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Abstract
This paper offers concrete spin matrix forms of 0 spin zero particle, and shows

the existent of the spin interactions among 0 spin zero particles. It is obviously
hoping to approach, on the most comprehensive level, to understand what really
Higgs Boson is and what role-play Higgs Boson is acting in particle physics.

As a " particle " of gravitational force, the spin interaction between 0 spin
zero particle (Higgs Boson) and 2 spin particle (Graviton) is given, which maybe
a way that people would find Graviton in future.
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1. Introduction
Higgs particle is a fundamental particle predicted by the Standard Model, and

confirmed by the Large Hadron Collider at CERN.[1] Higgs particle could explain
why the photon has no mass while W and Z Bosons are very heavy in electron-weak
theory, and endows Fermions such as electron, muon and tau particle and quarks
with their masses. The intrinsic spin angular momentum of Higgs particle is 0.
In conventional quantum mechanics, the representation of spin zero particle is a
zero-matrix of one dimensional space, this means, in fact, Higgs particle has no
matrix representation for its spin property in the Standard Model. What a pity !
magical Higgs particle could create masses of the particles in universe, however,
failing to write out its own non-trivial spin matrices. Zero is not nothing, zero spin
is not non-twirling. From the pointview of The Third Kind of Particles, TKP, [2]
the angular momentum property of spin zero particle can be expressed by infinite
dimensional non-Hermitian matrices which related to Vacuum Bubble Pair, VBP ,
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these pairs could be excited into 0 spin particle form phase transitions of
Vacuum Spin Particle, VSP, whose Casimir Operator is − 1

4 2I0, less than
zero. [3] ( Casimir Operator of Higgs particle is 02I0, of Graviton is 62I0 )

In conventional quantum mechanics, each particle has its own spin space: one
spin prticle, one spin space; two spin particles, two spin spaces; .......; n spin
particles, n spin spaces. These spin spaces are independent each other, and
expressed by V  V1 ⊗ V2 ⊗ V3 ⊗ . . . ⊗ Vn.

This paper gives advice: Since the spin angular momentum constituents of every
elementary particle are composed of the common series of math elements that based
on the raising operators j

  1; j,k
  i2; j,k

− and lowering operators k
−  1; j,k

 – i2; j,k
− ,

( which compose VBP, TKP ), then a new type of spin space, the so-called Spin
Topological Space, STS , [4] is established. All sorts of spin sparticles are attributed
to this spin space, STS.

In traditional views, there are no any spin interactions among spin zero particles.
However, by means of STS concept, on the contrary, it is shown there are the spin
interactions. 0 Spin zero particle not only possesses spin phenomena but also
appears out right-circumrotation and left-circumrotation, such kind of properties may
exist in Higgs Boson world of the Standard Model.

Same reason for, there should be spin particle interactions between Higgs
Boson and graviton, and spin interactions among gravitons, detecting gravitational
force, after the interference effect of gravitational wave is comfirmed. [5]

2. Higgs Boson’s Spin angular Momentum matrices 1l, 2l, 3l
The mathematical structure of 1l, 2l, 3l and 3

2l, 1
2l  2

2l are
given in matrix series (1), (2), (3) shown below.

They satisfy angular momentum commutation rules

iljl − jlil  ikl (0.1)
i, j, k  1, 2, 3 are circulative

Casimir Operator

2l  1
2l  2

2l  3
2l  0I0  00  1I0 (0.2)

Using raising operator, lowering operator

l  1l  i2l ； －l  1l − i2l (0.3)

Then (0.1) turns to

3ll − l3l  l (0.4)
3l−l − −l3l  −−l (0.5)
l−l − −ll  23l (0.6)

What follows are the explicit spin matrix representations of three generations
(l  1,2,3) of 0 Boson, (Higgs Boson).







Be brief, in Spin Topological Space, STS , [4], the above spin matrices
{ (1.1), (1.2), (1.3); (2.1), (2.2), (2.3); (3.1), (3.2), (3.3) } of Higgs Boson can be
rewritten in the spin forms of (4.1), (4.2), (4.3)

 0, 11  { 11, 21, 31 } (4.1)

 −1,12  { 12, 22, 32 } (4.2)

 −2,13  { 13, 23, 33 } (4.3)

For an example of  0, 11, now, (4.1) is denoted by (5.0):

 0, 11  { 1; 0, 11, 2; 0, 11, 3; 0, 11 } (5.0)
1; 0, 11  1

2 0
  1

−   11 (5.1)

2; 0, 11  1
2i 0

 − 1
−   21 (5.2)

3; 0, 11  1
i {1; 0, 112; 0, 11 − 2; 0, 111; 0, 11}31

(5.3)

3. Spin Interactions between Two Higgs Bosons
a) First we deal with two-body system that compose of Higgs Boson a,

a and Higgs Boson b, b. a and b are their spin angular momentum
matrix operators. Then show a case of a spin coupling interaction (6.0)
between a and b, the scalar products S2l, or Casimir operators of their
three generations as follows

S2l  Sl  Sl (6.0)

Where Sl  al  bl (7.0)

Or S 0, 1 ; −2, −11   0, 11  −2, −11 (7.1)

S −1,1 ; −3,−12  −1,12  −3, −12 (7.2)

S −2,1 ; −4,−13   −2,13  −4, −13 (7.3)

After careful calculation, for S2 (6.0), we have (8.0)

S2l  Sl  Sl  0I0 (8.0)
Or S 0, 1 ; −2, −1

2 1  0I0 (8.1)
S−1,1 ; −3,−1

2 2  0I0 (8.2)
S−2,1 ; −4,−1

2 3  0I0 (8.3)
I0  diag {..., 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...}(9.0)

(8.0) and (8.1), (8.2), (8.3) show: there are no any effects of spin coupling
bwtween two 0 zero spin particles, al and bl.



b) How can we find no-trivial spin-coupling interaction rather than (8),
by using augular momentum operators of 0 zero spin particle ?

