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Abstract 
The extraction of various reserves is one of the most important measures that guarantee insur-
ance companies’ solvency. Accurate assessment of non-life insurance claim reserves needs to con-
sider the volatility risks of inflation. This paper presents a stochastic model of claim reserves in-
cluding inflation factor and diagonal effects. By applying this model, we can predict the values of 
the claim reserves and evaluate predicting risks. Through analyzing actual data and using the 
bootstrap method, we can compare Bornhuetter-Ferguson method involving diagonal effects with 
chain ladder method. It is shown that the former is more efficient and robust than the latter. 
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1. Introduction 
In insurance industries, inflation can be divided into two categories: economic inflation and claim inflation. The 
latter’s impact on claim reserves estimations is more complicated than the former. In actuarial literature, there 
are few studies on the inflation’s impacts on claim reserves estimations. Economic inflation can be quantified by 
CPI, etc. However, it is difficult to estimate the fluctuations risk on prediction of claim reserves resulting from 
claims inflation. 

It is pointed out in David [1] that in calculation of the loss reserve variance, inflation index should be ex-
tracted theoretically from insurance loss data itself, but actual insurance data are not stable enough to provide a 
credible evaluation; therefore, external factors should be applied to characterize the inflation index. 
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A model with diagonal effects depicting the effects of economic inflation was established in Rietdorf [2] of 
the form, 

2, .ij i j i j ij i j i jEX VXα β δ ϕα β δ+ += =  

It should be noted that diagonal effects jδ  come from two aspects: one is economic inflation expressed as a 
relevant price index which implies that claim payments are related to the calendar time; the other is the claims 
inflation. This factor, generally speaking, comes from legal issues and the compensation way.  

In Kuang [3] [4] the claim inflation is assumed to satisfy,  
, .ij i j i j ij i j i jEX VXα β δ ϕα β δ+ += =  

We cannot tell whether the economic inflations or the claims inflation lead to the changes along the diagonal, 
just from diagonal, just from the run-off triangle. To solve this problem, two different models are proposed in 
Jessen and Rietdorf [5]. Let iT  take places of iα , where iT  is considered known; we can reduce the number 
of unknown parameters in above models and derive the unique solutions. Further, through the following models 
we can determine the value of parameter c. When c = 0 the change is caused by claim inflation; when c = 1 the 
change is caused by economic inflation; other cases are caused by both. 

A Bornhuetter-Ferguson type method including diagonal effects is given by, 

, c
ij i j i j ij i j ijEX T VX EXβ δ ϕδ+ += =  

where the exposure parameters 0,1 ,iT i m> ≤ ≤  and 10,1,
2

c  ∈ 
 

 are assumed to be known. 

1, , , mϕ β β  and 1 2 1, , mδ δ −  are positive unknown constants which satisfy 
1

0
1.

m

j
j
β

−

=

=∑  

A credibility model including diagonal effects is given by, 
1, .i i i iE T V Tξ −Θ = Θ =  

( ) ( ) ( )| , | | .c
ij i i j i j ij i i j ij iE X V X E Xβ δ ϕδ+ +Θ = Θ Θ = Θ  

They choose { }0,1,1 2c∈  for reasons: c = 0 corresponds to claims inflation; c = 1 corresponds to economic 
inflation; c = 1/2 is chosen in a situation where both effects have an impact on data. 

However the specific choice of c is based on intuition as well as plots of residuals îje  which contain so much 
randomness and the range of value c is not accurate enough. 

This paper uses the model structure similar to the one in Jesson and Rietdorf [5] (a Bornhuetter-Ferguson me-
thod including diagonal effects). The differences lie in our model which expands the value of c on {0; 1/4; 1/2; 
3/4; 1} and changes the method of choosing c. Instead of checking the residuals plots for each c, we take the c 
under which the coefficient of variation is minimum of yearly claims reserving. 

The reason why we change the method of choosing c is actually the plotted points ( ) ( ), , ,îj mj i je ∈Α  for 
each c are almost the same. All the residuals can be taken as independent identically distributed. What’s more, 
coefficient of variation and standard deviation of reserve estimators are important indicators to evaluate estima-
tors’ accuracy. 

This article uses VBA to analyze actual data and simulate estimators’ statistical characteristics. The results 
show that by applying bootstrap method, Bornhuetter-Ferguson method with diagonal effects is more effective 
and efficient than chain ladder method when predicting claim reserves. 

