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Abstract 
We focus on the development of model selection criteria in linear mixed models. In particular, we 
propose the model selection criteria following the Mallows’ Conceptual Predictive Statistic (Cp) [1] 
[2] in linear mixed models. When correlation exists between the observations in data, the normal 
Gauss discrepancy in univariate case is not appropriate to measure the distance between the true 
model and a candidate model. Instead, we define a marginal Gauss discrepancy which takes the 
correlation into account in the mixed models. The model selection criterion, marginal Cp, called 
MCp, serves as an asymptotically unbiased estimator of the expected marginal Gauss discrepancy. 
An improvement of MCp, called IMCp, is then derived and proved to be a more accurate estimator 
of the expected marginal Gauss discrepancy than MCp. The performance of the proposed criteria is 
investigated in a simulation study. The simulation results show that in small samples, the pro-
posed criteria outperform the Akaike Information Criteria (AIC) [3] [4] and Bayesian Information 
Criterion (BIC) [5] in selecting the correct model; in large samples, their performance is competi-
tive. Further, the proposed criteria perform significantly better for highly correlated response da-
ta than for weakly correlated data. 
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1. Introduction 
With the development in data science over the past decades, people become more aware of the complexity of 

 

 

*Corresponding author. 

http://www.scirp.org/journal/ojs
http://dx.doi.org/10.4236/ojs.2016.62021
http://dx.doi.org/10.4236/ojs.2016.62021
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/


C. Wenren et al. 
 

 
240 

data in real life. Univariate linear regression models with independent identically distributed (i.i.d.) Gaussian 
errors cannot achieve good fitness for some types of data, especially for the data with observations that are cor-
related. For instance, in longitudinal data, observations are usually recorded from the same individual over time. 
It is reasonable to assume that correlation exists among the observations from the same individual and linear 
mixed models are therefore appropriately utilized for modeling such data. 

Since linear mixed models are extensively used, mixed model selection plays an important role in statistical 
literature. The aim of mixed model selection is to choose the most appropriate model from a candidate pool in 
the mixed model setting. To facilitate this task, a variety of model selection criteria are employed to implement 
the selection process. 

In linear mixed models, a number of criteria have been developed to characterize model selection. The most 
widely used criteria are the information criteria such as the AIC [3] [4] and the BIC [5]. Sugiura [6] proposed a 
marginal AIC (mAIC) which involved the number of random effects parameters into the penalty term. Shang 
and Cavanagh [7] employed the bootstrap method to estimate the penalty term of mAIC for proposing two va-
riants of AIC. For longitudinal data, a special case of linear mixed models, Azari, Li and Tsai [8] proposed a 
corrected Akaike Information Criterion (AICc). In the justification of AICc, the paper mainly handled the chal-
lenge initiated by the correlation matrix under certain conditions for the mixed models. Vaida and Blanchard [9] 
redefined the Akaike information based on the best linear unbiased predictor (BLUP) [10]-[12] for the random 
effects in the mixed models, and proposed a conditional AIC (cAIC). Dimova et al. [13] derived a series of va-
riants of the Akaike Information Criterion in small samples for linear mixed models. 

Another information criterion, BIC, can be considered as a Bayesian alternative to AIC. In linear mixed mod-
els, BIC is converted from marginal AIC by replacing the constant 2 in the penalty by ( )log N , where N is the 
sample size (mBIC) [14]. Jones [15] proposed a measure of the effective sample size to replace the sample size 
in the penalty term of BIC, leading to a new criterion BICJ. 

We note that the BIC-type information criteria are derived using Bayesian approaches. Different from that, 
the AIC-type information selection criteria are justified from the frequentist perspective and based upon the in-
formation discrepancy. However, little research has relied on other discrepancy to propose criteria including 
Mallows’ Cp [1] [2] in linear mixed models. In fact, because of dissimilar derivation, each selection criterion has 
its own advantages, and no unique selection criterion can cover all the benefits for model selection. To further 
develop the selection criteria in the mixed modeling setting, we aim to justify the Cp-type ones relying on the 
Gauss discrepancy. 

