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Abstract 
The lack of Birkhoff theorem in finite-range gravitation reveals nonzero acceleration of the test 
body inside the massive spherical shell, as well as breakdown of screening inside the charged 
conductor gives rise to acceleration of the test charge. An application of this effect to the motion of 
galaxies in Local Group allows to constraint quintessence parameter in some massive gravitation-
al theories. 
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1. Introduction 
Whether photon and graviton possess nonzero rest masses is one of the most fundamental questions which have 
been actively examined during last decades both theoretically and experimentally in the lab and in the space [1]- 
[3]. 

Contrary to Proca equations [4], uniquely and undoubtedly generalizing Maxwell ones for finite range, the 
massive gravitation is far from its end [5]-[12]. Different theories of gravitation predict different outcomes of the 
same experiments, henceforth the upper bounds of the graviton mass will depend on the specific choice of such 
theory. We’ll consider phenomenon of breakdown of the screening effect in massive electrodynamics [4] and in 
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finite-range theory of gravitation of Freund, Maheshwari and Schonberg [5], and Logunov [6] [7].  
When can one anticipate an appearance of nonvanishing massive electromagnetic or, correspondingly, gravi-

tational fields if the usual massless fields are absent (screened) in that situation? For instance, it is inside the 
spherically-symmetric shell. It is well known, that there is no electromagnetic field in the empty charged metal 
conductor, having compact (in simplest case—spherical) form [13]. Therefore, the Lorentz force acting on the 
test charge is equal to zero as well as its acceleration. If the gravitons have no rest mass, then according to 
Birkhoff theorem, inside the massive sphere the space-time is the Minkowski one, with the acceleration of the 
test bodies vanishing and the shell’s gravitation field being “screened”. This is clearly not the same case as elec-
tromagnetic screening, rather it is the consequence of the spherical symmetry. Nevertheless, such shielding 
would be broken for finite-range gravitation. Therefore in massive case one can expect that the test charge inside 
the charged shell and the test mass inside the massive sphere have to move with acceleration proportional (in 
first approximation) to the squared mass of the photon and graviton correspondingly. As we shall see, the for-
mulas in both cases have the same form. 

We’ll consider this effect and estimate the possibilities of its observation. In particular, we’ll show that the 
mass of the graviton will contribute to the “Hubble constant” of the galaxies flow in Local Group. It constraints 
the cosmological quintessence parameter in massive relativistic theory of gravitation (RTG) [6] [7]. 

2. Empty Shell as the Photon Mass Detector 
If the electromagnetic field has the finite range cµ=  , where µ  is the photon mass, then Maxwell equa-
tions will have the Klein-Gordon form, what was first noticed by A. Proca [4]. In arbitrary coordinates these 
equations are 

2 4πD D A A jαβ ν ν ν
α βγ µ+ =                                 (1) 

0D Aν
ν =                                        (2) 

where αβγ —Minkowski metrics, ( ),Aν φ= A —vector 4-potential of the electromagnetic field, jν —4-current, 
Dα —covariant derivative with respect to metrics αβγ . Throughout this work, we adopt the following units 
conventions 1G c= = = . 

Consider the solution of Equation (1). Let’s note σ —density of the surface charge 2
04πQ rσ = , 0r —ra- 

dius of shell. Then Equation (1) for the scalar potential φ  yields 

( ) ( )2
04π r rµ φ σδ∆ − = − −                                (3) 

where ∆ —Laplace operator in spherical coordinates. 
The outside solution of (2) outφ  has Yukawa form  

( ) 0
e ,

r

out
Qr r r

r

µ

φ
−

= ≥                                  (4) 

Whereas the inner solution inφ  is 

( ) ( )
( )

0 0
0

,
ein r

sh rQr r r
rsh rµ

µ
φ

µ
= ≤                           (5) 

Since at the sphere surface the scalar potential is continuous ( ) ( )0in outa rφ φ= , then at the origin one has 

( ) ( )0
0

0
ein r

Q
sh rµ
µφ

µ
= . 

