PM_{1,1-0,7}$ and $PM_{0,7}$ was used for the collection of respirable particulate matters (PM_{10}) in the segregation modes. The sampler was run for 2 hr during burning of Bahera tree sample in December, 2015. The mass of dried loaded and blank filters were weighted out.

2.5. Analysis

The pH value of ash extract was determined by the Hanna pH meter. The Dionex ion chromatography-1100 was used for monitoring of anions and cations. The content of elemental carbon (EC) and organic carbon (OC) were determined by the thermal method.

The IBM SPSS Statistics 23 was used for the statistical and cluster analysis in the present work [20].

3. Results and Discussion

The combustion of biomass produces energy with emission of volatile materials and particulate matters by remaining left ash residue. The parameters *i.e.* bulk density (BD), moisture content (MC), volatile organic matter (VOCs), particulate matter (PM) and ash residue (AR) were measured.

3.1. Combustion Characteristics

The parameters *i.e.* color of wood dust, BD, MC and AR of 53 wood dusts is summarized in **Table 1**. The wood dust color was found to be of various different color as shown in **Table 1**. The BD is important parameter in the energy generation, as well as in pulp production where it influences the inflow of wood to a digester or to a refine. The value of BD of 53 wood dusts was ranged from 700 - 2500 kg/m³ with mean value (p = 0.05) of 1103 \pm 82 kg/m³. The highest BD of Kahua tree was observed as shown in **Figure 1**. The MC value of 53 wood dusts were ranged from 2.7% - 6.7% with mean value (p = 0.05) of 4.9% \pm 0.3% as shown in **Figure 2**.

The calorific value (CV) of 53 tree samples was varied from 5193 - 8133 kcal/kg with mean value (p = 0.05) of 6383 ± 170 kcal/kg as shown in **Table 1**. The Skew and Ku value of the data was found to be 0.50 and 0.29, respectively. The positive skewness and kurtosis value indicated that data were found to skew right with moderate tailed distribution. The CV was found to be fairly positively and negatively correlated with the BD (r = 0.55) and MC (r = -0.72) of the wood dust as shown in **Figure 3**. The CV value of tree woods of the present studied was found to be comparable to the heat value reported for trees of other regions of the country and the World [3]-[13].

The cluster analysis was carried out for grouping of CV of tree samples by using the BD, MC and AR as discriminating factor [20]. They were grouped into two clusters, **Figure 4**. The Cluster-I included 36 tree samples having lower CV. The Cluster-II was composed of 18 tree samples of Bahera, Ramphal, Ber, Tendu, Kusum, Mendra, Imli, Jamun, Palas, Seetaphal, Gandherwa, Mithineem, Neem, Bachain, Bija, Khamar, Kahua and Chhatim, having higher CV. The highest CV of Bahera wood dust was detected, may be due to higher content of the fixed carbon. Seven common trees *i.e.* Bahera, Ber, Imli, Kusum, Mendra, Ramphal and Tendu imparted the CV above 7000 kcal/kg as shown in **Figure 6(a)**.

Bahera is a large deciduous tree found throughout India. The tree height was up to 30 m, while the bark is brownish grey in color with leaves of ≈ 15 cm long and crowded toward the ends of the branches as shown in **Figure 5**. It contains β -sitosterol, gallic acid, ellagic acid, ethyl gallate, galloyl glucose and chebulagic acid, which render its therapeutic properties. The CV for different parts of the Baheratree was found to be comparable as shown in **Figure 6(b)**.

The TG-DGA chromatogram scanned for the Bahera wood sample is shown in **Figures 7**. The pyrolytic decomposition of Bahera tree sample was occurred in four stages. In the first stage, a 7.4% weight loss over temperature range 50° C - 100° C was seen, may be due evaporation of light volatile compounds including water. In second stage, a 1.9% weight loss over temperature range 100° C - 200° C was marked, may be due evaporation of higher volatile compounds. In the third stage, a remarkable high weight loss of 58.7% over temperature range of 200° C - 400° C was observed, may be due to decomposition of hemicellulose and cellulose materials. In the last stage, the large decomposition of lignin and non-volatile compounds (fixed carbon) over temperature range of 400° C - 1000° C was observed.

