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Abstract 
The problems of accelerated testing on durability are formulated and the basic definitions are 
given. The concept of so-called acceleration function is determined. In the case of linear model, 
integral function of distribution of time of failure-free operation of a device is determined on the 
basis of this concept. The criterions of linearity of acceleration function are formulated. The tech-
nique of accelerated testing is developed on the basis of correlation that conveys the generalized 
principle of Palmgren-Miner. This technique guarantees computation of reliability, when load in-
creases permanently or stepwise. 

 
Keywords 
Resource of Reliability, Acceleration Function, Rule of Palmgren-Miner, Hypothesis of N.M.  
Sediakin 

 
 

1. Introduction 
The problem of forced testing on reliability, i.e. the problem of construction of probability models for forced 
testing is formulated as an interposition of a distribution function ( )xF Θ  of time of failure-free operation of a 
device under load X on a distribution function ( )yF Θ  of the same quantity in the conditions of forced load
( )Y Y X> . The principle of forcing is that for random value 0Θ > , we have inequality ( ) ( )x yF FΘ < Θ  and 

functions ( )xF Θ  and ( )yF Θ  satisfy the following conditions: 

( ) ( )0 0 0x yF F= = , 

( ) ( )lim lim 1x yF F
Θ→∞ Θ→∞

Θ = Θ = . 
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In the particular case of forced testing, we are concerned in finding certain quantitative properties of the dis-
tribution ( )xF Θ  according to known properties of the distribution ( )yF Θ . 

The problem of forced testing is reduced to definition of so-called “acceleration function” ( )g tτ =  that 
represents the function of regression, i.e. correlation of quantiles (fractiles) τ  and t that correspond to equal 
probabilities ( )xF τ  and ( )yF t  of failure-free operation in the face of nominal X and forced Y loads corres-
pondingly. In general, this correlation is non-linear: 

( ) ( )( )y xF t F g t= . 

The correlation of quantitative properties (moments) and the corresponding distributions ( )xF Θ  and 
( )yF Θ  is easily determined from the following equations: 

( ) ( )

( ) ( ) ( )( )

( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( ) ( )( )

1

0 0

1 1

0 0 0 0

d d
, ,

d d d d

kk kk
x x x x x

k kk kk k
y y x x y y y x

F F

F F g F F g

α µ α

α µ α α

∞ ∞

∞ ∞ ∞ ∞

 
= Θ Θ = Θ − Θ 

 
 
 = Θ Θ = Θ Θ = Θ − Θ = Θ − Θ  

∫ ∫

∫ ∫ ∫ ∫
 

where ( ) ( ),k k
x yα α  and ( ) ( ),k k

x yµ µ  are initial and central moments of order k of distributions ( )xF Θ  and 

( )yF Θ . 
In the case of linear model, when c tτ = ⋅ , the problem is reduced to determination of sole coefficient c that 

depends only on the rules of distribution of failure-free operation of device with loads X and Y. 

2. Linear Theory of Forced Testing 
2.1. Physical Principle of Reliability 
When acceleration function is linear, it is enough to offer a technique of deterministic, forced testing that gives 
estimation c�  of coefficient c, as well as lower c−  and upper c+  boundaries of a sphere, where lies the true 
value of magnitude c with confidence level γ . 

It is more important that on the basis of acceleration function g, mathematical notation of so-called physical 
principle of reliability [1] gets absolutely new form. This hypothesis belongs to N.M. Sediakin: 

( )
( )
( )

( )

1

1 *
1 1 1

*
1 1

, when 

, when ,

x

xy
y

F
F

F

g

 Θ Θ ≤ ΘΘ Θ = 
Θ +Θ −Θ Θ > Θ

Θ = Θ

                       (1) 

where ( )1xyF Θ Θ  signifies the distribution function of time of failure-free operation of a device, when set of 
these devices are initially tested with nominal load X during certain interval 1Θ  and then tested with forced 
load Y, when the same probability of failure is reached in lesser interval *

1Θ . Correlations ( )xF Θ  and ( )yF Θ  
are functions of distribution of time of failure-free operation of a device in modes X and Y correspondingly.  