2. Extended Bornhuetter-Ferguson Model including Diagonal Effects 
Let ijX  be the observable incremental claims, which occurs in accident year i and development year j. Denote  

( ){ }: , ,m ij mX i j∆ = ∈Α  where ( ){ }0, :1 .m i j i j mΑ = ∈ × ≤ + ≤   

Let   be the set of natural numbers, 0  be the set of positive integers and m the calendar year. Write 
( ){ }0, : , 1 .m i j i m j mΒ = ∈ × ≤ ≤ −   
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With data ( ), ,ij mX i j ∈Α  we can make predictions of ( ), , \ij m mX i j ∈Β Α  which are unobservable random 
variables at time m. We can see the detail in Figure 1. 

As a technical basis for prediction we consider a model for ( ), ,ij mX i j ∈Β . The model requires 
( ), ,ij mX i j ∈Β  are mutually independent and satisfy the condition: 

E ,ij i j i jX T β δ +=                                         (1) 

V E ,c
ij i j ijX Xϕδ +=                                        (2) 

where 0,1iT i m> ≤ ≤  are row effects which will be represented by yearly exposure measures.  
,1 2 1j j mδ ≤ ≤ −  are the exogenous indexes which related to inflation. 0 1, , , mϕ β β −  and 1 2 1, , mδ δ −  are 

positive unknown constants. Satisfy, 
1

0
1

m

j
j
β

−

=

=∑                                            (3) 

The value of c quantifies claims inflation and economic inflation’s effect on claims reserving estimation,  
1 1 30, , , ,1
4 2 4

c  ∈ 
 

 is assumed to be known. 

c = 0 corresponds to claims inflation; c = 1 corresponds to economic inflation; c = 1/4, 1/2, 3/4 corresponds to 
the ratio of the effects of claims inflation and economic inflation on claims reserving estimation. 

3. Solving Proportionality Value βi and Estimating Exogenous Index δi+j 
3.1. Separation Method 
We can know from Taylor [6] that if we assume the conditions affecting individual claim sizes remained con-
stant, then the ratios of average claim amount paid in development year k per claim with year of origin i would 
have an expected value jγ  which is independent of i. With further assumption if claims cost of a particular de-
velopment year is proportional to some indexes which relate to the year of payment rather than the year of origin, 
the expected claims cost of development year j per claim with year of origin i is j i jγ λ +  where kλ  is exogen- 

ous index appropriate to year of payment k satisfy 
0

1.
k

j
j
γ

=

=∑  These expected values then form the following  

run-off triangle. 

The corresponding value in triangle denoted by observed values ij
ij

i

X
S

n
=  where in  = number of claims  

settled in development year o + estimated number of claims outstanding at end of development year o (both in 
respect of year of origin i). From Figure 2 we can derive the following results. 

Sum along the diagonal involving kλ , obtain 
 

 
Figure 1. Details to predict ( ), , \ .ij m mX i j ∈Β Α                                      
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Figure 2. Run-off triangle.                                                   

 
( )0 1 .k k k kd λ γ γ γ λ= + + ⋅ ⋅ ⋅ + =  

Thus estimate of kλ  is k̂ kdλ = . Sum along the next diagonal, the result is  

( ) ( )1 1 0 1 1 1 1 .k k k k kd λ γ γ γ λ γ− − − −= + + + = −  

kν  is the sum of the column of the triangle involving kγ . So 
.k k kν γ λ=  

ˆ .ˆ
k

k
k

νγ
λ

=  

Now, 
1

1
ˆ .

ˆ1
k

k
k

dλ
γ
−

− =
−

 

This procedure can be repeated, leading to the general solution: 

1 1

ˆ
ˆ ˆ ˆ1

h
h

k k h

dλ
γ γ γ− +

=
− − − ⋅ ⋅ ⋅ −

 

1

ˆ ˆ ˆ ˆ
j

j
j j k

ν
γ

λ λ λ+

=
+ + ⋅ ⋅ ⋅ +

 

where hd  is the sum along the (h + 1)-th diagonal and kν  is the sum down the (k + 1)-th column. 