3.2. Particulate Matters

The PM₁₀ emission fluxes for Bahera tree (n = 3) during burning period was found to be 2310 ± 180 mg/kg. The

Table 1. Physical and combustion characteristics of wood												
S. No.	Local name	Botanical name	Color	BD, kg/m ³	MC, %	CV, kcal/kg	AR, %					
1	Chironji	Buchania lanzann	PW	1100	4.3	6610	16					
2	Mango	Mangifera indica L.	YW	1000	5.1	6150	11					
3	Ramphal	Annona reticulate	GrW	1200	3.2	7230	13					
4	Seetaphal	Annona squamosa	PY	800	5.9	5190	16					
5	Chhatim	Alstonia scolaris	LGr	900	4.7	5700	12					
6	Samel	Bombax ceiba	Rd	1300	3.6	6750	10					
7	Salai	Boswellia serrata	DBr	1000	4.2	6350	11					
8	Unjain	Celastru peniculata	Br	1100	5.1	6160	9					
9	Dhawda	Anogeissus latifolia	PY	1000	4.7	6100	10					
10	Kahua	Terminalia arjuna	Br	2500	4.7	6790	9					
11	Bahera	Terminalia bellirica	Gr	1700	2.7	8130	8					
12	Harra	Terminalia chebula	РҮ	900	4.5	6440	14					
13	Saja	Terminalia tomentosa	LB	900	3.4	6580	10					
14	Kusum	Carthamus tinctorius	LB	1600	3.6	7530	9					
15	Sal	Shorea robusta	Rd	1700	4.4	6680	11					
16	Tendu	Diospyrus melanoxylon	PY	1400	3.6	7500	9					
17	Karra	Cleistanthus collinus	Gr	1100	5.1	6120	7.1					
18	Amla	Embilica officinalis	PW	1200	4.6	6710	11					
19	Bija	Pterocarpus marsupium	Rd	800	4.8	5720	14					
20	Babool	Acacia nilotica	DBr	800	5.6	6130	12					
21	Goriar	Acacia caesia	РҮ	900	5.8	6350	12					
22	Siris	Albizzia lebbek	Gr	1000	3.8	6670	8.1					
23	Sonpatti	Bauhinia racemosa	LBr	1100	5.8	6050	14					
24	Palas	Butea monospermae	LBr	700	6.1	5220	13					
25	Amaltas	Cassia fistula	LBr	1300	5.4	6120	13					
26	Shisham	Dalbergia sissoo	LBr	1200	3.8	6790	9					
27	Gulmohar	Delonix regia	PY	1100	5.7	5930	14					
28	Munga	Erythrinia indica	Yw	1300	5.5	6500	9					
29	Shoe babool	Leucaena leucocephala	Yw	700	5.6	6360	13					
30	Jungle jalebi	Pithecolobium dulce	LY	1000	5.5	6130	11					
31	Karanj	Pongamia pinnata	Gr	1500	5.8	6470	10					
32	Gandherwa	Prosopis cineraria	LY	1000	6.1	5490	13					
33	Asoka	Saraca indica	Gr	1200	6.1	6180	11					
34	Imli	Tamarindus indica	LG	1400	2.9	7450	8					
35	Bamboo	Bombusa vulgaris	PGr	1300	3.8	6940	11					

Continued										
36	Khamar	Gmelina arborea	PGr	800	4.6	5700	13			
37	Neem	Azadirachta indica	Br	1000	6.4	5640	9			
38	Bachain	Melia azadirachta	W	1000	5.7	5720	14			
39	Dumar	Ficus glomerata	Br	800	6.1	5950	13			
40	Kumahi	Careya arborea	Gr	1000	6.7	6670	12			
41	Nilgiri	Eucylaptus grandis	Rd	1200	5.6	5970	14			
42	Guava	Psidum guyava	LGr	800	6.2	6450	13			
43	Jamun	Syzygium cuminii	Gr	1000	4.8	5310	12			
44	Kasahi	Bridelia retusa	DBr	800	5.8	6010	14			
45	Badam	Prunus amygdalus	CrW	1100	5.2	6220	13			
46	Ber	Zizyphus mauritiana	CrW	1200	3.2	7570	9			
47	Haldu	Adina cordifolia	DY	1000	6.7	6110	14			
48	Kadambh	Anthocephalus cadamba	Br	900	3.7	6620	11			
49	Menda	Randia dumetorum	Rd	1200	3.4	7480	9			
50	Bael	Aegle marrmelos	PY	950	5.4	6730	12			
51	Mithineem	Murraya koenigii	W	1000	4.8	5800	13			
52	Mahua	Madhuca latifolia	PW	1000	4.2	6940	10			
53	Sagwan	Tectona grandis	Br	1000	5.1	6170	13			