Actually there are two types of 0 zero spin particles, which is a way to
overcome the obstacle

Assume 0 zero spin particles  0, 11 and −2, −11 to be thought of as
two right-hand spin particles, frmula (7.1) could be written as (10).

AR  S 0, 1 ; −2, −11   0, 11  −2, −11 (10)

Further the formula (8.1) is expressed as (11)

AR I0 AR  S 0, 1 ; −2, −1
2 1  0I0 (11)

On the other side, AL
⊙

is marked as the adjoint counter of AR with
metric cofficient operator , then  0, 1

⊙
1 and  −2, −1

⊙
1 are left-hand zero

spin particles accordingly. we have

AL
⊙

 S 0, 1 ; −2, −1
⊙

1   0, 1
⊙

1   −2, −1
⊙

1 (12)

We are now ready to take further our discussion of scalar product of
right-hand-to-right-hand, AR I0 AR (11), to psecudo-scalar product of
left-hand-to-right-hand, AL

⊙
 AR (13), as follows

AR I0 AR  AL
⊙
 AR (13)

Here metric cofficient operator  is selected as

 
0 1 0
1 0 0
0 0 1

(14)

Attention:
right-hand 0 zero spin particles  0, 11 and −2, −11 obey angular

momentum commutation rules of right-handed coordinate system；

left-hand 0 zero spin particles  0, 1
⊙

1 and −2, −1
⊙

1 obey angular
momentum commutation rules of left-handed coordinate system.

For more concise, the symbols (15) are given in the future discussions
AR j, k ; r, s ≡  j , k1  r, s1, 3i, j ≡ 3; i , j1 (15)



c) Let us have a look at an example of psecudo-scalar product of
left-hand-to-right-hand of spin zero particles, AL

⊙
 AR. After careful

calculation, we get two groups of 0 spin interactions, Group-A and
Group-B.

By way of illustration, we shall refer to the feature B(1) of Group-B：
Formulas (16.1) (16.2) and formulas (17.1), (17.2) are the third

compoments of initial state i and final state f of psecudo-scalar spin
interaction of the first generation spin particles (l1).

Initial state
0 3 0 , 1  diag {...6, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4,...} (16.1)
0 3−2, −1  diag {...4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6...} (16.2)

Final state
0 3 0 , −1  diag {...5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5,...} (17.1)
1 3−2, 1  diag {...5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5,...} (17.2)

And the conservation of the third compoment of spin angular momentums
between initial state i and final state f is obtained as (18.0)

3 0 , 1; −2, −1  3 0 , −1; −2, 1 (18.0)
ininal sum of s.a.m final sum of s.a.m

Where
3 0 , 1; −2, −1  3 0 , 1  3−2, −1 (18.1)
3 0 , −1; −2, 1  3 0 , −1  3−2, 1 (18.2)

And the conservation of psecudo-scalar spin interaction about ininl state i
and final state f is obtained as (19.0)

LB,i (1)  LB,f (1)  LB (19.0)

Where
LB,i (1)  BL,1

⊙
 0 , 1; −2, −1  BR,1  0 , 1; −2, −1 (19.1)

LB,f (1)  BL,1
⊙
 0 , −1; −2, 1  BR,1  0 , −1; −2, 1 (19.2)

LB  −2 diag {...102, 82, 62, 42, 22, 02, 22, 42, 62, 82, 102, ,...} (20)

What mentioned above is so-called fission of 0 zero spin particles, refer
to Fig4.

Conservation (18.0) and conservation (19.0) imply that if initial state i
and final state f exchange places, so-called fusion of other spin particles is
given, refer to Fig3.

Fig1, Fig2 of Group-A are obtained by the analogy to those of Fig3,
Fig4 of Group-B above.



A(3) 0 −2, 1 ↖ LA,f(3)  1
32 LA ↗ −3, 0  0 A(3)

A(2) 0 −1, 1 ↖ LA,f(2)  1
22 LA ↗ −2, 0  0 A(2)

A(1) 0  0 , 1 ↖ LA,f(1)  1
12 LA ↗ −1, 0  0 A(1)

1 0

fusions A

A(3) −/6 −2, 0  ↗ LA,i(3)  1
32 LA ↖ −3, 1 /6 A(3)

A(2) −/4 −1, 0  ↗ LA,i(2)  1
22 LA ↖ −2, 1 /4 A(2)

A(1) −/2  0 , 0  ↗ LA,i(1)  1
12 LA ↖ −1, 1 /2 A(1)

Fig1 zero spin particles are formed by the fusions of other spin particles

A(3) −/6 −2, 0  ↖ LA,f(3)  1
32 LA ↗ −3, 1 /6 A(3)

