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Abstract

In this article, we use streamline diffusion method for the linear second order hyperbolic initial-boundary
value problem. More specifically, we prove a posteriori error estimates for this method for the linear wave
equation. We observe that this error estimates make finite element method increasingly powerful rather than

other methods.
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1. Introduction

The wave equation based on rigorous a posteriori error
estimates is a largely subject, despite the importance of
these problems in the modeling of a number of physical
phenomena. A posteriori have made every method in-
creasingly powerful; such that there are various ap-
proaches to a posteriori error estimates and it has new
successfully applied to varied problems by several au-
thors (see Ainsworth and Tinsley Oden [1]; Asadzadeh
[2]; Gergouli [3]; Johnson [4] and [5]).

Gergouli et al. [3] and his teammates applied finite
element method for linear wave equation and obtained a
posteriori error estimates in L (L?) norm in Johnson
proved existence solution for second order hyperbolic
problems and used discontinuous Galerkin method for
them and obtained a priori and a posteriori error esti-
mates. In this paper, we do new work and use streamline
diffusion method (SD-method) for solving the linear
second order hyperbolic initial-boundary value problem.

Streamline diffusion methods (Asadzadeh [6]; Asadza-
deh and Kowalczyk [7]; Eriksson and Johnson [8];
Brenner [9]; Dubois [10]; Fuhrer [11] ) perform slightly
better than the standard finite element methods for
smooth solutions and non-smooth solutions hyperbolic
problems as a two-dimensional one which both is higher
order accurate and has good stability properties. Due to
the fact that artificial diffusion is added only in the char-
acteristic direction so that internal layers are not smeared
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out, while the added diffusion removes oscillations near
boundary layers.

We consider the linear second order hyperbolic initial
boundary value problem (see Codina [12]; Haws, [13];
Gergoulus et al., [3]; Iraniparast [14]; Kalmenov [15]; in
Sobolov space Adams [16]; Shermenew [17]) as follows:

U, —V-(avu) = f in Qx(0,T)
u(x,0=u,(x)) on Qx{0} O
U (x,0)=u,(x,0) on Qx{0}
u(x,0)=0 on 8Qx(0,T]

Here, Q< R%is a bounded open polygonal domain
with boundary 6Q and we have U, € H,(Q),u, € L (Q),

a is a scalar-value function in C (ﬁ) and
fel’(0.T:L(Q)).

For (1), we use one variable changing and obtain a
new problem. We apply SD-method for new problem
and obtain a posteriori error estimates. A posteriori error
bound provides a computable upper bound on the error in
some norm using the computed finite element solution
(see Ainsworth and Tinsley Oden [1]; Asadzadeh [2];
Burman [18]; Johnson and Szepessy [19]; Sandboge
[20]).

In order to make use of the theory of Semigroups we
write the system (1) in the following abstract form:
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W, + Aw=F in(Qx(0,T))
w(x,0)=w,(x)  on(Qx{0}) )
w(0,t)=0 on (8Q2x(0,T])°

Here, we assume V=u, for xeR® and te[0,T],
also:

w(x,t) :(u(x,t),v(x,t))T,wt (xt) :(ut (x,t),v, (x,t)T)

and

F(xt)=(0, f(xt))

where, | is identity matrix.

The rest of this study is organized as follows. In Sec-
tion 2, we define slabs for space-time domain and obtain
SD-method for (2) this slabs. In Section 3, we consider a
posteriori error estimates for SD-method form of Section
2 and obtain dual problem. In Section 4, we define in-
terpolation estimates for dual problem. In Section 5, we
complete proof for a posteriori error estimates by using
definitions in Section 4.

2. The Streamline Diffusion Method

In this section, we consider the SD-method for solving (2)
that is based on using finite element over the space-time
domain Qx[0,T]. To define this method, let

0=t, <t <---<ty =T be a subdivision of the time in-
terval [0,T] into intervals |, =(t,.t,,), with time
steps k, =t,,,—t,, n=0,1,---N—1 and introduce the
corresponding space-time slabs, i.e.:

S {(xt):xet, <t<t,,} 3)

for n=0,1,---,N =1 . Further, for each n let W" be a
finite element subspace of H'(S,)xH'(S,), (see Ad-
ams, [16]) and let:

W' ={wew"|w(0,t) = 0, fortel,} (4

We can formulate SD-method on the slab S, for (2),
as follows: .
For n=0,---,N -1, find w" €W such that:

(th +AW”,g+c’>‘(gt+Ag)) +<W, g+ >,
" Q)
:(F,g+5(gt +Ag))n+<wf,g+ >

where, &=Ch with C is a suitable chosen (suffi-
ciently small, see Johnson, [18]) positive constant and
parameter h is defined in the following. Further, we de-
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fine the following notations for (6):
(w,g), = fSn w' - gdxdt
<w,g >n=j0wT (x.t,)9(xt,)dx