Br = Brown, PW = Pale white, W = White, Rd = Reddish, DY = Dark yellow, CrW = Cream white, DBr = Dark brown, Gr = Greenish, LGr = Light green, Br = Brown, Yellowish white = YW.

 PM_{10} was segregated into 8 modes *i.e.* $PM_{10.0-9.0}$, $PM_{9.0-5.8}$, $PM_{5.8-4.7}$, $PM_{4.7-3.3}$, $PM_{3.3-2.1}$, $PM_{2.1-1.1}$, $PM_{1.1-0.7}$ and $PM_{0.7-0.0}$ modes to know their distribution pattern. The highest fraction of the PM was found in the ultra fine mode as shown in **Figure 8**. The fraction of EC and OC in the PM_{10} was found to be 13 ± 2 and $64\% \pm 3\%$, respectively. Among ions, the highest content of Cl⁻ followed by Ca was marked in the PM_{10} as presented in **Figure 9**. The large fraction of the PM was composed of the OC.

3.3. Ash Residue

The AR of woods influenced negatively (r = -0.55) the heat value as shown in **Figure 3**. The fraction of AR of 53 wood dusts was ranged from 7.1% - 16% with mean value (p = 0.05) of 11.5% \pm 0.6% as shown in **Figure 10**. The pH value of the ash extracts (5.0 g ash residue was extracted with 25 mL of deionized water for 6 hr in ultrasonic bath) was found to be alkaline in nature, ranging from 7.1 - 16.0 with mean value (p = 0.05) of 11.5 \pm 0.6. The fraction (n = 3) of EC, OC, Cl⁻, SO₄²⁻, Na, K, Mg and Ca of Bahera wood ash was found to be 7.6 \pm 0.8, 0.7 \pm 0.2, 6.4 \pm 0.9, 5.2 \pm 0.8, 1.8 \pm 0.5, 6.3 \pm 1.4, 2.2 \pm 0.2 and 12.7% \pm 1.3%, respectively.

4. Conclusion

The fast growing trees of wild nature *i.e.* Ber, Bahera, Imili, Kusum, Menda, Ramphal and Tendu are found to exhibit the higher CV >7000 kcal/kg, may be due to their higher biomass productions and containing higher combustible carbons. Among 53 trees tested, the Bahera tree was observed to be the most energetic biomass in the present investigation. Five trees namely: Dhawda, Kauha, Bahera, Harra and Saja included in Combretaceae family are seemed to be energetic biomass to use as solid fuel instead of coal in the near future.

Figure 1. Bulk density of wood.

Figure 2. Moisture content of wood samples.

Figure 3. Correlation matrices of CV with bulk density (a), moisture (b) and ash residue (c).

S. Chakradhari, K. S. Patel

Figure 4. Dendrogram of calorific value of 53 wood samples.

Figure 5. Bahera tree grown in University area, Raipur.

Figure 6. Calorific value of energetic trees and different parts of Bahera tree.

S. Chakradhari, K. S. Patel

Figure 7. TG-DGA chromogram of Bahera wood dust.

Figure 8. Segregation of PM₁₀ of Bahera tree sample during combustion period.

Figure 9. Fraction of ions in PM₁₀ of the Bahera wood.

Figure 10. Ash residue fraction in wood samples.

Acknowledgements

We are thankful to our University for grating special equipment grant to the Environmental Science Department.