A(2) −/4 −1, 0  ↖ LA,f(2)  1
22 LA ↗ −2, 1 /4 A(2)

A(1) −/2  0 , 0  ↖ LA,f(1)  1
12 LA ↗ −1, 1 /2 A(1)

fissions A

1 0

A(3) 0 −2, 1 ↗ LA,i(3)  1
32 LA ↖ −3, 0  0 A(3)

A(2) 0 −1, 1 ↗ LA,i(2)  1
22 LA ↖ −2, 0  0 A(2)

A(1) 0  0 , 1 ↗ LA,i(1)  1
12 LA ↖ −1, 0  0 A(1)

Fig2 other spin particles are released by the fissions of zero spin particles

LA,f(3) ≡ AL,3
⊙
−2, 0 ; −3, 1  AR,3 −2, −1; −3, 1 (21.1)

LA,i(3) ≡ AL,3
⊙
−2, 1; −2, 1  AR,3  0, 1; −3, 0  (21.2)

LA,f(2) ≡ AL,2
⊙
−1, 0 ; −2, 1  AR,2 −1, −1; −2, 1 (22.1)

LA,i(2) ≡ AL,2
⊙
−1, 1; −1, 1  AR,2 −1, 1; −2, 0  (22.2)

LA,f(1) ≡ AL,1
⊙
 0 , 0 ; −1, 1  AR,1  0 , 0 ; −1, 1 (23.1)

LA,i(1) ≡ AL,1
⊙
 0 , 1; −1, 0   AR,1  0 , 1; −1, 0  (23.2)

LA  −2 diag {...112, 92, 72, 52, 32, 12, 12, 32, 52, 72, 92, ,...} (24)



B(3) 0 −2, 1 ↖ LB,f(3)  1
32 LB ↗ −4, 1 0 B(3)

B(2) 0 −1, 1 ↖ LB,f(2)  1
22 LB ↗ −3, −1 0 B(2)

B(1) 0  0 , 1 ↖ LB,f(1)  1
12 LB ↗ −2, −1 0 B(1)

1 −1

fusions B

B(3) −/3 −2, −1 ↗ LB,i(3)  1
32 LB ↖ −4, 1 /3 B(3)

B(2) −/2 −1, −1 ↗ LB,i(2)  1
22 LB ↖ −3, 1 /2 B(2)

B(1) 0  0 , −1 ↗ LB,i(1)  1
12 LB ↖ −2, 1 1 B(1)

Fig3 zero spin particles are formed by the fusions of other spin particles

B(3) −/3 −2, −1 ↖ LB,f(3)  1
32 LB ↗ −4, 1 /3 B(3)

B(2) −/2 −1, −1 ↖ LB,f(2)  1
22 LB ↗ −3, 1 /2 B(2)

B(1) 0  0 , −1 ↖ LB,f(1)  1
12 LB ↗ −2, 1 1∗ B(1)

fissions B

1 −1

B(3) 0 −2, 1 ↗ LB,i(3)  1
32 LB ↖ −4, −1 0 B(3)

B(2) 0 −1, 1 ↗ LB,i(2)  1
22 LB ↖ −3, −1 0 B(2)

B(1) 0  0 , 1 ↗ LB,i(1)  1
12 LB ↖ −2, −1 0 B(1)

Fig4 other spin particles are released by the fissions of zero spin particles

LB,f(3) ≡ BL,3
⊙
−2, −1; −4, 1  BR,3 −2, −1; −4, 1 (25.1)

LB,i(3) ≡ BL,3
⊙
−2, 1; −4, −1  BR,3  0, 1; −4, −1 (25.2)

LB,f(2) ≡ BL,2
⊙
−1, −1; −3, 1  BR,2 −1, −1; −3, 1 (26.1)

LB,i(2) ≡ BL,2
⊙
−1, 1; −3, −1  BR,2 −1, 1; −3, −1 (26.2)

LB,f(1) ≡ BL,1
⊙
 0 , −1; −2, 1  BR,1  0 , −1; −2, 1 (27.1)

LB,i(1) ≡ BL,1
⊙
 0 , 1; −2, −1  BR,1  0 , 1; −2, −1 (27.2)

LB  −2 diag {...102, 82, 62, 42, 22, 02, 22, 42, 62, 82, 102, ,...} (28)



4) Spin Interactions between Higgs Bosons and Gravitons
d) To return to the case of scalar product of right-hand-to-right-hand

particles, AR I AR, because we could get no-trivial spin-coupling interactions
between 0 zero spin particle and 2 spin particle. Here two groups of ,
Group-C and Group-D. are given. Analogously, illustration by example of the
feature D(1) of Group-D as follows：

Formulas (29.1) (29.2) and formulas (30.1), (30.2) are the third
compoments of initial state i and final state f of scalar spin interaction of
the first generation spin particles (l1)

Initial state
0 3 0 , 1  diag {...6, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4,...} (29.1)
2 3−3, 2  diag {...5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5,...} (29.2)

Final state
1/2 3 0 , 2  1

2 diag {...13, 11, 9, 7, 5, 3, 1, -1, -3, -5, -7,...}
(30.1)