W (X, t) =1lim_,, W(X,t+s)lim

$—0+
w—(x,t)=limg_,_ W(X,t+s)

The terms including <,> in the above formula is a
jump conditions which imposes a weakly enforced con-
tinuity condition across the slab interfaces, at t, and is the
mechanism by which information is propagated from one
slab to another. For more concisely, after summing over
n, we may rewrite (5) as follow:

We assume W= H::W " and find| w € W, such that:

B(w,g)=L(9) 6)

For gew and where the bilinear form B(., ) and
the linear form L(.) define by:

-1
B(w,g)= Z(th + AW, g +5(g, +Ag))n
N-1
<[Wn]: g+ “n +<W2g+ >0

+

n=l1

where, we define w=(w,,w, )T such that for i=12:

[w]=w.~w_. [w]=(w].[w])

and

N-1

Z(F,g+5(gt+Ag))n+<w0,g+ >,

L(9)

For h>0,we define T,' such that be a triangulation
of the slab S, into triangles K satisfying as usual the
minimum angle condition (Ciarlet [21]) and assume that
the parameter h is represented with the maximum di-
ameter of the triangles K €T,". We introduce:

>

W ={weH'(S,)xH'(S,):w|, € R (K)xR (K)
foreT,", w(0,t)=0fortel, }

where, P, (K) denotes the set of polynomials in K of
degree less than or equal k and:

N-1
W, = HWhn
n=0
Thus (6) can be formulated as follows:
Find w, eW, such that:
B(w,,9)=L(9) ™

for g €W, . Moreover, we know that the exact solution
of (6) satisfies:
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B(w,9)=L(9)

for g € Wand by use (6) and (7), we have the Galerkin
orthogonality relation:

B(e,g)=0 8)

where, e=W-W,.

3. An a Posteriori Error Estimate for the
SD-Method

In this section, we shall consider the following simplified
version of SD-method for (7) with 6 = 0: Find wy,eW,,
such that for n=0,1,---,N—1:

N-1 N-1

E(WQ,I+AW}:',g) +

n
n=

n n
<[w,],9+>, +< Wy, 0+ >

0 n=
N-I

=Z(F,g)n+<wo,g+ >0

ne
€

where, geW, and w,_ =0.
For simplicity, we take w, =0 and F =0. In order
to obtain a representation of the error, we consider the

following auxiliary problem, referred to as the linearized
dual problem: Find @ such that:

L*® =-®, + ATd =¥ 'e inQ
®(0,t)=0,t(0,T) (10)
Q(x,T)=0,xeQ

and L* denotes the adjoint of the operator L defined in
(2) and v is a positive weight function. Note that this
problem is computed “backward”, but there is a corre-
sponding change in sign. Further, we shall first introduce
the following notation:

1/2

"W"L"z’(g) = (W’ ‘I’W)g (1 1)

Multiplying (10) by e and integrating by parts and
summing over N, we obtain the following error represen-
tation formula:

= (e,‘{"le) (e,L*®),

"e"L“z”'(Q) 0

(12)

We have for n=0,1,---,N —1 by part integrating:
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(e,(l)I )n = —L e’ - @, dxdt

n
N-1

= _§IQET (x,tn)-QD(x,tn)dx.FLn el - ddxdt

N-1

_ _;IQeT (X’tn).qy(x,tn)dx+(et ,CD)n

13)
We define e=(e,e,) and ®=(g,4,) and ob-
tain for n=0,1,---,N—1:

(e, ATcD)n = js e’ - ATddxdt

=[ e 0 ~V-@V)4 dxdt
I
o -1 0 ¢,

- J's (e1 e, ) : (—V.(quﬁQ )]dxdt

1

= Ln (& V-(aVg,)—e,4 )dxdt (14)
= Ln (quﬁzVe1 —e,4 )dxdt

=[, V-(av )e &g )dxat

= [, (Re)’ -Ddxdt = (Ae,®),

We define:

N-1

J= ZIQeT (x,tn )-cb(x,tn )dx

)

n
:(< e_,CD_ >] _<e+sq)+ >0)
+(< e7,®7 >2 _<e+’(D+ >1)

+...+(< e7,®7 >N71 _<e+acD+ >N72)

+(< e, 0 >, —<e,D, >N-‘)

:—[< e, D_>, +<e,D, >,

N-1 N-1
+Y <[e],®, >, +Y <e_[D] >n}
n=0 n=0

According to (9), ¢(.,tN = T) =0 and since
e’ =[w,]=0, we get:

N-1

J=D<[w,],9, >, (15)

n=f

Then in (12), by use (15) and (16), we have:

[el

So that recalling (9) and using the Galerkin orthogo-
nality (8), we obtain:

N:l(el ,CD)+N:

n=0 n=0

N=1
(Ae, @) +> <[w,].@, >,
n=0

2 —_
Ly2/+1 (Q) -
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[el

2
L|2y+l Q)

(16)
where, ® W, is an interpolant of ® . The idea is now

to estimate ®—® in terms of y 'e using a strong sta-
bility estimates for solution @ of the dual problem.