Mallows’ Cp [1] [2] in linear regression models targets to estimate the Gauss discrepancy between the true 
model and a candidate model. It serves as an asymptotically unbiased estimator of the expected Gauss discre-
pancy. Fujikoshi and Satoh [16] identified Cp in multivariate linear regression. Davies et al. [17] presented the 
estimation optimality of Cp in linear regression models. Cavanaugh et al. [18] provided an alternate version of 
Cp. The Gauss discrepancy is an L2 norm measuring the distance between the true model and a candidate model 
in linear models. To select the most appropriate model among competing fitted models, the candidate model 
leading to the smallest value of Cp is chosen. However, since the covariance matrix of linear mixed models pos-
es the challenge for the justification of selection criteria, Cp statistic in linear mixed models has not been identi-
fied. 

This paper extends the justification of Cp from linear models to linear mixed models. We first define a mar-
ginal Gauss discrepancy reflecting the correlation for measuring the distance between the true model and a can-
didate model. We utilize the assumption that under certain conditions, the estimator of the correlation matrix for 
the candidate model is consistent to that for the true correlation matrix. The marginal Cp, abbreviated as MCp. 
MCp serves as an asymptotically unbiased estimator of the expected marginal Gauss discrepancy between the 
true model and a candidate model. An improvement of MCp, abbreviated as IMCp, is also proposed and proved. 
We then justify IMCp as an asymptotically more precisely unbiased estimator of the expected marginal Gauss 
discrepancy. We examine the performance of the proposed criteria in a simulation study where we utilize vari-
ous correlation structures and different sample sizes. 

The paper is organized as follows: Section 2 presents the notation and defines the marginal Gauss discrepancy 
in the setting of linear mixed models. In Section 3, we provide the derivations of the model selection criteria 
MCp and IMCp. Section 4 presents a simulation study to demonstrate the effectiveness of the proposed criteria. 
Section 5 concludes.  
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2. Marginal Gauss Discrepancy 
In this section, we will introduce the true model, also called the generating model, and the candidate model in 
the setting of linear mixed models, then define the marginal Gauss discrepancy. 

Suppose that the generating model for the data is given by  

,o o o oy X Zbβ ε= + +                                  (2.1) 

where y denotes an N × 1 response vector, Xo is an N × po design matrix of full column rank, βo is a po × 1 un-
known vector for fixed effects. Z is an N × mr known matrix of full column rank and bo is an mr × 1 unknown 
vector for random effects, where m is the number of cases, the sample size, and r is the dimension of the random 
effects for each case. Here, ( )2~ 0,o o ob N Gσ , ( )2~ 0,o o NN Iε σ , and bo and εo are mutually independent and Go 
is a positive definite matrix and 2

oσ  is a scalar. 
We fit the data with a candidate model of the form  

,y X Zbβ ε= + +                                    (2.2) 

where X is an N × p design matrix of full column rank, β is a p × 1 unknown vector, ( )2~ 0,b N Gσ ,  
( )2~ 0, NN Iε σ , and b and ε are mutually independent. The design matrix of the random effects Z and the 

random effects b are the same as those in the generating model. The matrix G is a positive definite matrix with 
the q unknown parameters in it. 

Since the random part of the model (i.e. Zb) is not subject to selection, it is easier to use the marginal form in 
[19] of linear mixed models. Let o o oZbζ ε= + , then the generating model (2.1) can be written as  

( )2

,

~ 0, ,

o o o

o o o

y X

N

β ζ

ζ σ

= +

Σ
                                  (2.3) 

where the scaled variance T
o o NZG Z IΣ = + . 

For the candidate model (2.2), let Zbζ ε= + , we have  

( )2

,

~ 0, ,

y X

N

β ζ

ζ σ

= +

Σ
                                   (2.4) 

where the scaled variance T
NZGZ IΣ = + . Therefore, the Σ is a nonsingular positive definite matrix. 

In models (2.3) and (2.4), the terms ζo and ζ are the combinations of the random effects and errors in the mod-
el, respectively. Since they are both assumed to have mean zero, the parameters scaled variances Σo and Σ con-
tain all the information of the random effects and errors, including the correlation structures. 