References

- [1] IEA Bioenergy (2007) Potential Contribution of Bioenergy to the World's Future Energy Demand, Rotorua, New Zealand. <u>http://www.idahoforests.org/img/pdf/PotentialContribution.pdf</u>
- [2] Clini, C., Musu, I. and Gullino, M.L. (2010) Sustainable Development and Environmental Management: Experiences and Case Studies. Springer.
- Bhatt, B.P. and Tomar, J.M.S. (2002) Firewood Properties of Some Indian Mountain Tree and Shrub Species. *Biomass and Bioenergy*, 23, 257-260. <u>http://dx.doi.org/10.1016/S0961-9534(02)00057-0</u>
- [4] Kumar, R., Pandey, K.K., Chandrashekar, N. and Mohan, S. (2011) Study of Age and Height Wise Variability on Calorific Value and Other Fuel Properties of EucalyptusHybrid, Acacia Auriculaeformis and Casuarina equisetifolia. Biomass and Bioenergy, 35, 1339-1344. <u>http://dx.doi.org/10.1016/j.biombioe.2010.12.031</u>
- [5] Kataki, R. and Konwer, D. (2002) Fuelwood Characteristics of Indigenous Tree Species of North-East India. *Biomass and Bioenergy*, 22, 433-437. <u>http://dx.doi.org/10.1016/S0961-9534(02)00026-0</u>
- [6] Khider, T.O. and Elsaki, O.T. (2012) Heat Value of Four Hard wood Species from Sudan. *Journal of Forest Products & Industries*, **1**, 5-9.
- [7] Munalula, F. and Meincken, M. (2009) An Evaluation of South African Fuelwood with Regards to Calorific Value and Environmental Impact. *Biomass and Bioenergy*, 33, 415-420. <u>http://dx.doi.org/10.1016/j.biombioe.2008.08.011</u>
- [8] Telmo, C. and Lousada, J. (2011) Heating Values of Wood Pellets from Different Species. *Biomass and Bioenergy*, 35, 2634-2639. <u>http://dx.doi.org/10.1016/j.biombioe.2011.02.043</u>
- [9] Tietema, T., Ditlhogo, M., Tibone, C. and Mathalaza, N. (1991) Characteristics of Eight Firewood Species of Botswa-

na. Biomass and Bioenergy, 1, 41-46. http://dx.doi.org/10.1016/0961-9534(91)90050-M

- [10] Mitchual, S.J., Frimpong-Mensah, K. and Darkwa, N.A. (2014) Evaluation of Fuel Properties of Six Tropical Hardwood Timber Species for Briquettes. *Journal of Sustainable Bioenergy Systems*, 4, 1-9. http://dx.doi.org/10.4236/jsbs.2014.41001
- [11] Turinawe, H., Mugabi, P. and Tweheyo, M. (2014) Density, Calorific Value and Cleavage Strength of Selected Hybrid Eucalypts Grown in Uganda. *Maderas: Ciencia y Tecnología*, **16**, 13-24.
- [12] Aniszewska, M. and Gendek, A. (2014) Comparison of Heat of Combustion and Calorific Value of the Cones and Wood of Selected Forest Trees Species. *Leśne Prace Badawcze*, **75**, 231-236. <u>http://dx.doi.org/10.2478/frp-2014-0022</u>
- [13] Björn, G., Gebauer, K., Barkowski, R., Rosenthal, M. and Bues, C.T. (2012) Calorific Value of Selected Wood Species and Wood Products. *European Journal of Wood and Wood Products*, **70**, 755-757. http://dx.doi.org/10.1007/s00107-012-0613-z
- [14] Sagar, A.D. and Kartha, S. (2007) Bioenergy and Sustainable Development? Annual Review of Environment and Resources, **32**, 131-167.
- [15] Hocking, D. (1993) Trees for Drylands. Oxford & IBH Publishing Co Pvt. Ltd., New Delhi.
- [16] Gupta, A.K. (2003) Quality Standards of Indian Medicinal Plants. Vol. I, ICMR, New Delhi.
- [17] ASTM International (2008) ASTM Standard D2395-2007a: Standard Test Methods for Specific Gravity of Wood and Wood-Based Materials. ASTM International, West Conshohocken.
- [18] ASTM International (2008) ASTM D 1102-84, Test Method for Ash in Wood. Annual Book of ASTM Standards, 153-154.
- [19] ASTM D5865 13 (2013) Standard Test Method for Gross Calorific Value of Coal and Coke, ASTM International, West Conshohocken, PA. <u>www.astm.org</u>
- [20] IBM SPSS Statistics 23 (2015). http://www-01.ibm.com/support/docview.wss?uid=swg21698495