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ABSTRACT 

In this paper the crosstalk between nonuniform transmission lines is examined. Firstly, methods for prediction of 
crosstalk between microstrip transmission lines are reviewed. Classical coupled transmission line theory is used for 
uniform lines and cannot be used for nonuniform transmission lines. Secondly, equations are derived which can be 
solved to obtain formulas for the near-end and far-end crosstalk for nonuniform transmission lines. Finally, an example 
is worked which illustrates the crosstalk between three conductor nonuniform transmission lines. Obtained theoretical 
results were compared with simulations data. Comparison results shown that theoretical and simulation results are 
approximately the same. 
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1. Introduction 

Modern trends in circuit designs such as operating at 
higher frequencies [1], lowering threshold voltages, and 
shrinking device geometries have made accurate predic-
tion of electromagnetic compatibility (EMC) an indis-
pensable component in the design cycle [2,3]. Suscepti-
bility to electromagnetic interference (EMI) can severely 
degrade the signal integrity of the system [4,5]. One of 
the main sources for the EMI is the coupling between 
incident EM field and the electrical interconnects, which 
serve as antennas at high frequencies [6]. 

The problem of characterizing the coupling between 
interconnects are typically related to multiconductor 
transmission lines (MTLs) and coupled non-uniform 
transmission lines (NTLs). Coupled NTLs are widely 
used in RF and microwave circuits [7,8]. Coupled NTLs 
are encountered in many interconnects and packaging 
structures. Also, some of NTLs structures such as the 
tapered ones, have found important applications in nar-
rowband microwave circuits. 

The differential equations describing coupled NTLs 
have non-constant matrices, so except for a few special 
cases no analytical solution exists for them. Some meth-
ods such as decoupling [9,10], finite difference [11],  
Taylor’s series expansion [12], Fourier series expansion 

[13], the equivalent sources method [14] and the method 
of moments [15] have been introduced to analyze cou-
pled NTLs. In some of these methods such as finite dif-
ference and Taylor’s series expansion, it is necessary to 
use an optimization process to satisfy terminal conditions. 
This is due to the nature of terminal conditions in cou-
pled NTLs, which are two-point type. In the other word, 
the analysis of NTLs is a Boundary Value Problem (BVP) 
naturally.  

In this paper, we propose an approach to analyze cou-
pled NTLs. The approach presented in this regard is 
based on the concept of cascading many short sections, 
which relies on using the analytical closed-form expo-
nential matrix solution, available for MTLs only. In con-
trast to the special case of a uniform MTLs, and NTLs is 
characterized by per-unit-length parameter matrices that 
are not constant, but rather vary with the spatial dimen-
sion in the telegraphers equations. This fact makes han-
dling the line more challenging, since a closed-form so-
lution cannot be obtained analytically except in special 
situations. In this work we develop rigorous equations to 
predict crosstalk between coupled NTLs. 

This paper is organized as follows. Section 2 presents 
a brief background on formulating MTLs. In Section 3 
we derive the literal or symbolic solution of the coupled 
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NTLs equations for three conductor nonuniform trans-
mission lines. Section 4 presents numerical validations 
by comparing theoretical with simulation results and 
discuss some concluding remarks  

2. State of the Art 

The literature on crosstalk between transmission lines 
dates back at least to the 1930s, and textbooks have been 
written on MTLs. Strictly speaking, classical transmis-
sion line theory applies only to perfectly conducting lines 
in a homogeneous medium so that the transmission line 
modes are transverse electromagnetic (TEM). The basic 
idea to study the coupling between NTLs is to cascade 
many short sections (by dividing the non-uniform line to 
“n” small equal uniform lines). In this section, we present 
the state of the art of coupling between three conductor 
transmission lines. The goal of this section is to demon-
strate that using the existing theory of MTLs we cannot 
calculate the coupling between NTLs. 

2.1. Theoretical Study of Uniform MTLs 

Microstrip lines do not support pure TEM modes, but at 
low frequencies they support quasi-TEM modes that ap-
proximately satisfy the transmission line equations. 