Therefore for the electric field rE  and Lorentz force F inside the shell one obtains 

( ) ( ) ( )( )
0 2

0e
in

r r
qQF qE q rch r sh r

r r sh rµ

φ µ µ µ
µ

∂
= = − = − −

∂
                  (6) 

According to modern evaluations [1]-[4] the upper limit of photon mass is very small 6510 gµ −< , so for the 
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laboratory scale 20
0 10rµ −< . It yields 

2

03
qQF r
r

µ
= −                                        (7) 

The force (7) is directed towards the origin for the same signs of charges and it is increased as the particle 
comes to the surface (weak confinement). This force less than the Coulomb one 2

0qQ r  by factor 

( )2 2 40
0 10r Oµ −= . The test charge will go to the shell, when the signs of q and Q coincide. In this sense the 

charges of the same signs are attracted. When the signs are different, the “repulsion” takes place, making the test 

charge to oscillate around the origin like the plummet on the Hook spring with frequency 
2

03
qQ

mr
µ . Caven-

dish-type experiment searching deviation from the Coulomb low put the upper bound ( )2 2 4
0 10r Oµ −=  and 

444 10 gµ −≤ ×  [1]. 
The question concerning possibility of such direct detection of photon mass in the lab or in the space, where 

there are no free big charges, is out of the frameworks of the paper. 
The density of energy of such electromagnetic field, i.e. 00-component of symmetric energy-momentum ten-

sor 
2 21 1

4π 4π 16π 8π
T F F A A F F j A A Aν ντ τ ν τσ τ τ
λ λτ λ λ τσ τ τ

µ µδ
 

= − + + + − 
 

 

inside the cavity is almost constant and has the order of magnitude ( )2O µ : 

( )

( ) ( ) ( )( ) ( )

( )

0

0

00 2 2 2 2 2 2 2 2

2
2 2 2 2

2 2 4
0

4 2 2 2

2 22
00

8π

e

.
e

r

r

T E H E

Q rch r sh r r sh r
sh r r

Q Q
rsh r

µ

µ

µ ϕ µ ϕ

µ µ µ µ µ
µ

µ µ
µ

= + + + = +

 = − +  

≈ ≈

A

                (8) 

Both the solution (4)-(7) and stress-energy tensor for massive electrodynamics have the correct limit 0µ → . 
In the following section, we’ll demonstrate that there is a full analogy for the graviton of the mass m case–test 

body inside the spherical massive shell is no more at rest, with the force being proportional to 2m r . Contrary to 
the electromagnetic case of the same sign charges, the test particle will be accelerated towards the shell surface. 

3. Empty Shell as the Graviton Mass Detector 
Let’s consider the test body inside the thin spherically-symmetric perfect-fluid shell, keeping static by virtue of 
some external pressure. The origin of the pressure is undetermined in the frameworks of our task. In classical 
mechanics (with Newtonian inversed squared distance force) the test body is at rest inside the massive shell. The 
result keeps also valid for the exact solution of the gravitational field equations [13]. If one considers massive 
gravitation case, then the test body will no more be at rest in the cavity in close analogy with nonzero accelera-
tion of the test charge in massive electrodynamics. Such cavity can be the detector of the mass of graviton. Both 
the sign and the value of such acceleration will be calculated in the paper. 

Let’s find the gravitational field created by the thin spherically-symmetric massive shell. Using standard 
coordinates in spherically-symmetric case one has 

2 2 2 2 2d d d d d d ,x x t r rµ ν
µνσ γ= = − − Ω                           (9) 

( ) ( )2 2 2 2 2d d d d d d ,s g x x U W t V W r Wµ ν
µν= = − − Ω                    (10) 

where r—radius in Minkowski space, W—Schwarzschild radius, gµν —Riemannian space-time metrics, µνγ — 
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Minkowski metrics. 
Gravitational field ( g gµν µν µνγ γΦ = − ) equations can be written in the form, analogous to Maxwell elec-

trodynamics [5]-[7]: 

( ) ( )2 16π g
gD D m T tαβ µν µν µν

α βγ
γ

+ Φ = +                         (11) 

0D µν
µΦ =                                    (12) 

where Dµ —covariant derivative with respect to µνγ , T µν —stress-energy tensor for perfect-fluid shell, 
counteracting gravitational contraction by virtue of the nonradial pressure: 

( ) ( )0 1 2 3
0 1 2 3, 0,T W T T T p Wρ= = = = −                       (13) 

gt
µν —symmetrical Hilbert stress-energy tensor of gravitational field 2 g

g

L
tµν

µν

δ
δγ

= − : 

( )

( )

( )2

1 1 116π
2 2 2

1
2

1
2

gg t g g g g g g g g D g D g g g D g D g

g g D g D g g g D g D g g g D g D g

D g D g D D g m g g g g g g
g

µν εα λβ ελ αβ τσ µν αβ ετ λσ
τµ νσ µν τσ α β τσ α β

ελ τα βσ εα λσ τβ λα εσ τβ
τσ β α τσ β α τσ β α

εβ λα αβ ελ ελ ελ εα λβ ελ αβ
α β α β

γ

  − = − − +  
  

+ − +

+ −Φ − − − Φ + −

   