We measure the distance between the true model and a candidate model by defining the marginal Gauss dis-
crepancy based on the marginal forms of models (2.3) and (2.4). The true model is assumed to be included in the 
pool of candidate models. Let θo and θ denote the vectors of parameters ( )TT , ,o o oβ σ Σ  and ( )TT , ,β σ Σ , re-
spectively. The marginal Gauss discrepancy between the true model and a candidate model is defined as  

( ) ( ) ( ){ }T 1, ,G
o od E y X y Xθ θ β β−= − Σ −  

where Eo denotes the expectation with respect to the true model. Note that the marginal Gauss discrepancy con-
tains a weight of inverse scaled variance Σ−1 into the L2 norm. Therefore, the correlation between observations is 
involved when we use the marginal Gauss discrepancy to measure the distance between the true model and a 
candidate model. 

Now let ( )Tˆ ˆ ˆˆ, ,θ β σ= Σ  denote an estimate of θ. For instance, θ̂  could be the maximum likelihood estima-
tor (MLE) or the restricted maximum likelihood estimator (REML). However, in this paper, the MLE is utilized. 
The marginal Gauss discrepancy between the true model and the fitted candidate model is defined as  

( ) ( ) ˆ
ˆ, , ,G G

o od d
θ θ

θ θ θ θ
=

=  

which can be therefore expressed as  
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( )
( ) ( ){ }
( ) ( ){ }
( ) ( ){ } ( ) ( ){ }
( ) ( ) ( )

T 1

ˆ

T 1

ˆ

T T1 1

ˆ ˆ

T2 1 1

ˆ,

ˆ ˆˆ ˆ .

G
o

o

o o o o o o o o o

o o o o o o o o o o

o o o o o o

d

E y X y X

E y X X X y X X X

E y X y X E X X X X

tr X X X X

θ θ

θ θ

θ θ θ θ

θ θ

β β

β β β β β β

β β β β β β

σ β β β β

−

=

−

=

− −

= =

− −

= − Σ −

= − + − Σ − + −

= − Σ − + − Σ −

= Σ Σ + − Σ −

        (2.5) 

We define a transformed marginal Gauss discrepancy between the true generating model and the fitted candi-
date model as a linear function of the marginal Gauss discrepancy (2.5) as  

( ) ( )2
1ˆ ˆ, ,

p

G
C o o

o

d d Nθ θ θ θ
σ

= −                              (2.6) 

Taking the expectation of the transformed marginal Gauss discrepancy (2.6), we obtain the expected trans-
formed marginal Gauss discrepancy as  

( ) ( ){ }

( ){ }
( ) ( ){ }T 1

1
2

ˆ,

ˆ ˆˆ
ˆ .

p pC o o C o

o o o o o

o o
o

E d

E X X X X
E tr N

θ θ θ

β β β β

σ

−

−

∆ =

− Σ −
= Σ Σ + −

             (2.7) 

To serve as a model selection criterion based on the expected transformed marginal Gauss discrepancy in Eq-
uation (2.7), an unbiased estimator or an asymptotically unbiased estimator will be proposed. To simplifying the 
procedure, we will first abbreviate this discrepancy in Equation (2.7). 

From expression (2.7), the expectation part in the numerator can be written as  

( ) ( ){ }T 1ˆ ˆˆ ,o o o o oE X Hy X Hyβ β−− Σ −                             (2.8) 

where ( )T 1 T 1ˆ ˆ ˆH X X X X− −= Σ Σ  is a projection matrix such that ˆ ˆX Hyβ = . To explore a further expression of 
(2.8), we need to know the properties of Ĥ . 

Theorem 1. For every Σ̂ , the matrix ( ) 1T 1 T 1ˆ ˆ ˆH X X X X
−− −= Σ Σ  satisfies the following properties:  

1) Ĥ  is idempotent.  
2) ( )ˆtr H p=  and ( )ˆ

Ntr I H N p− = − .  
The proof is given in the Appendix. 
Corollary 1. Following Theorem 1, we have:   
1) T 1 1ˆ ˆ ˆˆ ˆH H H− −Σ = Σ .  
2) ( )T 1ˆ ˆˆ 0H H I−Σ − = .  