A cross-sectional view of a pair of microstrip lines on 
a grounded substrate is shown in Figure 1. For simplicity, 
we assume that the two strips have equal width w, zero 
thickness, and perfectly conductivity. The ground plane 
is also assumed to be perfectly conducting. The lines are 
located on a dielectric slab (substrate) of thickness h and 
have a separation s. The substrate has relative permittiv-
ity εr and free-space permeability μ0. The region above 
the substrate is free space. 

The multiconductor transmission line equations can be 
compactly written in matrix form, but for discussion we 
choose to write out the coupled differential equations. 
For the source-free case, the line currents, I1 and I2, and 
voltages, V1 and V2, satisfy: 

1
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where x is the longitudinal coordinate and the exp(jωt)  

 

Figure 1. Cross-sectional geometry for a pair of identical 
microstrip transmission lines. 
 
time dependence is suppressed. The Cij are the elements 
of the distributed capacitance matrix, and the Lij are the 
elements of the distributed inductance matrix. 

Both the capacitance and inductance matrices are sym-
metric (C12 = C21 and L12 = L2l). Because of the micro-
strip symmetry, we also have C11 = C22 and L11 = L22. 

For perfect conductors in a homogeneous dielectric, 
the capacitance and inductance matrices are frequency 
independent. When the dielectric region is inhomogene-
ous (as for insulated wires or microstrips), then the, ca-
pacitance and inductance matrices depend on frequency. 
However, they are approximately frequency independent 
over a large quasi-static frequency range. 

The symmetric microstrip supports an even mode with 
V1 = V2 and an odd mode with V1 = –V2. The even and 
odd mode propagation constants are given by Equations 
(5) and (6). 

  11 12 11 12ev j L L C C            (5) 

and 

  11 12 11 12odd j L L C C           (6) 

The even and odd mode characteristic impedances, Zev 
and Zodd, are: 

11 12

11 12
ev

L L
Z

C C





              (7) 

and 

11 12

11 12
odd

L L
Z

C C





              (8) 

Equations (5) and (7) are deceptively simple because 
computation of the Lij and Cij elements generally requires 
some numerical method, such as the method of moments. 

For large spacing (s/w  l), the coupling capacitance 
C12 and inductance L12 become small. In this case, the 
propagation constants in Equation (5) approach that of an 
isolated line γ0: 



0 11j L C  12              (9) 

Also, the characteristic impedances in Equation (7) 
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approach that of an isolated line Z0: 

11
0

11

L
Z

C
                (10) 

2.2. Crosstalk Predictions 

To study crosstalk, we consider the geometry in Figure 2. 
The coupled microstrip lines are identical to those in Fig-
ure 1 except that they are of finite length l. Line 1 is fed 
with a voltage generator V = 0 at x = 0, and all four ports 
are terminated with an impedance Z0 We label the driven 
and terminated ends of line 1 as ports 1 and 2, and the 
near and far ends of line 2 as ports 3 and 4. The geometry 
in Figure 2 has been analyzed for both directional cou-
pler applications and crosstalk predictions. 

For crosstalk prediction, we can assume that the lines 
are loosely coupled (s is not too small compared to h and 
w). In this case, we can use the approximate solution of 
and equate near-end and far-end crosstalk to the S pa-
rameters as follows: 

 
 

 
 

2
31 41

1 1

0
and

0 0

V V
S S

V V
  2 l

         (11) 

In terms of the microstrip parameters, S31 is approxi-
mately: 

   2 0
31

0 0

1 e cos 2 sin 2
2

lZ Z
S kl

Z Z
      

 
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where 

 2
12 12 0

02 2
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
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2
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02 2
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k
j Z

 
 

 
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Similarly, S41 is approximately: 

 0
41 e sinlS j k   l



           (15) 

The transmission S parameter S21 is not needed for 
crosstalk prediction, but is approximately: 