     



   αβγ
  
  

  

 

Equations (11), (12) can be rewritten in more conventional form: 

( )
2 18π

2 2
mR g T g Tµν µν µν µν µνγ  − − = − 

 
                          (14) 

( ) 0D g g µν
µ − =                                    (15) 

In our case from (9), (10), (13), (14), (15) one obtains 
2 2

2 2 2
2

1 11 ,
2 2

W m WW r W
U VVr

κ ρ
′     − + − + − =    ′    

                       (16) 

2 2
2 2 2

2
1 1 11 ,

2 2
W U m WW r W p

W U U VVr
κ

 ′   − + + − − − = −    ′     
                    (17) 

2 2 ,U W r UV r
V

′ 
′=  

 
                                 (18) 

where ( ) d
dW

′ ≡ . 

We shall solve Equations (16)-(18) in linear in graviton mass (which is extremely small: 6610 gm −<  [2] [6] 
[7]) approximation. In zero order ( 0m = ) these equations are significantly simplified: 

2
21 8π ,W W

Vr
ρ

′ − = ′ 
                                  (19) 

2
11 0W U

W UVr
′ − + = ′  

                                  (20) 

2 2U W r UV r
V

′ 
′=  

 
                                  (21) 
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The mass density of the thin shell is given by the δ -function: 

( ) ( )0 02 2
04π 4π

M MW W W W
W W

ρ δ δ= − = −                         (22) 

From (19), with taking into account conditions at the infinity, we obtain the external solution ( 0W W> , where 
0W —shell radius): 

2
1 21out

out out

MU
WV r

= = −
′

                                (23) 

( ) 2ln 1 2out
Mr W M C W M M

W
  = − + − − +    

                        (24) 

2

2
11 2 2 2 21 1 ln 1 121

out
out

M
M M M MWr C MV W W W W

W

  −        ′= − = + − + −       
       −

   

            (25) 

Constant C will be determined further by matching with internal solution. 
Let’s consider the internal solution 0W W< . There is no singularities at origin 0W = , therefore from (23)- 

(25) we get 

0 02
1, ,in in inU const U r DW V V

D
= = = = =  

1

0 0

0

2 1 2ln 1
21

M MC
W WM

W

−  
= − − 

 −
 

2

2

0
0 2

0 0 0

0

21
1 2 21 ln 1 1 12

M
W M M MV M W W WD

W

−
 

−     = = − − − + −          
 

 

Thus in zero order approximation ( 0m = ) the gravitational field inside the shell is constant and equals to 

0
3

0 0 0
2 2 23

0

, , 1,

1 1 11; 1 ; 1 ; 1 .
sin

Ug g g
D

U U U
diag

D D Dr rU D

µν µν µν

µν

γ γ
γ

θ

Φ = − − = − =

      
 Φ = − − − − − − −                 

 

In Cartesian coordinates µνΦ  is also diagonal and homogenious: constµνΦ = . Therefore the gravitational 
force for such field vanishes. 

In the strong field limit, when the radius of the shell goes to Schwarzschild horizon 0 2W M→ , we get 

0 0
10, , 4, 0.
2

C D V U→ + → → → +                             (26) 

In the weak field limit 0W M , the expansion up to ( )2
0M W  accuracy yields: 

2
1

0 0 0 0

14 1 , 1 ,
6

M M M MC D
W W W W

−    
= + = − −   

   
 

2 2
1 2

0 0
0 0 0 0

2 101 2 , 1 2 .
3 3

M M M MV D V
W W W W

−    
= = − + = + +   

   
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It’s easy to show, that the function ( )r W  (24) is monotonously increasing and strictly positive. 
Let’s study 0m ≠  case. Solving Equations (16)-(18) in linear in 2m  approximation, after some calcula-

tions we can find finally: 

( ) ( ) ( )
2 2 2 2

1
0 0 0 01 1 1

6 6
m W m WU W U U U U − 

= + − = + − 
 

,    (27) 

( ) ( )
12 2 2 2

2 10
02 2 2

71 11 1 7 6
5 306

Um W m WV W D U
D D D

−
−   −

= + − = + − −   
  

,  (28) 