3) ( ) ( ) ( ) ( ) ( )T T1 1 1ˆ ˆ ˆ ˆ ˆˆ ˆ ˆH I H I I H I H I H− − −− Σ − = − Σ − = Σ − .  

The proof of Corollary 1 can be easily completed following Theorem 1. 
By Corollary 1, expression (2.8) can be written as  

( ) ( ){ }
( ) ( )( ) ( ) ( )( ){ }
( ) ( ){ } ( ) ( ) ( ){ }
{ } ( ) ( ) ( ){ }

T 1

T
1

T T1 1

T 1 1

ˆ ˆˆ

ˆ ˆ ˆ ˆ ˆ ˆˆ

ˆ ˆˆ ˆ

ˆ ˆˆ ˆ .

o o o o o

o o o o o o o o o o o o o

o o o o o o o o o o

T
o o o o o o o o

E Hy X Hy X

E Hy HX HX X Hy HX HX X

E y X H y X E X H I X

E H E X I H X

β β

β β β β β β

β β β β

ζ ζ β β

−

−

− −

− −

− Σ −

= − + − Σ − + −

= − Σ − + Σ −

= Σ + Σ −

         (2.9) 
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Note that the scaled variance Σ is a function of the q unknown parameter vector of variance components γ, i.e., 
( )γΣ = Σ . Azari, Li and Tsai [8] noted that under the assumption that the set of candidate models includes the 

true model, it is reasonable to assume that the MLE γ̂  is a consistent estimator of oγ . Therefore, we can 
approximate Σ̂  by Σ, i.e., ( )ˆ 1o oΣ = Σ + . In what follows, we will make use of this approximation. 

First, since { } 0o oE ζ =  and { } 2
o o o ovar ζ σ= Σ , using the approximation ( )ˆ 1o oΣ = Σ +  and Theorem 1, we 

have the first term of (2.9) as  

{ } ( )
( )

T 1 2 1

2 2

ˆ ˆˆ ˆ

ˆ .

o o o o o

o o

E H tr H

tr H p

ζ ζ σ

σ σ

− −Σ = Σ Σ

≈ =
                           (2.10) 

Second, using the approximation ( )ˆ 1o oΣ = Σ +  again, the first term of Equation (2.7) can be simplified as  

( ){ }1ˆ .o oE tr N−Σ Σ ≈                                  (2.11) 

Using expressions (2.9), (2.10), and (2.11), ( )
pC oθ∆  in (2.7) can be therefore approximated as  

( )
( ) ( ) ( ){ }

( ) ( ) ( ){ }

T2 1

2

T 1

2

ˆˆ

ˆˆ
.

p

o o o o o o

C o
o

o o o o o

o

p E X I H X

E X I H X
p

σ β β
θ

σ

β β

σ

−

−

+ Σ −
∆ ≈

Σ −
= +

                    (2.12) 

Following Mallows’ interpretation, ( )
pC oθ∆  in (2.12) can be expressed as  

( ) 2 ,
p

p
C o P

o

B
Vθ

σ
∆ ≈ +  

where VP and Bp are respectively “variance” and “bias” contributions given by  

PV p=  

and  

( ) ( ) ( ){ }T 1 ˆˆ .p o o o o oB E X I H Xβ β−= Σ −  

We comment that increasing the number of the parameters of the fixed effects p will decrease the bias Bp for 
the fitted model, yet will increase the variance VP at the same time. The marginal Gauss discrepancy can there-
fore be considered as a bias-variance trade-off. Since a smaller value of the discrepancy indicates a smaller dis-
tance between the true model and a candidate model, the size of the Gauss discrepancy can really reflect how a 
fitted model is close to the true model. 

3. Derivations of Marginal Cp and Improved Marginal Cp 
3.1. Marginal Cp 
In this section, model selection criteria based on ( )

pC oθ∆  are developed by finding a statistic that has an ex-
pectation which equals to or asymptotically equals to the expected transformed marginal Gauss discrepancy. 