From (1) we have ,ij
j i j

i

EX
T

β δ +=  let jβ  replaces jγ , i jδ + replaces i jλ + , ij

i

EX
T

 replaces ij
ij

i

X
S

n
= . We  

can solve out jβ  and i jδ + . 

3.2. Total Marginal Principal 
In classification system, it requires the sum of pure insurance cost is equal to the sum of the corresponding ex-
perience compensation cost under different level of classification variables, i.e., the marginal sum of estimations 
equals to the marginal sum of observations. 

Make a transformation ,i j j
ij

i j

X
X

T
−

−

= . Then ij i j i jEX T β δ +=  is in the form of, 

, 1 , 0 1.ij j jEX i m j iβ δ= ≤ ≤ ≤ ≤ +  

Based on total marginal principal we can derive that, 
1 1

0 0

ˆ ˆ , 1 ,
i i

i j ij
j j

X i mδ β
− −

= =

= ≤ ≤∑ ∑   
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1 1

ˆ ˆ , 0 1.
m m

j i ij
i j i j

X j mβ δ
= + = +

= ≤ ≤ −∑ ∑ 

 

Put 
1

0

ˆ 1
m

j
j
β

−

=

=∑ , then 
1 1 0 0 1 0 1

ˆ ˆ
m m k k m k m

ik ij ij j i
i k i k j j i k j i k

C X X β δ
= + = + = = = + = = +

 = = =   
∑ ∑ ∑ ∑ ∑ ∑ ∑    

1 1 1

, 1
1 1 0 0 1 0 1

ˆ ˆ
m m k k m k m

i k ij ij j i
i k i k j j i k j i k

C X X β δ
− − −

−
= + = + = = = + = = +

 = = =   
∑ ∑ ∑ ∑ ∑ ∑ ∑    

0 1 0 1 01
1 11

, 1
1 0 1 00 1

ˆ ˆ ˆ

ˆˆ

k m k m km

ij j i jik
j i k j i k ji k

m k m kk m

i k ij jj i
i k j i k jj i k

XC

C X

β δ β

ββ δ

= = + = = + == +
− −−

−
= + = = + == = +

 
  = = =
 
  

∑ ∑ ∑ ∑ ∑∑

∑ ∑ ∑ ∑∑ ∑





   

Finally 
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                             (4) 
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0
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0

ˆ ,1 .
ˆ

i
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j

i i

j
j

X
i mδ

β

−

=
−

=

= ≤ ≤
∑

∑



                                      (5) 

3.3. Consistency of Parameters’ Estimation 
In this section we will prove the consistency of ,j i jβ δ + . Give the proposition as following 

Proposition 3.3. If iT →∞  for all 1 i m≤ ≤  then 1 1
ˆ ,p

j jδ δ+ +→ , ˆ ,p
j jβ β→  for 0 1.j m≤ ≤ −  

Proof. Make a transformation of ( )ij i j i jE X T β δ +=  we attain, 

.ij
j i j

i

EX
T

β δ +=  

Apply Chebyshev’s inequality, if iT →∞  we have, 
1

2 2 2
1 1 1 0.

c
ij ij i j jc

j i j i j i j i j
i i i i

X X
p Var T

T T T T
ϕδ β

β δ ε ϕδ β δ
ε ε ε

+
+

+ + +

   
− ≥ ≤ ⋅ = ⋅ ⋅ ⋅ = →       

 

Namely .ij p
j i j

i

X
T

β δ +→  Use recursive schemes (3)-(5) with the continuous mapping theorem we acquire 

the desired result.
 

3.4. Prediction of Diagonal Effects 
In this subsection we predict diagonal effects , 1 2 1j m j mδ + ≤ ≤ − . 

We assume , 1j jδ ≥  obey an AR (1) process, that is, 1
ˆ ˆ .j j jδ ε δ +Γ + =  

By means of least-squares method we acquire the least square estimation of Γ , 
1

1
1

1
2

1

ˆ ˆ
ˆ

ˆ

m

j j
j

m

j
j

δ δ

δ

−

+
=

−

=

Γ =
∑

∑
                                       (6) 
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Then the predictors of ˆ , 1j j mδ ≥ +  are in the form of 
ˆ ˆ ˆ .j m

j mδ δ −= Γ                                        (7) 

As a result ( ), , \ij m mX i j ∈Β Α  are predicted by 

( ) ˆ ˆ .ij i j i jX Tµ β δ +=                                     (8) 

4. Solving Method of φ, c 
In this section we try to estimate ϕ  and determine parameter c by considering the residuals, ( )ˆ , , .ij me i j ∈Α  
Define variance structure 

( )
( )1 21

ˆ ˆ
ˆ , , A .