3/2 3−3, 1  1
2 diag {... 9, 7, 5, 3, 1, -1, -3, -5, -7, -9, -11...}

(30.2)
And the conservation of the third compoment of spin angular momentums

between initial state i and final state f is obtained as (31.0)
3 0 , 1; −3, 2  3 0 , 2; −3, 1 (31.0)
ininal sum of s.a.m final sum of s.a.m

Where
3 0 , 1; −3, 2  3 0 , 1  3−3, 2 (31.1)
3 0 , 2; −3, 1  3 0 , 2  3−3, 1 (31.2)

And the conservation of scalar spin interaction about ininl state i and
final state f is obtained as (32.0)

LD,i (1)  LD,f (1)  LD (32.0)
Where

LD,i (1)  DR,1 0 , 1; −3, 2 I DR,1  0 , 1; −3, 2 (32.1)
LD,f (1)  DR,1 0 , 2; −3, 1 I DR,1  0 , 2; −3, 1 (32.2)
LD  8I0 (33)

What mentioned above is so-called fission of Higgs Boson and Graviton,
refer to Fig8.

Conservation (31.0) and conservation (32.0) imply that if initial state i
and final state f exchange places, so-called fusion of other spin particles is
given, refer to Fig7.

Fig5, Fig6 of Group-C are obtained by the analogy to those of Fig7,
Fig8 of Group-D above.



C(3) 0 −3, 0  ↖ LC,f(3)  LC 0 ↗ −9, 6 2 C(3)
C(2) 0 −2, 0  ↖ LC,f(2)  LC ↗ −6, 4 2 C(2)
C(1) 0 −1, 0  ↖ LC,f(1)  LC ↗ −3, 2 2 C(1)

0 0

fusions C

C(3) 1 −3, 6 ↗ LC,i(3)  LC ↖ −9, 0  1 C(3)
C(2) 1 −2, 4 ↗ LC,i(2)  LC ↖ −6, 0  1 C(2)
C(1) 1 −1, , 2 ↗ LC,i(1)  LC ↖ −3, 0  1 C(1)

Fig5 Higgs Boson and Graviton are formed by fusions of other spin particles

C(3) 1 −3, 6 ↖ LC,f(3)  LC ↗ −9, 0  1 C(3)
C(2) 1 −2, 4 ↖ LC,f(2)  LC ↗ −6, 0  1 C(2)
C(1) 1 −1, , 2 ↖ LC,f(1)  LC ↗ −3, 0  1 C(1)

fissions C

0 0

C(3) 0 −3, 0  ↗ LC,i(3)  LC ↖ −9, 6 2 C(3)
C(2) 0 −2, 0  ↗ LC,i(2)  LC ↖ −6, 4 2 C(2)
C(1) 0 −1, 0  ↗ LC,i(1)  LC ↖ −3, 2 2 C(1)

Fig6 other spin particles are released by fissions of Higgs Boson and Graviton

LC,f(3) ≡ CR,3
⊙
−3, 6; −9, 0  I0 CR,3 −3, 6; −9, 0  (34.1)

LC,i(3) ≡ CR,3
⊙
−3, 0 ; −9, 6 I0 CR,3 −3, 0 ; −9, 6 (34.2)

LC,f(2) ≡ CR,2
⊙
−2, 4; −6, 0  I0 CR,2 −2, 4; −6, 0  (35.1)

LC,i(2) ≡ CR,2
⊙
−2, 0 ; −6, 4 I0 CR,2 −2, 0 ; −6, 4 (35.2)

LC,f(1) ≡ CR,1
⊙
−1, 2; −3, 0  I0 CR,1 −1, 2; −3, 0  (36.1)

LC,i(1) ≡ CR,1
⊙
−1, 0 ; −3, 2 I0 CR,1 −1, 0 ; −3, 2 (36.2)

LC  8I0 (37)



D(3) 0 −2, 1 ↖ LD,f(3)  LD ↗ −9, 6 2 D(3)
D(2) 0 −1, 1 ↖ LD,f(2)  LD ↗ −6, 4 2 D(2)
D(1) 0  0 , 1 ↖ LD,f(1)  LD ↗ −3, 2 2 D(1)

1 0

fusions D

D(3) 5/6 −2, 6 ↗ LD,i(3)  LD ↖ −9, 1 7/6 D(3)
D(2) 3/4 −1, 4 ↗ LD,i(2)  LD ↖ −6, 1 5/4 D(2)
D(1) 1/2  0 , 2 ↗ LD,i(1)  LD ↖ −3, 1 3/2 D(1)

Fig7 Higgs Boson and Graviton are formed by fusions of other spin particles

D(3) 5/6 −2, 6 ↖ LD,f(3)  LD ↗ −9, 1 7/6 D(3)
D(2) 3/4 −1, 4 ↖ LD,f(2)  LD ↗ −6, 1 5/4 D(2)
D(1) 1/2  0 , 2 ↖ LD,f(1)  LD ↗ −3, 1 3/2 D(1)

fissions D

1 0

D(3) 0 −2, 1 ↗ LD,i(3)  LD ↖ −9, 6 2 D(3)
D(2) 0 −1, 1 ↗ LD,i(2)  LD ↖ −6, 4 2 D(2)
D(1) 0  0 , 1 ↗ LD,i(1)  LD ↖ −3, 2 2 D(1)