We start with the expectation of the sum of squared errors SSRes from a candidate model. In linear mixed 
models, the sum of squared errors SSRes can be written as  

( ) ( )T 1ˆ ˆˆ .ResSS y X y Xβ β−= − Σ −  

By Theorem 1 and Corollary 1, the expectation of the “scaled sum of squared error” 2
Res

o

SS
σ

 can be expressed by  
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( ) ( )

( ) ( )

( )

T 1

2 2

T 1

2

T 1

2

ˆ ˆˆ

ˆ ˆˆ

ˆˆ
,

Res
o o

o o

o
o

o
o

y X y XSSE E

y Hy y Hy
E

y I H y
E

β β

σ σ

σ

σ

−

−

−

 − Σ −   =   
    

 − Σ − =  
  
 Σ − =  
  

 

and then we have  

( ) ( )( ){ }

( ) ( )( ){ } ( ) ( )( ){ }

( ){ } ( ) ( )( ){ }

T 1

2 2

T T1 1

2 2

T 1T 1

2 2

ˆˆ

ˆ ˆˆ ˆ

ˆˆ ˆˆ
.

o o o o o o o o oRes
o

o o

o o o o o o o o o o

o o

o o o o oo o o

o o

E y X X I H y X XSS
E

E y X I H y X E X I H X

E X I H XE I H

β β β β

σ σ

β β β β

σ σ

β βζ ζ

σ σ

−

− −

−−

− + Σ − − +   = 
  

− Σ − − Σ −
= +

Σ −Σ −
= +

     (3.1) 

Similar to the derivation of Equation (2.11), the numerator of first term of Equation (3.1) is expressed as  

( ){ } ( )( )
( ) ( )

T 1 2 1

2 2

ˆ ˆˆ ˆ

ˆ .

o o o o o

o o

E I H tr I H

tr I H N p

ζ ζ σ

σ σ

− −Σ − = Σ − Σ

≈ − = −
                     (3.2) 

Then, by Equations (3.1) and (3.2), it is straightforward to construct a function 2 2Res

o

SST p N
σ

= + − , which is 

a linear combination of 2
Res

o

SS
σ

. It can be shown that the function T has the expectation  

{ } { }

( ) ( ) ( ){ }

( ) ( ) ( ){ }
( )

2 2

T 1

2

T 1

2 2

12 2

ˆ
2

.
p

Res
o o o Res

o o

o o o o o o

o

o o o o o o p
P C o

o o

SSE T E p N E SS p N

E X I H X
N p p N

E X I H X B
p V

σ σ

β β

σ

β β
θ

σ σ

−

−

 
= + − = + − 

 

Σ −
= − + + −

Σ −
= + = + ≈ ∆

 

Note that the function T is not a statistic since the parameter 2
oσ  is unknown. Here, we would like to use an 

estimator 2σ̂  to replace 2
oσ  in the function. Let *X  denote the design matrix for the largest model in the 

candidate pool with ( )* *rank X p= . We assume that ( ) ( )*C X C X⊆ . Let *
ResSS  represent the sum of squared 

errors for the corresponding fitted model and is written as  

( ) ( )T* 1
* * * * *

ˆ ˆˆ ,ResSS y X y Xβ β−= − Σ −  

where *β̂  and 1
*

ˆ −Σ  are the MLEs for parameters *β  and 1
*
−Σ  in the largest candidate model respectively. 

The estimator 1
*

ˆ −Σ  cannot be expressed in a closed form and is calculated by computational algorithm where 
the iterations are needed. 

For the estimator of 2
oσ , we use the mean squared error of the largest candidate model  
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*
2

*

ˆ ,ResSS
N p

σ =
−

                                      (3.3) 

which is an asymptotically unbiased estimator for 2
oσ , yet it is biased. In the justification of this estimator, us-

ing the approximation ( )*
ˆ 1o oΣ = Σ + , we can represent *β̂  in terms of oΣ , then the expected value of *

ResSS  
can be easily calculated as ( ) 2

* oN p σ− , i.e., asymptotically we can have ( )2 2ˆo oE σ σ= . Serving as an asymp-
totically unbiased estimator of 2

oσ , the 2σ̂  in Equation (3.3) for the largest candidate model is preferred to es-
timate 2

oσ . 
MCp is then obtained as  

( )*
p 2 *MC 2 2 .