0
21 coslS e kl              (16) 

To first order in δz, the reflection coefficient S11 = 0. 
To first order in δz, the approximate S parameters satisfy 
conservation of power: 

22 2 2

11 21 31 41 1S S S S           (17) 

At sufficiently low frequencies (or for sufficiently 
short lines), we can assume that 0 1l  . In that case  

 

 

Figure 2. Two identical microstrip lines terminated in the 
characteristic impedance Z0 an isolated line. Line 1 is ex-
cited at port 1. 
 
the scattering parameters of the previous section reduce 
to 

21 1S                   (18) 

0
31

0

Z l
S

Z

 
               (19) 

and 

41S j kl               (20) 

After rigorous theoretical study of existing solutions to 
calculate the coupling between uniform lines, we con-
clude that solutions detailed above do not take into ac-
count the non-uniformity of the lines. To do so, in the 
next section we develop theoretical solution to calculate 
the coupling between coupled NTLs. We must take into 
account the intrinsic characteristics of each physical part 
of the line 

3. Coupled Nonuniform Transmission Lines 

The purpose of this section is to derive the literal or 
symbolic solution of the coupled NTLs equations for 
three conductor nonuniform transmission lines and to 
incorporate the terminal impedance constraints into this 
solution to yield explicit equations for the crosstalk. 

In order to understand the general behavior of the so-
lution, it would be helpful to have a literal solution for 
the induced crosstalk voltages in terms of the symbols for 
the line length, terminal impedances, per-unit-length ca-
pacitances and inductances, the source voltage, etc. From 
such a result we could observe how changes in some or 
all of these parameters would affect the solution. This 
advantage is similar to a transfer function which is useful 
in the design and analysis of electric circuits and auto-
matic control systems. In order to obtain this same in-
sight from the numerical solution we would need to per-
form a large set of computations with these parameters 
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being varied over their range of anticipated values. 
Such transmission-line literal transfer functions for the 

prediction of crosstalk have been derived in the past for 
use in the frequency-domain analysis of microwave cir-
cuits or for time-domain analysis of crosstalk in digital 
circuits. However, all of these methods make one or 
more of the following assumptions about the line in order 
to simplify the derivation: 
 The line is a three-conductor, with two signal conduc-

tors and a reference conductor. 
 The line is symmetric, i.e., the two signal conductors 

are identical in cross-sectional shape and are separated 
from the reference conductor by identical distances 

 The line is weakly coupled, i.e., the effect of the in-
duced signals in the receiving circuit on the driven cir-
cuit is neglected (widely separated lines tend to satisfy 
this in an approximate fashion the wider the separa-
tion), 

 Both lines are matched at both ends (the line is termi-
nated at all four ports in the line characteristic imped-
ances). 

 The line is lossless, i.e., the conductors are perfect 
conductors and the surrounding medium is lossless. 

 The medium is homogeneous. 
The obvious reason why these assumptions are used is 

to simplify the difficult manipulation of the symbols that 
are involved in the literal solution. 

A nonuniform three-conductor transmission lines stru- 
cture is sketched in Figure 3. The per-unit-length equiva-
lent circuit is shown in Figure 4.  

A voltage source VS(t), with internal resistance RS, is 
connected to a load RL via both a generator conductor 
and reference conductor. A receptor circuit shares the 
same reference conductor and connects two terminations 
RNE and RFE by a receptor conductor.  

We subdivide this structure into “n” equal parts (Δ1, Δ2 

 Δn), each part have the same line length. In all these 
parts, conductors are assumed to be uniform. In this case, 
nonuniform lines can be considered as a coupled multi-
conductor transmission line. 



The near-end and far-end crosstalk voltages are ob-
tained from the second entries in these solution vectors as 

.     0ˆ 0ˆ ˆ
NE R NE RIRV V  
The exact literal solution for the crosstalk voltages is: 

 2ˆ ˆ
NE NE NE

S
j M C j TKV S

sDe
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n
          (21) 

ˆ ˆ
FE F

S
j M

Den
V  

 

Figure 3. Coupled nonuniform transmission lines. 
 