Fig8 other spin particles are released by fissions of Higgs Boson and Graviton

LD,f(3) ≡ DR,3
⊙
−2, 6; −9, 1 I0 DR,3 −2, 6; −9, 1 (38.1)

LD,i(3) ≡ DR,3
⊙
−2, 1; −9, 6 I0 DR,3 −2, 1; −9, 6 (38.2)

LD,f(2) ≡ DR,2
⊙
−1, 4; −6, 1 I0 DR,2 −1, 4; −6, 1 (39.1)

LD,i(2) ≡ DR,2
⊙
−1, 1; −6, 4 I0 DR,2 −1, 1; −6, 4 (39.2)

LD,f(1) ≡ DR,1
⊙
 0 , 2; −3, 1 I0 DR,1  0 , 2; −3, 1 (40.1)

LD,i(1) ≡ DR,1
⊙
 0 , 1; −3, 2 I0 DR,1  0 , 1; −3, 2 (40.2)

LD  8I0 (41)



5) Conclusions
LA(l) and LB(l) in paragraph 3), which construct self-actions of zero spin

particles, could be thought of as the Lagrangian function of Higgs Boson in
quantum quantum field. Further research could show that such kind of
mechanism may lead to the change of symmetry breaking in the Standard Model.
LC(l) LD(l) in paragraph 4), which construct creation and annihilation

between 0 zero spin particles and 2 spin particle, may be able to
dectect the existent of graviton from the ‘particulate’ nature of gravitation
experimentally, comparative study, wavelike properties of gravitation have been
exhibited [5]

References
[1] Higgs, Peter

Broken Symmetries and the Masses of Gauge Bosons Physical
Review Letters 13 (16) 508–509
Bibcode:1964 PhRvL..13..508H. doi:10.1103/PhysRevLett. 13.508
(1964)
European particle physics laboratory, CERN, (2012)

[2] ShaoXu Ren
Advanced Non-Euclidean Quantum Mechanics

ISBN 978-7-80703-585-4 (2006)
The Third Kind of Particles

ISBN 978-7-900500-91-5 (2011)
ISBN 978-988-15598-9-0 (2012)
ISBN 988-3-659-17892-4 (2012)

The Third Kind of Particles
Journal of Modern Physics, 5, 800-869
http:/dx.doi.org/10.4236/jmp.2014.59090

[3] ShaoXu Ren
The Origins Of Spins Of Elementary Particles

ISBN 978-988-13649-7-5 (2014)
The Origins of Bosons and Fermions

Journal of Modern Physics, 5, 1848-1879
http:/dx.doi.org/10.4236/jmp.2014.517181

[4] ShaoXu Ren
Interaction of the Origins of Spin Angular Momentum

ISBN 978-988-14902-0-9 (2016 2nd edition)
[5] LIGO, LSC (2016)
[6] ShaoXu Ren

Faster Than Velocity Of Light ( Infinite Dimensional Lorentz Group
Of TKP ) ISBN 978-988-12266-2-4 (2013)



6) Appendix: Higgs Boson Wave Differential Equation of First Order
and Klein–Gordon Wave Differential Equation

e) Using math elements  j , k in STS [4], the Hamiltonians of the first
order and the second order linear wave differential equantions of 0 spin
zero particles, (Higgs Boson) are written as the following：

H j , j  l l  { H j , j  l l  3m } (A–1)
H j , j  l ; k , k  l l  H j , j  l lH k , k  l l (A–2)

H j , j  l l in (A–1) is kinectic energy. There are many combinations in
(A–2), which made by various choise of j and k.

For clarity, here l  1 and omitting the mark " 1 " in above expressions.
Then, taking j  k  −1 in cases of (A–1) and (A–2). getting below：

For (A–1) H −1 , 0  1 −1 , 0  P (A–3)

and first order wave differential equantions of 0 spin zero particle

0 { i∂t − 1 −1 , 0  P − 3m } −1 , 0  0 (A–4)

For (A–2) H −1 , 0 ; −1 , 0  H −1 , 0
2  m2 (A–5)

and second order wave differential equantions of 0 spin zero particle

0 { ∂tt
2  H −1 , 0

2  m2 } −1 , 0  0 (A–6)

To make it clearer, we consinder the diagonal terms of (A–5) and have：

diagonal {H −1 , 0
2 } (A–7)

 diag{, –25/2, –16/2, –9/2, –4/2, –1/2, 0, –1/2, –4/2, –9/2, –16/2, –25/2, }P1
2

 diag{, –25/2, –16/2, –9/2, –4/2, –1/2, 0, –1/2, –4/2, –9/2, –16/2, –25/2, }P2
2

 diag{, 25, 16, 9, 4, 1, 0, 1, 4, 9, 16, 25, }P3
2

(A–8)
 { − 1

2 {P1
2  P2

2}  P3
2 }0

20 (A–9)

0
20  diag{, 52, 42, 32, 22, 12, 02, 12, 22, 32, 42, 52, } (A–10)

(A–9) indicates

{ − 1
2 {P1

2  P2
2}  P3

2 } ⊂ diagonal {H −1 , 0
2 ; 0 spin } (A–11)

and
{ ∂tt

2  1
2 {∂xx

2  ∂yy
2 } − ∂zz

2  m2 }diagonal; −1 , 0  0 (A–12)



f) The Hamiltonians of the first order and the second order linear
differential equantions of /2 spin Fermion particles are written as
following：