ˆ
ResRes

Res

N p SSSS p N p N
SSσ
−

= + − = + −                       (3.4) 

Note that MCp is biased for ( )
pC oθ∆ . However, under the assumption that the true model is included in the 

pool of candidate models, MCp serves as an asymptotically unbiased estimator of the discrepancy in expression 
(2.7). The proof is nontrivial, yet the simulations (not presented here) can show that as the samples size increas-
es, the curves of the average values for MCp and the discrepancy ( )

pC oθ∆ , along with IMCp, which will be in-
troduced in the following subsection, collectively get merged, indicating that MCp and IMCp are all asymptoti-
cally unbiased estimators of the discrepancy ( )

pC oθ∆ . 

3.2. Improved Marginal Cp 
To improve the performance of the MCp statistic in linear mixed models, we wish to propose an improved mar-
ginal Cp, called IMCp, which is expected to be a more accurate or less biased estimator of the expected trans-
formed marginal Gauss discrepancy than MCp. IMCp is proposed as  

( )*
p *

2
IMC 2 2,Res

Res

N p SS
p N

SS
− −

= + − +                           (3.5) 

where SSRes and *
ResSS  are the sum of squared errors from the candidate fitted model and the largest fitted 

model, respectively. Note that IMCp provides us an asymptotically unbiased estimator of ( )
pC oθ∆ , i.e.,  

{ } ( )pIMC
po C oE θ≅ ∆ , and it will be shown in what follows. 

To evaluate the expectation of IMCp, we first need to calculate the ratio of the sum of squared errors *
Res

Res

SS
SS

 

between the candidate model and the largest candidate model in the pool. By Corollary 1, we have  

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )
( )

T T1 1

* T T 11
* * ** * * * *

TT 1 T 1

T T 1T 1
* ** * *

ˆ ˆˆ ˆ ˆˆ

ˆ ˆˆ ˆ ˆˆ

ˆ ˆ ˆˆ ˆ
.

ˆˆˆ ˆˆ

Res

Res

y X y X y Hy y HySS
SS y H y y H yy X y X

y I H I H y y I H y

y I H yy I H I H y

β β

β β

− −

−−

− −

−−

− Σ − − Σ −
= =

− Σ −− Σ −

− Σ − Σ −
= =

Σ −− Σ −

 

By using the approximation ( )ˆ 1o oΣ = Σ +  for all Σ̂ , we approximate Ĥ  and *Ĥ  by H and *H , respec-  

tively, and ( ) 1T 1 T 1
o oH X X X X

−− −= Σ Σ  and ( ) 1T 1 T 1
* * * * *o oH X X X X

−− −= Σ Σ . Then, the ratio *
Res

Res

SS
SS

 can be writ-

ten as  

( )
( )

( )
( )

( )
( )

( )
( )

T 1 T 1

* T 1T 1
** *

T 1 T 1
* * *

T 1 T 1
* *

ˆ
ˆ

1 .

oRes

Res o

o o

o o

y I H y y I H ySS
SS y I H yy I H y

y I H H H y y H H y
y I H y y I H y

− −

−−

− −

− −

Σ − Σ −
= ≈

Σ −Σ −

Σ − + − Σ −
= = +

Σ − Σ −

                  (3.6) 

To continue the proof, we will use the following theorem and corollary. 
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Theorem 2. If ( ) ( )*C X C X⊆ , then for any N N×  matrix K, we have ( ) ( )T T
*C K X C K X⊆ .  