 
 

 

Figure 4. (a) Three-conductor transmission lines illustrating 
crosstalk; (b) per-unit length parameter. 
 

The various quantities in these equations are: 
IND CAP

NE NE NEM M M              (24) 

IND CAP
FE FE FEM M M              (25) 

where the inductlve-coupling coefficients are: 

     1 1 2 2*
* * *
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m m mnR
M

R R R R
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

 
n  

(26) 

     1 1 2 2* * *
*
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  22 2
G R G RDen C j S P j CS            (23) 

n     




   (27) 
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where lmi is the metual inductance for each part Δi of the 
line. And the capacitive-coupling coefficients are: 

     1 1 2 2

*

*
*

* * *

CAP NE FE
NE

NE FE

L

S L

m m mn

R R
M

R R

R

R R

c c c




  



   n
 (28) 

where Cmi is the metual capacitance for each part Δi of 
the line. 

CAP CAP
FE NM M E                (29) 

The remaining quantities are defined in the following 
way. The coefficient KNE is defined by 

2 2

1 1

1 1

IND CAP

NE NE LG NE

1

LG

K M M
k k




 
 

   (30) 

The coupling coefficient between the two circuits is 
defined by 

 1 2

G R

m m mn

nk
I I

l l l



  

           (31) 

and the circuit characteristic impedances are defined by: 

21CG GZ l k               (32) 

21CR RZ l k               (33) 

The line one-way delay is denoted by: 

l
T


                   (34) 

The relationships of the termination impedances to the 
characteristic impedances are important parameters. In 
order to highlight this dependency, the various ratios of 
termination impedance to characteristic impedance are 
defined by: 

 

S L
SG LG

CG CG

NE FE
SR LR

CR CR

R R

Z Z
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Z Z
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 
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 
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           (35) 

In terms of these ratios, the factor P in Den becomes: 

  
  

2 1 1
1

1 1
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SG LG SR LR

P k
   
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    (36) 

Observe that P = 1 if the line is weakly coupled, 
, and/or the lines are matched at opposite ends, 

LR , or . The circuit time con-
stants are logically defined as: 

1k 
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Observe that a line time constant is equal to the line 
one-way delay if the lines are weakly coupled, , 
and that line is matched at one end. In other words, 

1k 

 i T   if  and 1k  1Si   or . 1 Li

The above results are an exact literal solution for the 
problem. No assumptions about symmetry or matched 
loads are used. Therefore they cover a wider class of 
problems than have been considered in the past. Al-
though they have been simplified by defining certain 
terms, they can be simplified further if we make the fol-
lowing assumptions. First let us assume that the line is 
electrically short at the frequency of interest, i.e., l  . 
In this case the terms C and S simplify to: 

 cos 1C l               (39) 

 sin
@1

l
S

l




              (40) 

The near-end crosstalk can be viewed as a transfer 
function between the input VS(t) and the outputs VNE. 
This can be done by factoring out VS(t) and jω to give: 

 
ˆ

ˆ
IND CAP CINE
NE NE

s

j M
V

M
V

M   NE       (41) 

where 

2πf                  (42) 

Common impedance coupling in the near-end cross- 
talk can be evaluated using: 

0*CI NE
NE

NE FE S L

R R
M

R R R R


 
        (43) 

The far-end crosstalk is determined by: 

 
ˆ

ˆ
IND CAP CIFE
FE FE

s

j M
V

M
V

FEM         (44) 

Common impedance coupling in the far-end crosstalk 
can be evaluated using: 

0*CI NE
FE

NE FE S L

R R
M

R R R R


 
        (45) 

4. Simulation versus Theoretical Results 

This section aims to validate theoretical proposed solution. 
We develop T-electric equivalent model for each part of 
the presented structure. Figure 5 shows the proposed  
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Figure 5. T-model. 
 