( ) ( )
2 2

2 1
01 8 9

120
m Wr W DW D U − 

= + − + − 
 

                          (29) 

Then, one finds the value of gravitational force acting on the test particle in the cavity using geodesical equa-
tions in Riemannian space: 

2

2
d d d

d dd
x x x

s ss

µ α β
µ
αβ= −Γ  

In nonrelativistic case d d 1v l τ=  , we have 2 2d dl τ  ( 2 2 2d d ds lτ= − ) 
2

2
d .
d

i
i
tt

x
t

= −Γ  

Since the only nonvanishing connection coefficient is ( )
2

0 1
6

r
tt

m U rΓ = − , then we can find the acceleration of 

the test particle: 

( ) ( )
2 2 2 2

1 1
0 02 2

0

d 1 d 1 1 .
6 6d d

W r m r mU U W
DU Dtτ

− −= = − = −                    (30) 

Thus, the gravitational force acting on the particle in cavity is linear in its radius, quadric in mass of graviton 
and directs outward the center, with factor 01 U−  being positive 0 01 2 0U M W− > . All the particles are at-
tracted by the shell and tend to “fall” on it. 

The interesting coincidence is that the expressions for the strength of electromagnetic field to act on the test 
charge and that of weak gravitational field to act on test mass are the same values, but having opposite signs: 

2

0

,
3
Q rE

r
µ

= −  

( )
2 2 2 2

1
0

0 0

1 .
6 3 3

m m M W m M rE U W
W r

−= − ≈ =  

The naive attempt to find test mass acceleration inside the shell in the frameworks of Newtonian approach 
gives the correct result for some choice of potential. In coordinates ( ) ( ), , , ,Wτ τ θ ϕ≡l , where the unperturbed 
metrics is Galilean, one can use for such gravitational potential an expression 

( )
2

1 20
0

1 1
2 12

U U m U Wϕ −−
= = − − , 

which yields the correct strength of the gravitational field (acceleration),coinciding with Equation (30): 

( )
2

1
0 1

6W
mE U W

W
ϕ −∂

= − = −
∂

. 

If one use the minimal upper limit for the mass of graviton 65
0~ ~ 10 gm H − , where 0H  is the Hubble con-

stant, then the order of magnitude of this acceleration is ( )2 2
0O m W  times less than freefall acceleration 
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2
0M W . For the laboratory size cavity, this is far from experimental opportunities since ( )2 2 32

0 10m W o −= . Be-
sides, any tiny distortion of the shell surface will produce the additional gravitation force, competing with m2- 
force (30) and worsening the prospects.  

At this end, let’s calculate the energy density of the gravitational field in cavity. In linear approximation, an 
energy density (00-component of symmetric Hilbert stress-energy tensor, generalizing the Landau-Lifshitz com- 
plex on the massive case) is constant and negative, having the order of magnitude ( )2O m : 

( )
22 2

00 3 1 1 3 1
0 0 0 0 0

0

1 73 2 1
16π 2 8πg

g m m Mt V V U V U
Wγ

− − −   = − − + − ≈ −   
   

 

It differs from the energy in electromagnetic case (8) by the coefficient—7. 
Contrary to the Pauli-Firtz massive gravitation [9], the solutions (27)-(29) and the stress-energy tensor for fi-

nite-range theory [5]-[7] have the correct limit 0m → . 

4. Breakdown of Gravitational Screening—Local Hubble Flow in the  
Nearby Universe 

If the effect (30) is too small for the lab sizes, can it be pertinent in cosmos, when the distance W is big enough? 
Indeed, in the cavity the local Hubble low takes place  

d ˆ
d
W HW
τ

= , 

where the “Hubble constant” equals to 

0

0

1ˆ
6

UH m
U
−

= . 

This result suggests to search this effect for the group of the most massive cosmic objects, which nevertheless 
can be considered as the pointlike ones, moving in the mutual gravitational field, provided the dark matter 
should not preclude such motion, cause it (dm) should be concentrated inside these bodies. Galaxy stars don’t fit 
due to the distributed dark matter and not big enough distances W. Then the best option is the Local Group of 
Galaxies, which consists of two massive galaxies—Milky Way and M31 Galaxy and about 50 more light galax-
ies [14]. All these objects locate in nearby Universe at the redshifts 1z   and can be considered as the point 
like test masses. Other such systems are located much far from us and less searched. 