ˆ ˆ
ij j i j

ij m
c

i j i j

X T
e i j

T

β δ

β δ

+

+
+

−
= ∈                              (9) 

Apply the second moment method, ( )2
ij ij ijVX E X EX= −  can be estimated by 

( )
( )

2

1 0

1 2
.

m m i

ij ij
i j

X E

m

X

m

−

= =

+

−∑∑
 To-

gether with (2), we can derive 
( )
( )

2

1 0

1 2

m m i

ij ij
i j c

i j ij

X EX
EX

m m
ϕδ

−

= =
+

−
=

+

∑∑
. 

Combined (8) with (1), we can yield estimation of ϕ  

( )
2

1 01
ˆ2ˆ

m m i

ij
i j

e
m m

ϕ
−

= =

=
+ ∑∑ .                                  (10) 

The next step in the estimation procedure is to apply the bootstrap method similar to the one in England and 
Verrall [7]. It should be noticed the bootstrap method is based on the assumption that the residuals  

( )ˆ , ,ij me i j ∈Α  are Independent Identically Distributed. By random sampling with replacement we attain 
( ) , 1ije k k B∗ ≤ ≤ . 
Finally, we generate Independent Identically Distributed versions of m∆  by 

( ) ( )
2* 1 1ˆ ˆ ˆ ˆˆ ,1 .c

ij i j i j ij i j i jX k T e k T k Bβ δ ϕ β δ +
+ +

 = + ≤ ≤                           (11) 

To determine parameter c, for each 1 1 30, , , ,1
4 2 4

c  ∈ 
 

 we plot points ( ) ( )ˆ, , ,ij mj e i j ∈Α  to check which  

residual plots give the best fit to Independent Identically Distributed. Meanwhile, with all parameters being  

solved we can use (8) and ( )
1

1

ˆ ˆ , 2 13
m

i ij
j m i

R X iµ
−

= − +

= ≤ ≤∑  to estimate yearly reserve and calculate its standard  

deviations, variance coefficient. Through above two points we could make the final choice of value c. 

5. Empirical Analysis 
Our data is from Jesson and Riedorf [5] which contains 13 years run-off for a portfolio of third-party liability for 
auto insurance. The data is shown in incremental form in Table 1. 

In the model we assume that row effects 0,1iT i m> ≤ ≤  are known and represented by yearly exposure 
measures given in Table 2. 

The estimators of the parameters 1, , 0 12,j j jβ δ + ≤ ≤  are shown in Table 3. 
Now, we should predict 13 , 1.j jδ + ≥  
Firstly, take unit root/stationarity test to , 1jz jδ= ≥  the result is given in Table 4. 
Obviously we cannot refuse null hypothesis: z has a unit root. 
Secondly, get 1st differences of z and take unit root test. The result is given in Table 5. 
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Table 1. Incremental runs-off triangle.                                                                         

i\j 0 1 2 3 4 5 6 7 8 9 10 11 12 

1 22564 17331 17377 7723 5058 2530 1443 1195 1889 106 33 139 14 

2 22901 26734 8974 7089 3116 1911 3284 1591 879 21 575 476  

3 36152 26513 10973 6714 7155 2176 1656 1094 −89 8 115   

4 34722 29642 13593 11496 6256 6404 3900 2157 1133 25    

5 30709 28020 12465 8504 9929 5592 910 3413 1428     

6 33727 32190 13318 9211 8129 5225 2149 773      

7 30727 27677 9251 9221 6169 7492 2952       

8 32498 35446 18532 15110 13990 4986        

9 32228 42937 16231 12942 11078         

10 41947 41634 21056 15442          

11 37247 34135 19061           

12 32891 29719            

13 35993             

 
Table 2. ,1 13iT i≤ ≤  (represent by yearly exposure measures).                                                      

i 1 2 3 4 5 6 7 8 9 10 11 12 13 

Ti 85047 74409 86077 83082 83427 81557 79495 101564 95482 107062 90091 85413 81995 