T-model, where, Lm = lm*lw represents the mutual induc-
tance between conductors, Lg = lg*lw is the self-induc-
tance of generator conductor, Lr = lr*lw is the self-in-
ductance of the receptor conductor. Where lw, lm, lg and lr 
denote the conductor length, the per-unit length mutual 
inductance between generator and receptor conductors, 
the per-unit length inductance of the generator conductor, 
and the per-unit length inductance of the receptor con-
ductor, respectively. Cm = cm*lw is the mutual capacitance 
between conductors, Cr = cr*lw is the capacitance of re-
ceptor conductor, Cg = cg*lw is the capacitance of gen-
erator conductor. Where cm, cr and cg denote the per-unit 
length mutual capacitance between two conductors, the 
per-unit length capacitance of the receptor conductor, and 
the per-unit length capacitance of the generator conductor, 
respectively. 

4.1. Nonuniform Conductors with Rectangular 
Cross-Section 

In order to evaluate the crosstalk between nonuniform 
conductors, we deal first with various per-unit-length 
parameters. In principle, the method of moments is a 
common and widespread technique. In order to illustrate 
this method, let us reconsider the parallel-plate capacitor 
problem. We assume that the charge distribution over 
each plate is uniform, that is, does not vary over the 
plates. In reality, the charge distribution will peak at the 
edges. To model this, in Figure 6 we break each plate 
into small rectangular areas Δsi, and assume the charge 
over each subarea as being constant with an unknown 
level, αi. The total charge on each plate having been di-
vided into N subareas is: 

1

N

i i
i

Q 


  s               (46) 

The heart of this method is to determine the total volt-
age of each subarea as the sum of the contributions from 
the charges on each subarea. Hence the total voltage of a 
subarea is the sum of the contributions from all the 
charges of all the subareas (including the subarea under 
consideration): 

 

Figure 6. Approximating the charge distribution on the 
plates of parallel-plate capacitor. 
 

1 1 1 1 2 2j j jN N j NV K K K N              (47) 

Each term Kji represents as basic subproblem relating 
the voltage of a subarea Vj to the charge amplitude on 
another subarea. 

ji jK V j               (48) 

Because of symmetry (both plates are identical), we 
can assign the voltage of the top plate (with respect to 
infinity) as +V and the voltage of the bottom plate (with 
respect to infinity) as –V. The voltage between the two 
plates is then 2V, so that the capacitance is: 

2

Q
C

V
                 (49) 

Grouping (70) for all subareas gives a matrix equation 
to be solved (which is the final result for all such MoM 
schemes): 

 

11 1(2 ) 1

(2 )1 2 (2 ) 2

N

N N N N

K K V

K K V











    
    
    
       


    








     (50) 

We have assigned all subareas on the top plate to have 
voltages of +V and all subareas on the bottom plate have 
voltages of –V. Once (50) is solved for all the αi charge 
distribution coefficients, the total charge on each plate 
can be determined from (46) and the total capacitance 
can be determined from (49). 

In our case, we consider nonuniform transmission 
lines structure shown in Figure 3, where, h = 47 mils, 
and εr = 4,7 (glass epoxy). Conductors are assumed to be 
immersed in homogeneous medium.  

The per-unit length capacitance parameter matrix is:  

g m m

m r m

C C C
C

C C C

  
    

           (51) 

The per-unit length inductance parameter matrix is: 

r m

m g

l l
L

l l

 
  
 

                (52) 
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

In the configuration presented in Figure 3 we find that 
lr = lg and Cr = Cg. 

For the above mentioned values and for “n = 5”, the 
per-unit length inductance and capacitance parameters 
for each part of the structure are presented in Table 1, 
where w is the line width and S is the separation distance 
between nonuniform conductors. 

These parameters can now be used to simulate the 
mentioned electrical equivalent model; the model is im-
plemented in Advanced design system (ADS) of Agilent. 
Figure 7 describes the near-end crosstalk variation versus 
frequency for nonuniform transmission lines. 