How to apply the result (30) to the Local Group of Galaxies? We can visualize the sphere containing all these 
galaxies with the origin in the center of mass. Outer gravitational field is the cosmological one, which is enorm-
ous at the present time [7]: 

6 30
0 10U a= >  

where a—FLRW-scale factor, and consequently one can neglect the Newtonian field of the very galaxies. 
Therefore, we have strong inequality 1

0 1U −
 . The dark energy, which we didn’t yet take into account, is un-

iformly distributed inside this sphere. But it is their homogeneity that enables us, contrary to the dark matter, to 
calculate its contribution to the magnitude of the effect. 

Qualitatively one can do this when notice that the dark energy (the quintessence in our case [7] [15]) with rel-
ative density сν νρ ρΩ = , and satisfying the equation of state 

( )1 , 0 2 3,pν νρ ν ν= − − < <  

enters the Friedmannian cosmological gravitational field equations additively with m2-term [7]: 

( ) ( ) ( )
2 2

4 3 32
0 2

0

1 d 1 1 1
d 6m
R mH z z z

R H
ν

γ ντ
   = Ω + + Ω + +Ω + −  

   
 

where 2
03 8πс Hρ = —critical density. Since a) the relative CMB density at the present time is very small 
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410γ
−Ω ≈ , b) the dark matter inside our sphere is concentrated in galaxies and missed in inter galaxies vacuum, 

and taking into account c) 1z  , for the quantitative evaluation of our effect we can substitute 
2 2

2
06 6

m m Hν− → − +Ω                                   (31) 

Therefore from (30), (31), we can get the equation of motion for any galaxy in Local Group, taking into ac-

count the Newtonian term 2
M

W
, where M is the mass of Local Group, W– distance from its center of mass: 

2 2
2
02 2

d
6d

W M mH W
W ντ

 
= − + Ω − 

 
                               (32) 

This equation describes the local Hubble flow of galaxies with bigger velocities of more distant galaxies. If 
the distances W are small enough, then attractive Newtonian term predominates the repulsive dark energy. The  

second Hubble term prevails at the distances 23
0 1MpcW M H> ≈ . It’s clearly distinguished on the veloci-

ties-distances diagram of Local Group ( 1MpcW < ) and Local Flow (1 Mpc 3 MpcW< < ) from the Karachent- 
sev et al. paper [14], based on HST data (Figure 1). Points represent galaxies with measured radial velocities 
and distances, calculated from the Group center of mass. It, in their turn, has 600 km/s speed with respect to the 
CMB [16]. 

As it follows from the diagram, all the galaxies have been separated into two parts—the inner Local Group 
and external Local Flow. The flow galaxies have only positive velocities—they recede from the Local Group, 
where the motion of bodies (galaxies) has no definite direction and they move with different speeds (positive 
and negative). 

 

 
Figure 1. Velocity-distance diagram for galaxies at distances up to 3 Mpc. Each dot corresponds to a galaxy with measured 
distance and radial velocity in the reference frame associated with the center of mass of the Local group. The velocities are 
deemed positive if they are directed away from the group center.                                                   
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Let’s point out, that such simple spherically-symmetric model, where The Local Group is represented by the 
mass M, and the galaxies-by the pointlike bodies with the masses much less than M, on the backgroung of dark 
energy with constant density given by cosmological constant, first considered by Chernin, Teericorpi and 
Baryshev [16]-[18] in the frameworks of General Relavity. 

Rigorous calculation of the model in relativistic theory of gravitation [19] with quintessence as the dark 
energy(cosmological term in the theory [7] is ruled out by the causality principle)have been performed in [19], 
where the final result  

2 2
2
02 2

d 31
2 6d

W M mH W
W ν

ν
τ

  = − + − Ω −  
  

                          (33) 

is very close to (32) and differs only by the factor 31
2
ν

−  at the νΩ . As it follows from (32) and (33), the 

mass of the graviton weakens the repulsive force of dark energy and plays the role of the negative cosmological 
constant. 

Comparing (33) with the results of observations [14] and using independent evaluation of mΩ , the quintes-
sence parameter ν  was strongly constrained in RTG [19]: 

0 0.05ν≤ ≤                                       (34) 

so the factor 31
2
ν

−  is very close to 1: 

30.925 1 1.22
2
ν ≤ − ≤ 

 
 

Strong limits of quintessence parameter ν  in RTG (34) are very close to the last range of dark energy equa-
tion of state in LCDM model, established from combined data including Planck satellite, Type Ia supernovae, 
etc. [20]: 

0.051 0.039ν− ≤ ≤  
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