It is quite interesting to determine the criterions of linearity of acceleration function, because the problem of 
forced testing is essentially simplified for linear model. These criterions are formulated in the following form 
[2]. 

Let us assume that one of the two sets are tested with load X during interval 1Θ  and then—with load 
( )Y Y X>  during interval 2Θ . At the moment 1 2Θ +Θ , when testing is finished, probability of failure is 2Q . 

The second set of the same devices are initially tested with load Y during interval 2Θ  and then—with load X 
during interval 1Θ . At the moment 1 2Θ +Θ , when testing is finished, probability of failure is 2Q′ . Let us also 
assume that hypothesis of N.M. Sediakin is correct, i.e. physical principle of reliability is in force. In this case 
acceleration function g is linear, if 2 2Q Q′=  and vice versa, i.e. if acceleration function is linear, then probabili-
ties 2Q  and 2Q′  are equal. 

2.2. Linear Summation of Failures 
The physical principle of reliability in the form of (1) is essentially used for proving the above-mentioned theo-
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rem. Therefore, this theorem is realized only in those conditions, when hypothesis of N.M. Sediakin is correct.  
We strictly prove [3] that when acceleration function is linear, physical principle of reliability is a sufficient 

condition for validity of so-called correlation of linear summation of failures which is also known as the rule of 
Palmgren-Miner:  

2 2

1 2 1
x y
Q Q
Θ Θ

+ =
Θ Θ

. 

Figure 1 describes the meanings of magnitudes of this equation. 
A.G. Palmgren [4] studied durability of bearings and offered above-mentioned equation in 1924 as a hypothe-

sis. M.A. Minerused the same equation in 1945 in his studies [5]. 
If we change the test a little bit and test the set of devices under load Y not during fixed time interval 2Θ , but 

until the moment of failure, then the last equation should be transformed. Particularly, 2Θ  should be replaced 
with mathematical expectation ( )1yxT Θ  of time, when the sample is tested under load Y until the moment of 
failure, if before that it was under load X during interval 1Θ . Similarly, quantity 2

x
QΘ  should be replaced with 

mathematical expectation xT  of time of failure-free operation of device in normal mode X. Finally, 2
y
QΘ

should be replaced with mathematical expectation yT  of time of failure-free operation of device in forced 
mode Y. As a result, we get: 

( )11 1yx

x y

T
T T

ΘΘ
+ = . 

This equation represents the basic correlation for definitive, forced testing with technique of so-called “de-
struction” [6]. It is proved [7] [8] that random magnitude *r  of resource of reliability 

( )
0

d
t

r x xλ
∗

∗ = ∫ , 

That is spent by device in random time *t  of failure-free operation under any permanent load and intensity 
( )xλ  of failure, has exponential distribution and its mathematical expectation equals to 1, i.e. 

( )0
0

d 1
t

r r x xλ
∗

∗
 

 ≡ Μ ≡ Μ =     
∫ .                              (2) 

This statement is true at any rule of distribution of random magnitude *t  of time of failure-free operation of 
device. 

In the model of stepwise load that is shown in Figure 2, it is implied that load H is measured in discrete steps 
after time intervals it∆  and gets value iH . Index n is assigned to load, when there is failure. It is easy to see 
that 

1 2 1n nt t t t t∗−∆ + ∆ + + ∆ + ∆ =� , 

where index n, as well as it∆ , have random values.  
Average time of failure-free operation of device in normal conditions (under nominal load) is denoted with 

symbol pT . Symbol iT  is used for average time of failure-free operation in mode iH  under stepwise load 
and symbol ( )T H x    is used for the same value under permanent load ( )H H x=  in time x. 