H j , j − 2l l  { H j , j − 2l l  3m } (A–13)
H j , j − 2l ; k , k − 2l l  H j , j − 2l lH k , k − 2l l (A–14)

Accordingly, taking j  k  0 in case of (A–13) and (A–14), we get：

For (A–13) H0 , −2  210 , −2  P (A–15)
and first order wave differential equantions of /2 spin particle

/2 { i∂t − 210 , −2  P − 3m }0 , −2  0 (A–16)

For (A–14) H 0 , −2 ; 0 , −2  H 0 , −2
2  m2 (A–17)

and second order wave differential equantions of /2 spin particle

/2 { ∂tt
2  H 0 , −2

2  m2 } 0 , −2  0 (A–18)

Taking out the diagonal terms from (A–17) and have：
diagonal {H 0 , −2

2 } (A–19)

 diag{, –39, –23, –11, –3, 1, 1, –3, –11, –23, –39, –59, }P1
2

 diag{, –39, –23, –11, –3, 1, 1, –3, –11, –23, –39, –59, }P2
2

 diag{, 81, 49, 25, 9, 1, 1, 9, 25, 49, 81, 121, }P3
2

(A–20)
Now, we see the two terms (A–21) in the center part of diagonal

{H 0 , −2
2 } (A–20), is just the square sum HDirac

2 of kinectic energy of
well-known Dirac equation of second order.

{HDirac
2 }  diag{..., 1, 1, ...}{P1

2  P2
2  P3

2} ⊂ diagonal {H 0 , −2
2 }

(A–21)
Or

{HDirac
2 }  {HKG}  −∇2 ⊂ diagonal {H 0 , −2

2 ; /2 spin } (A–22)

And contrast with (A–11), we get
{HDirac

2 }  {HKG}  −∇2  diagonal {H −1 , 0
2 ; 0 spin } (A–23)

Formula (A–22) and (A-23) mean：−∇2 is a subset of H 0 , −2
2 , not a set

of H −1 , 0
2 . So Klein-Gordon Equation

{ 2∂tt
2 − c22∇2  m2c4 }KG  0 (A–24)

{  − 2 }KG  0 (A–25)
  ∇2 − ∂tt

2/c2,   mc/ (A–26)
is closer to /2 spin Fermion particle, rather than 0 spin Boson particle.
It is more reasonable to use equation (A–4), equation (A–6) to describe

zero spin Boson particle (Higgs Boson) than to use Klein Gordon equation.



g) For Vacuum Spin particle, VSP, –/2 negative one-second fermion
particle, its Hamiltonians of the first order and the second order linear wave
differential equantions are written as the following：

H j , j l  { H j , j l  3m } (A–27)
H j , j ; k , k l  H j , j lH k , k l (A–28)

Taking j  k  0 in case of (A–27) and (A–28), we get：

For (A–27) H0 , 0  210 , 0  P (A–29)

and first order wave differential equantions of –/2 spin particle

–/2 { i∂t − 210 , 0  P − 3m }0 , 0 ; VSP  0 (A–30)

For (A–28) H 0 , 0 ; 0 , 0  H 0 , 0
2  m2 (A–31)

and second order wave differential equantions of –/2 spin particle

–/2 { ∂tt
2  H 0 , 0

2  m2 }0 , 0 ; VSP  0 (A–32)

Taking out the diagonal terms from (A–31) and have：
diagonal {H 0 , 0

2 } (A–33)

 diag{, –61, –41, –25, –13, –5, –1, –1, –5, –13, –25, –41, }P1
2

 diag{, –61, –41, –25, –13, –5, –1, –1, –5, –13, –25, –41, }P2
2

 diag{, 121, 81, 49, 25, 9, 1, 1, 9, 25, 49, 81, }P3
2

(A–34)

Now turn to the two terms (A–35) in the center part of diagonal {H 0 , 0
2 }

{HVSP }  diag{..., 1, 1, ...}{–P1
2 − P2

2  P3
2} ⊂ diagonal {H 0 , 0

2 }

(A–35)
and have wave equation of VSP, (–/2 spin fermion particle)

{ ∂tt
2  ∂xx

2  ∂yy
2 − ∂zz

2  m2 }VSP  0 (A–36)

h) Next we shall discuss the solutions 0 ≡  j , 0
m0 of zero mass particle

differential equantions of First Order, which are based on free −/2 VSP
particle (A–30), free 0 zero spin particle (Higgs Boson) (A–4), free /2
Dirac spin particle (A–16). Which are given as below：

−/2 { i∂t − 2 0 , 0  P } 0 , 0 ; VSP
0  0 (A–37)

0 { i∂t −  −1 , 0  P } −1 , 0 ; Higgs Boson
0  0 (A–38)

/2 { i∂t − 2 0 , −2  P } 0 , −2 ; Dirac
0  0 (A–39)