 
Table 3. The estimators 1

ˆ ˆ, ,0 12.j j jβ δ + ≤ ≤                                                                     
  

 

j 0 1 2 3 4 5 6 7 8 9 10 11 12 

βj 0.316 0.29 0.132 0.094 0.072 0.043 0.022 0.016 0.01 4e−04 0.002 0.003 1e−04 

δj+1 0.839 0.844 1.333 1.127 1.114 1.123 1.233 1.109 1.181 1.386 1.303 1.419 1.38 

 
Table 4. Unit root test of Z.                                                                                    

Null hypothesis: Z has a unit root 

  t-statistic Prob.* 

Augmented Dickey-Fuller test statistic −0.0486 0.9308 

Test critical values: 1% level −4.2970  

 5% level −3.2126  

 10% level −2.7476  

*MacKinnon (1996) one-sided p-values. 
 

Then we can generate ACF and PACF plots for dz. Autocorrelation and Partial Correlation are shown in Fig-
ure 3. 

Let ,1 2 1j j mε ≤ ≤ −  be a mean zero white noise process. From Figure 3 we have ( ) .jD z ε=  
Finally we take Dicky-Fuller Test of ( )1 jz zγ ε= − +  given in Table 6. 
Though R-squared < 0, the value of coefficient approximates to 1. What’s more, we need to take estimation 

error of jδ  into consideration and construct a simple easy-to-implement model. Above all we can assume  
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Table 5. Unit root test of D(Z).                                                                                 

Null hypothesis: D(Z) has a unit root  

  t-statistic Prob.* 

Augmented Dickey-Fuller test statistic −4.9278 0.0034 

Test critical values: 1% level −4.2000  

 5% level −3.1753  

 10% level −2.7289  

*MacKinnon (1996) one-sided p-values. 
 
Table 6. Result of Dicky-Fuller test.                                                                                  

Dependent variable: Z   

Method: least squares   

Variable Coefficient Std. error t-statistic Prob. 

Z(−1) 1.024551 0.044718 22.91114 0.0000 

R-squared −0.2423 Mean dependent var 1.21266 

Adjusted R-squared −0.2423 S.D. dependent var 0.16416 

S.E. of regression 0.1829 Akaike info criterion −0.47924 

Sum squared resid 0.3682 Schwarz criterion −0.43883 

Log likelihood 3.87546 Hannan-Quinn criter. −0.49420 

Durbin-Watson stat 2.84541    

 

 
Figure 3. ACF, PACF plots.                                                          

 
, 1j jδ ≥  obey an AR (1) process. Using Equations (6) and (7) in Section 3.4, we can get  1.0245,Γ =  13 jδ +



  
13
ˆ ˆ 1.38 1.0245 , 1j

j jδ= Γ = ⋅ ≥ . 

Further, if we make the assumption that ( )20, , 1,j jε δΝ ≥ ( ) ( )
1 212

1
1

ˆ ˆ ˆˆ= 1 0.03037
m

j j
j

mδ δ δ
−

−
+

=

− − Γ =∑ . 

For each c = 0, 1/4, 1/2, 3/4, 1, we plot points ( ) ( ), ,ˆ , ,ij mj i je ∈Α  and take runs test to verified stochastic 
feature by the SPSS. Whether c = 0, 1/4, 1/2, 3/4, 1, the p-value = 0.753 > 0.05, the residual error is mutual in-
dependent. What’s more, the residual plots seem little difference. Then we compared the statistical characteristic 
parameters of reserve estimators finding in the case c = 0 the standard deviations, variance coefficient of yearly 
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reserve estimates is minimal. 

Naturally apply 
( )

2

1 01
ˆ2ˆ

m m i

ij
i j

e
m m

ϕ
−

= =

=
+ ∑∑ , we can derive c = 0, ˆ 345.1ϕ = . 

Finally we generate identically distributed versions of m∆  as following: 

( ) ( )* 1 2ˆ ˆ ˆ ˆˆ ,ij i j i j ij i j i jX k T e k Tδ ϕβ β δ+ +
 = +    

For each k we can use (7) and the notation ( ) ( )
1

1

1

ˆ , 2 13
m

i ij
j m i

R X iµ
−

= − +

= ≤ ≤∑   to predict yearly reserve estima-

tors. 
Let k = 50000, take the average of 50000 times’ claims reserve predictors as each year’s claims reserve esti-

mates. We use excel VBA to realize the procedure. 
Table 7 and Table 8 are reserve estimators and its distribution characteristics which are respectively acquired 

by B-F method including diagonal effects and chain ladder method. 
 