If we assume that in every described mode, time of failure-free operation of element has exponential distribu-
tion, then the following equations are true: 

( )

( ) ( ) ( )

1 1, 2, ,

1 0

i
i

i n
T

H x x t
T H x

λ

λ ∗

= = 


= ≤ ≤      

�

.                           (3) 

If we use property of additivity of resource of reliability and Equation (2) for the described two examples, 
then: 



A. Prangishvili, O. Namicheishvili 
 

 
203 

 
Figure 1. Graphical interpretation of palmgren-miner hypo-
thesis. 

 

 
Figure 2. Model of stepwise load. 
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Μ = Μ =         
∑ ∫  

These equations represent mathematical notations of correlation of linear summation of failures in discrete 
and permanent modes. 

2.3. Models of Reliability for Certain Types of Load 
We can describe considerable amount of reliability models for stepwise and permanent load, if we use ma-

thematical notations of correlations of linear summation of failures that are based on the property of reliability 
resource. 

For example, the following model is known: 
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m
pi

p i

HT
T H

 
=  
 

,                                     (4) 

where m is a certain constant. Many researchers have got the same result. For example, for ball bearings 4m =  
[9], for paper capacitors 4 7m = ÷  [10] [11], for filaments 20m =  [12]. 

For stepwise load, this model gives: 

1

m
n

i
p i

i p

HT t
H=

  
 = Μ ⋅∆     
∑ . 

If load is permanent and load H varies in time x with constant “rate” v on the basis of linear rule 
( ) 0H x v x H= ⋅ + , where 0H  is initial value of load, then for average time pT  of failure-free operation, we 

get: 

( )
( )

1 1
0 0

1

m m

p m
p

vt H H
T

m v H

+∗ + + − = Μ
 + ⋅
 

. 

According to the work [13], the following model satisfactorily describes the durability of many soft metals: 
m

pi

p i

H ET
T H E

− 
=  − 

, 

where E and m are certain constants. 
For stepwise model and above-mentioned model, we get: 

1

m
n

i
p i

i p

H ET t
H E=

  − = Μ ⋅∆  −   
∑ . 

When load increases permanently with constant “rate” ν and failure is observed at the random moment *t , 
for the average value (mathematical expectation) we get: 

( ) ( )
( ) ( )

1 1
0 0

1

m m

p m
p

vt H E H E
T

m v H E

+ +∗ + − − − = Μ
 + ⋅ − 

. 

It is easy to see that the Equation (4) with assumption (3) and linear increasing load with initial value 0 0H = , 
takes the following form: 

( ) m
p

p

H x H
v x

λ
λ

     =  ⋅ 
, 

Hence 

( ) ( )
( ) ( )

1
1

m

m m
p p

m x
H x

m H v
λ

λ
+ ⋅

=    + ⋅ ⋅ 
. 

On the basis of previous equation we conclude that in the case of described conditions, random value *t  of 
time of failure-free operation of device is distributed according to Weibul’s law: 

( ) 1 exp xF x
α

β
 

= − − 
 

. 

The specifications of form and scale of this law is described with the following equations correspondingly: 
1mα = +  and ( )1 m m

p pm H vβ λ= + ⋅ ⋅ . 
These conclusions are based on a fact that if random value of time of failure-free operation of certain device is 
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distributed according to Weibul’s law, then intensity of failure of this device is described with the equation 
( ) 1x xαλ α β−= ⋅ . 
The result is important, because value m can be determined with the same statistical data that is given from 

the experiment with permanent load of the basic set of devices. It is sufficient to create the function of distribu-
tion of random value *t  upon its N realizations 1 2 3, , , , Nx x x x� . 

3. Conclusions 
The problems of accelerated testing on durability are formulated newly, the basic definitions are given and the 
concept of so-called acceleration function is introduced. In the case of linear model, integral function of distri-
bution of time of failure-free operation of a device is determined on the basis of this concept. The criterions of 
linearity of acceleration function are formulated and the techniques of accelerated testing are developed on the 
basis of correlation that generalizes the principle of Palmgren-Miner. This technique guarantees computation of 
reliability, when load increases permanently or stepwise. 

Described method is easily generalized to the case of chemical engineering kinetics and chemical rate phe-
nomenon.  
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