4. Interpolation Estimates for the Dual
Solution

We shall now consider our interpolant o eW, in (16)
to be the space-time L,-projection of @, namely if the
first, we define the L,-projections:

P, :L(Q)—W
and
7, L, (Sn ) [ 1on= {We L, (Sn ) w(X,.)
isconstanton |, Xe Q}
in space and in space time, respectively, by:

L}(Pn ,<I>)T -de:.[q’q)T wdx, vYweWw,"

1
T,W|S, = k—jln w(,t)dt, vwe[],,

Then, we can define ®

S, €W, by letting:

®|S, =P, z,®=7,P,®ecW,

where, © = (I)|Sn . Further, if we introduce P and 7 de-
fined by:

(Po)

S, =P, (®[s,)
and

(n®)(S, =7, (D[S,)

respectively, then we can let® e W, to be:
& = Prd = 7P® €W,
Now, we define residual of computed solution w, by:

R, = F—Wh‘t—AWh

N n
R =W,, —w,_,on S,
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n
N Gind) LS
kﬂ
where, | is the identity operator.
In the end of this section, we shall give a lemma for
interpolation estimates by the projection operators P,
leaving the overall of | and Il to next section.

Lemma 1: There is a constant C such that for residual
Rel,(Q):

(Rw—Pw),[<C|n*(1-P)R (17

()
[Bau¥(e)} " L (@)

Proof: (see Johnson and Szepessy [19] and Sandboge
[20]).

5. The Completion of the Proof of a
Posteriori Error Estimates

In this section we state and prove a posteriori error esti-
mate by estimating of the terms | and Il in the error rep-
resentation formula (16). To this approach we introduce
the stability factors (see Burman [18]) associated with
discretization in time and space, defined by:

; _ "q)t (@) (18)
"e"L‘{*‘(Q)
and
ex _ ||(Dxx L‘;(Q) (19)
"e”L;H Q)

respectively. We now apply the result of the previous
sections; using Catchy-Schwartz inequality in (16) cou-
pled with the interpolation estimate (17) and the strong
stability factors (18) and (19), to derive the L* (Lz) a
posteriori error estimates for the scheme (9).

Theorem 1: The error e =w—Ww,, where w is the so-
lution of the continuous problems (2) and W, that of (9),
satisfies the following stability estimate:

h*(1-P)R,

+Cy.

kn Rl

”e"L‘{"(Q) < C7ex @) W)

""7: h2R2 +7ex k. R,

B@ 5@
(20)
Proof: Using the notation introduce above, we may
write (17) as:

-1 . N-1 W .
lefiy = X (Reo-®) + 3 <k, B0 -, >,
= n

n=
=1+

Below we shall estimate the terms | and Il separately.
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Splitting the interpolation error by writing
O-D=D-PO+PO-® and d, =7,Pd, we have:

Z

—1
=Y (R,d®-PD+PD-D)

>
o

=4
|

R N-1
(RO,CDH—PCD)H +nZ:0(RO,PCD—(D)n

<c|n*(1-P)R,

=)

O
Ea(s) " @

where we have used the fact that R; is constant in the
time, (making the first integral zero) and then using in-
terpolation estimate (17) in the second integral. It re-
mains to estimate the terms Il, to this end, we need the
following notation:

n t 0
CD+(x):CD(x,t)—J;HECD(x,T)det
so that:
k@ (x)=[ ®(xt)dt-[ [ @ (x.r)dzdt (21)

T
ST
||=n_0<|<n ‘;("“ ,(q>-q>)+>n
=N_1<|<n [Wh]( “Pd+PD - CD)+>

N-1
+
n=0
To estimate 1l,, we use (21) to get:

I =E<kan,(én)+—P®+>

(PO D), > A+

n

n

=z
—_ Il
S

M2 I

R k,d, —Pk,®, )

<R1 kb, -] Po(.t)dt+] [ Po, (.,r)drdt>

=]
Il
o

n
N-1

= ;Ln J.:n <R1 PD. (.,r)>ndrdt

<k

R |p
"Rt T @

<k

R (B ¥(o)) "(Dt

(@)
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As for the 1, -terms we can write:

I, =NZ_1<|< [\ll(vh](PCD ). >

n=0 n n
[ W W
nO< c (P, —I)knd>+>n
NP W —w
:n_0< " hkn = (P, —|)(jlnc1>(,t)dt

+
5 (©)

[

kn RZ

RLERIC) 4@ "q)‘ @
The a posteriori error estimate now follows immedi-
ately after collecting the terms and using the definition of
the stability factors (18) and (19).
For 6 #0 in (7), we can obtain a posteriori error es-

timates with similar way.
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