Figure 7 shows a comparison between theoretical 
calculated near-end crosstalk results and simulation data. 
Results show that the coupling increases gradually versus 
frequency. For frequencies above 50 KHz, we can see 
that theoretical and simulation results are approximately 
the same. 

4.2. Nonuniform Conductors with Circular  
Cylindrical Section 

Conductors having cross sections that are circular cylin-
drical are referred to as wires. These are some of the few 
conductor types for which closed-form equations for the 
per-unit-length parameters can be obtained. 

Three conductors, shown in Figure 8, have the radius 
varies from rw = 225 mils (Δn) to 125 mils (Δ1) and same 
length lw = 39370 mils separated by distance S varies 
from S = 100 mils (Δn) to 300 mils (Δ1). The configura-
tion is assumed to be immersed in homogeneous medium 
(µ = µ0). The per-unit length inductance parameter ma-
trix is: 

r m

m g

l l
L

l l

 
 
 
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The per-unit length capacitance parameter matrix is:  

g m m

m r m

C C C
C

C C C

  
    

         (57) 

The relation between the per-unit length capacitance 
and inductance parameters matrix is given in Equation  

 

Figure 7. Comparison of theoretical and simulated near-end 
crosstalk. 
 

 

Figure 8. Nonuniform three-conductor transmission lines 
with circular cylindrical section. 
 
Table 1. Inductance and capacitance per-unit length para- 
meters. 

 W (mils) S (mils) lm (nH/m) lr (µH/m) Cm (pF/m) Cr (nF/m)

Δ1 225 100 19.05 0.20 6.10 0.19 

Δ2 200 150 14.77 0.23 3.20 0.18 

Δ3 175 200 12 0.24 1.86 0.16 

Δ4 150 250 10.07 0.26 1.15 0.14 

Δ5 125 300 8.65 0.29 0.73 0.13 

 
(58). 

1C L                 (58) 

For the above mentioned values and for “n = 5”, the 
per-unit length inductance and capacitance parameters 
for each part of the structure are presented in Table 2, 
where rw is the conductor radius and S is the separation 
distance between nonuniform conductors. 

These parameters can now be used to simulate the two 
explicated models.  

Figure 9 shows a comparison between theoretical  

Copyright © 2011 SciRes.                                                                               JEMAA 



Crosstalk Prediction for Three Conductors Nonuniform Transmission Lines:  326 
Theoretical Approach & Numerical Simulation 

Table 2. Inductance and capacitance per-unit length para- 
meters. 

 rw (mils) S (mils) lm (nH/m) lr (µH/m) Cm (pF/m) Cr (nF/m)

Δ1 225 100 50.18 1.20 11.3 3.17 

Δ2 200 150 38.97 1.23 7.20 2.80 

Δ3 175 200 36.01 1.24 5.62 2.10 

Δ4 150 250 33.20 1.26 2.51 1.78 

Δ5 125 300 29.05 1.29 1.03 1.02 

 

 

Figure 9. Comparison of theoretical and simulations results. 
 
calculated near-end crosstalk results and simulation data 
using T models. 

For frequencies above 100 KHz, we can see that theo-
retical and simulation results are approximately the same. 

5. Conclusions 

Rigorous equations have been developed to predict 
crosstalk between nonuniform transmission lines. Used 
conductors are assumed to be immersed in homogenous 
medium. Electric equivalent model has been presented for 
calculating the crosstalk between three-conductor non-
uniform transmission lines. Rigorous equations are de-
veloped to calculate the per-unit length inductive and 
capacitive parameters. Comprehensive comparisons be-
tween the results which are obtained by using rigorous 
theoretical equations on one hand and those obtained by 
the created model on the other hand, have shown an ex-
cellent accuracy for higher frequencies. Theoretical solu-
tion for near-end and far-end crosstalk presented here are 
faster than the finite difference analysis. 
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