Notation：
E  E   p , p  p1

2  p2
2  p3

2 (A–40)

h1) For free −/2 VSP zero mass particle (A–37)
 0 , 0 ; VSP

0  F 0 , 0 e−iEt (A–41)
Getting

Fp； 0 , 0 e−iEt F−p； 0 , 0 e−iE−t



− p − p35 /p5

 p − p34 /p4

− p − p33 /p3

 p − p32 /p2

− p − p31 /p1

 p − p30 /p0

 p  p30 /p−0

− p  p31 /p−1

 p  p32 /p−2

− p  p33 /p−3

 p  p34 /p−4

− p  p35 /p−5

e−iEt 

 p  p35 /p5

 p  p34 /p4

 p  p33 /p3

 p  p32 /p2

 p  p31 /p1

 p  p30 /p0

 p − p30 /p−0

 p − p31 /p−1

 p − p32 /p−2

 p − p33 /p−3

 p − p34 /p−4

 p − p35 /p−5

e−iE−t

(A–41.1) (A–41.2)

Fp; 0 

− tan5/2 e−i5

 tan4/2 e−i4

− tan3/2 e−i3

 tan2/2 e−i2

− tan1/2 e−i

 ei0

F−p; 0 

 cot5/2 e−i5

 cot4/2 e−i4

 cot3/2 e−i3

 cot2/2 e−i2

 cot1/2 e−i

 ei0

Fp; 0 

 ei0

− cot1/2 ei

 cot2/2 ei2

− cot3/2 ei3

 cot4/2 ei4

− cot5/2 ei5

F−p; 0 

 ei0

 tan1/2 ei

 tan2/2 ei2

 tan3/2 ei3

 tan4/2 ei4

 tan5/2 ei5

(A–41.3) (A–41.4)

VSP particle Fp； 0 , 0  Fp; 0  Fp; 0 (A–41.5)
F−p； 0 , 0  F−p; 0  F−p; 0 (A–41.6)



h2) For free 0 zero spin zero mass particle (Higgs Boson) (A–38)

 −1 , 0 ; HB
0  F −1 , 0 e−iEt (A–42)

Getting
p ； −1 , 0 ; HB

0 −p ； −1 , 0 ; HB
0



− p − p34 p/p5

 p − p33 p/p4

− p − p32 p/p3

 p − p31 p/p2

− p − p30 p/p1

 p ∓ p30 p0/p0

− p  p30 p/p−1

 p  p31 p/p−2

− p  p32 p/p−3

 p  p33 p/p−4

− p  p34 p/p−5

e−iEt 

 p  p34 p/p5

 p  p33 p/p4

 p  p32 p/p3

 p  p31 p/p2

 p  p30 p/p1

 p  p30 p0/p0

 p − p30 p/p−1

 p − p31 p/p−2

 p − p32 p/p−3

 p − p33 p/p−4

 p − p34 p/p−5

e−iE−t

(A–42.1) (A–42.2)



− tan4/2 e−i5

 tan3/2 e−i4

− tan2/2 e−i3

 tan1/2 e−i2

− e−i

sin 
− ei

 cot 1/2 ei2

− cot 2/2 ei3

 cot 3/2 ei4

− cot 4/2 ei5

e−iEt 

 cot4/2 e−i5

 cot3/2 e−i4

 cot2/2 e−i3

 cot1/2 e−i2

 e−i

sin 
ei

 tan 1/2 ei2

 tan 2/2 ei3

 tan 3/2 ei4

 tan 4/2 ei5

e−iE−t

(A–42.3) (A–42.4)

There are two singularities at   0, and  in the above two
expressions. Obviously, some uncertainties of choise of free 0 zero spin
zero mass wavefunction should be addressed. Here (A–42.3) and (A–42.4)
are only an investigation.



h3) For free /2 Dirac spin zero mass particle (A–39)
 0 , −2 ; Dirac

0  F 0 , −2 e−iEt (A–43)
Getting

p ； 0 , −2 ; Dirac
0 −p ； 0 , −2 ; Dirac

0



......
 p  p34 / p4

 p  p33 / p3

 p  p32 / p2

 p  p31 / p1

 p  p30 /p0

 p − p31 / p−1

 p − p32 / p−2

 p − p33 / p−3

 p − p34 / p−4

 p − p35 / p−5

.....

e−iEt , 

......
− p − p35 / p5

 p − p34 / p4

− p − p33 / p3

 p − p32 / p2

− p − p31 / p1

 p ∓ p30 / p0

− p  p31 / p−1

 p  p32 / p−2

− p  p33 / p−3

 p  p34 / p−4

......

e−iE−t

(A–43.1) (A–43.2)



......
cot4/2 cos /2 e−i4

cot3/2 cos /2 e−i3

cot2/2 cos /2 e−i2

cot1/2 cos /2 e−i

cos /2
sin /2 ei

tan1/2 sin /2 ei2

tan2/2 sin /2 ei3

tan3/2 sin /2 ei4

tan4/2 sin /2 ei5

.....

e−iEt , 

......
− tan4/2 sin /2 e−i5

 tan3/2 sin /2 e−i4

− tan2/2 sin /2 e−i3

 tan1/2 sin /2 e−i2

− sin /2 e−i

cos /2
− cot1/2 cos /2 ei

 cot2/2 cos /2 ei2

− cot3/2 cos /2 ei3

 cot4/2 cos /2 ei4

.....

e−iE−t

(A–43.3) (A–43.4)
The two elements in the centers of the above expressions are just the

spin wavefunction representation of operator   n of /2 Dirac spin in two
dimensional spin space in traditional quantum machenics.