Table 7. Predict reserves distribution characteristics (extended B-F model).                                               

Reserve estimators for 
year i Average estimators SD CV 30% percentile 95% percentile 

i = 2 12.4861 62.2340 4.98426 −25.0720 125.0904 

i = 3 358.2152 264.7145 0.7389 211.7834 804.4639 

i = 4 607.0452 308.6017 0.5083 439.5269 1126.2124 

i = 5 677.6418 328.9206 0.4853 500.7691 1233.0226 

i = 6 1771.2861 436.2399 0.2462 1536.0599 2501.3376 

i = 7 3549.3000 559.5440 0.1576 3247.4517 4492.8169 

i = 8 9031.9073 1171.8415 0.1297 8395.3286 11017.5719 

i = 9 13242.2765 1254.3915 0.0947 12559.2142 15385.4010 

i = 10 26008.1239 2113.7126 0.0812 24844.9622 29632.0981 

i = 11 33825.8021 2557.2147 0.0755 32413.2408 38165.5719 

i = 12 48971.1816 3642.1307 0.0743 46954.1941 55176.3234 

i = 13 81483.1283 5847.1095 0.0717 78283.7712 91463.4789 

Total 219538.3945 16231.3945 0.0739 210539.4315 247309.5502 

 
Table 8. Predict reserves distribution characteristics (C-L with bootstrap method).                                         

Reserve estimators 
for year i Average estimators SD CV 30% percentile 95% percentile 

i = 2 13.8599 75.4211 5.4416 −22.7766 155.4675 
i = 3 386.1435 308.7321 0.7995 217.3350 924.6072 

i = 4 779.1104 433.8647 0.5568 541.9171 1526.4023 

i = 5 766.3500 408.6431 0.5332 543.6030 1468.2538 

i = 6 2025.7001 542.8029 0.2679 1729.3143 2960.2849 

i = 7 3598.4837 628.9708 0.1747 3248.8128 4680.8003 

i = 8 7917.7464 1019.2950 0.1287 7353.8784 9667.3938 

i = 9 13911.9135 1424.9554 0.1024 13112.9060 16367.2016 

i = 10 27083.6277 2279.9054 0.0841 25835.3500 31012.4364 

i = 11 35325.3129 2825.5943 0.0799 33765.3269 40249.2159 

i = 12 44526.3848 3953.9534 0.0888 42337.4765 51501.9350 

i = 13 84672.1491 9508.4501 0.1122 79997.1093 102394.1091 

Total 221006.7829 13601.9012 0.0615 213612.3944 244420.4966 
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Figure 4. Frequency distribution histogram for the total reserve. (Simulate with the 
50000 simulations we are able to approximate the distribution of the reserves.)           

 

 
Figure 5. Standard deviation of two methods.                                          

 
Comparing above results, we could find that applying bootstrap method on extended Bornhuetter-Ferguson 

model including diagonal effects is more conservative than chain ladder method to predict claims reserve. 
We produce a histogram for the total reserve by extended B-F model in Figure 4. In Figure 5 we give reserve 

estimator’s standard deviations with two methods. 
We could find that Bornhuetter-Ferguson method including diagonal effects’ standard deviation is smaller in 

general than chain-ladder method except the total reserve estimation. This shows extended Bornhuetter-Fergu- 
son model including diagonal effect could improve the accuracy of the estimation of claims reserve. 

6. Conclusion 
This paper introduces extended Bornhuetter-Ferguson model which is more accurate on estimating claim re-
serves than Bornhuetter-Ferguson model when considering inflation. Having comparing with the traditional 
chain-ladder method, we could conclude that it prefers to the extended Bornhuetter-Ferguson model when the 
inflation is mainly caused by claims inflation. Lacking of insurance data we cannot verify conclusion by national 
data. It is necessary to further study the case that the fluctuations risk of claim reserves is caused by economic 
inflation or the mix of economic and claims inflation. We can also take the Bayes method into consideration in 
the case which claims that priori estimate is not dependability enough. 
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