p ；Dirac
0 −p ；Dirac

0


cos /2

sin /2 ei
, 

− sin /2 e−i

cos /2
(A–43.5) (A–43.6)



i) Finally we digress slightly, to tackle the situations of the velocity of
light, because light speed is related to spin angular momentum in STS.

i1) The special case of P1  P1  0 for non-zero mass particle Second
Order differential equantions –/2 (A-32), VSP particle, zero spin particle
(Higgs Boson) (A-6), /2 Dirac spin particle (A–18) are given below：

−/2 { E2  0 , 0
2 ∂zz

2 − m2 } 0 , 0 ; VSP  0 (A–44)
0 , 0

2  diag{, 121, 81, 49, 25, 9, 1, 1, 9, 25, 49, 81, }

0 { E2  −1 , 0
2 ∂zz

2 − m2 }  −1 , 0 ; Higgs Boson  0 (A–45)
−1 , 0

2  diag{, 25, 16, 9, 4, 1, 0, 1, 4, 9, 16, 25, }

/2 { E2  0 , −2
2 ∂zz

2 − m2 }  0 , −2 ; Dirac  0 (A–46)
0 , −2

2  diag{, 81, 49, 25, 9, 1, 1, 9, 25, 49, 81, 121, }

getting [2]

ES|j−k|
   m2c4  i , j

2 c2P3
2 ≥ m2c4  c2P3

2 (A–47)

Photon velocity in multi-level universes world is quantized：the limiting
speed of particle with zero mass m  0, could be greater than c

CS|j−k|  i , j c  1c, 2c, 3c, 4c, . . . or 1c, 3c, 5c, 7c, . . . ≥ c, (A–48)

i2) Lorentz Group Operators are constructed by six 44 dimensional
matrices : J1, J2, J3 and K1, K2, K3

J1 

0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

, J2 

0 0 0 0
0 0 0 i
0 0 0 0
0 −i 0 0

, J3 

0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

(A–49)

K1 

0 i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

, K2 

0 0 i 0
0 0 0 0
i 0 0 0
0 0 0 0

, K3 

0 0 0 i
0 0 0 0
0 0 0 0
i 0 0 0

(A–50)

K3  i ∂
∂3

L3|  3  0  i ∂
∂3

Ch  0 0 Sh 
0 1 0 0
0 0 1 0

Sh  0 0 Ch 

|  3  0 (A–51)

L3 is the familiar expression of Einstein special relativity.



Using infinite dimensional spin augular momentum operators −2 , 1

(1: −2 , 1, 2: −2 , 1, 3: −2 , 1) of 1 spin boson particle, we could get six infinite
dimensional matrices J1, J2, J3 and K1, K2, K3 of Lorentz Group Operators.
Among them, matrix K3 is shown below

K3  K3 

             
 0 0 0 0 5i 
 0 0 0 0 4i 
 0 0 0 0 3i 
 0 0 0 0 2i 
 0 0 0 i 
 0 0 0 0 
 0 0 0 0 
 i 0 0 0 
 2i 0 0 0 0 
 3i 0 0 0 0 
 4i 0 0 0 0 
 5i 0 0 0 0 
             

(A–52)

Or

K3  K3 

             
 0 0 0 0 5 
 0 0 0 0 4 
 0 0 0 0 3 
 0 0 0 0 2 
 0 0 0 1 
 0 0 0 0 
 0 0 0 0 
 −1 0 0 0 
 −2 0 0 0 0 
 −3 0 0 0 0 
 −4 0 0 0 0 
 −5 0 0 0 0 
             

(A–53)

Take note of (A–52) and (A–53), they are two different types of
Non-Hermitian operators, antisymmetrical matrices, base on them, proceed
as follows

L3  L3 (A–54)



From (A–57), some curious spectacles that similar to (A–48) are emerged
[6] ：

For (A–52) , For (A–53)

L3
00 

Ch  Sh 
Sh  Ch 

， L3
00 

Sech  −Th 
Th  Sech 

L3
01 

Ch 2 Sh 2
Sh 2 Ch 2

， L3
01 

Sech 2 −Th 2
Th 2 Sech 2

L3
02 

Ch 3 Sh 3
Sh 3 Ch 3

， L3
02 

Sech 3 −Th 3
Th 3 Sech 3

.....  ................ .....  ................
(A–55) (A–56)

Then, Einstein Special Relativity is extended to the following so-called ：

Worm Hole Special Relativity in Multi-Level Universes World：[6]

x0, j
′

x3, j
′

 L3
0, j

x0, j

x3, j
(A–57)

For (A–55), have: , For (A–56), have
x0
′  Ch  x0  Sh  x3 , x0

′  Sech  x0 − Th  x3

x3
′  Sh  x0  Ch  x3 , x3

′  Th  x0  Sech  x3

  , 2, 3, . . . ,   , 2, 3, . . .
(A–58) (A–59)

and
Sh    (A–58.1) , Th    (A–59.1)
Ch    (A–58.2) , Sech    (A–59.2)
Th    (A–58.3) , Sh    (A–59.3)

Ch2  − Sh2   1 (A–58.4) , Sech2   Th2   1 (A–59.4)

j) Spin Topological Space STS is the space that could discribe and help
people understand how the transitions of particle spins, between various types
of spin particles, are happening. Before this, the concepts of physics and
math about these transitions were indistinct and blurred.

To appreciate the beauty and subtlety of STS, the FIG. below is essential.