The proof of Theorem 2 is presented in the Appendix. 
Corollary 2. Following Theorem 2, we can obtain following results:   
1) 1 1 1

* *o o oHH H H H− − −Σ = Σ = Σ .  
2) 1 1

*o oH X X− −Σ = Σ .  
The proof of Corollary 2 is included in the Appendix. 
By Theorem 1 and Corollary 2, we have  

( ) ( )1 1
* * 0,o o oH H I H− −Σ − Σ Σ − =  

such that the quadratic forms ( )T 1
*oy H H y−Σ −  and ( )T 1

*oy I H y−Σ −  are independent. It follows that the  

expectation of *
Res

Res

SS
SS

 in (3.6) can be written as  

( )
( )

( ){ } ( )

T 1
*

* T 1
*

T 1
* T 1

*

1

11 .

oRes
o o

Res o

o o o
o

y H H ySSE E
SS y I H y

E y H H y E
y I H y

−

−

−
−

 Σ −   ≈ +   Σ −    
  = + Σ −  

Σ −  

                (3.7) 

For the term ( ){ }T 1
*o oE y H H y−Σ −  in (3.7), since ( )2~ ,o o o oy N X β σ Σ , we have  

( ){ }
( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

T 1
*

T2 1 1
* *

T2 1
* *

T2 1
* *

T2 1
* .

o o

o o o o o o o o

o o o o o o

o o o o o o

o o o o o o

E y H H y

tr H H X H H X

tr H H X H H X

p p X H H X

p p X I H X

σ β β

σ β β

σ β β

σ β β

−

− −

−

−

−

Σ −

= Σ − Σ + Σ −

= − + Σ −

= − + Σ −

= − + Σ −

                   (3.8) 

For the term 
( )T 1

*

1
o

o

E
y I H y−

  
 

Σ −  
 in (3.7), we can prove that  

( )
( )*

T 1
* 2

2 ~ .o
rank I H

o

y I H y
χ

σ

−

−

Σ −
 

Note that ( )* *rank I H N p− = − . To justify the distribution of ( )T 1
*

2
o

o

y I H y
σ

−Σ −
, we have  

( )T 1
* T

2 ,o

o

y I H y
y Ay

σ

−Σ −
=  

where ( )1
*

2
o

o

I H
A

σ

−Σ −
= . For the distribution of y, we know that ( )2~ ,o o o oy N X β σ Σ . We calculate that 

2
*o o A I Hσ Σ = − , and by Theorem 1, the matrix *I H−  is idempotent. Therefore, we have T 2

,
2

~y Ay λν
χ , where  

( )* *rank I H N pν = − = −  and by Corollary 2, we can calculate λ as  

( ) ( ) ( )1
T T *

2 0.o
o o o o o o o o

o

I H
X AX X Xλ β β β β

σ

−Σ −
= = =  

Now, its inverse 
( )

2

T 1
*

o

oy I H y
σ

−Σ −
 follows an inverse Chi-square distribution, i.e.,  
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( ) ( )*

2
2

T 1
*

~o
rank I H

o

I
y I H y

σ χ −−Σ −
, with the expectation as  

( )
2

T 1
**

1 .
2

o
o

o

E
N py I H y

σ
−

   =  − −Σ −  
                           (3.9) 

Using the results of (3.8) and (3.9), we have the expectation of *
Res

o
Res

SSE
SS

 
 
 

 in (3.7) as  

( ){ } ( )

( ){ } ( )

( ) ( ) ( ) ( )( )
( ) ( ) ( )

( )

T 1
** T 1

*

2
T 1

* T 1 2
*

T2 1
*2

*

T 1
*

2
* *

*

11

11

1 11
2

1
2 2

2
2

Res
o o o o

Res o

o
o o o

o o

o o o o o o
o

o o o o o

o

SSE E y H H y E
SS y I H y

E y H H y E
y I H y

p p X I H X
N p

X I H Xp p
N p N p

N p
N p

σ
σ

σ β β
σ

β β
σ

−
−

−
−

−

−

    ≈ + Σ −   
Σ −    

  = + Σ −  
Σ −  

 
= + − + Σ −  − − 

Σ −−
= + +

− − − −

− −
=

− −
( ) ( ) ( )

( )

T 1

2
*

.
2

o o o o o

o

X I H X
N p

β β
σ

−Σ −
+

− −

         (3.10) 

We recall that the criterion IMCp in (3.5) is defined as  

( )p * *IMC 2 2 2.Res

Res

SSN p p N
SS

= − − + − +  

By the result of (3.10) and the approximation ( )ˆ 1o oΣ = Σ +  again , we have the expectation of IMCp as  

{ } ( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( ){ }
( )

p * *

T 1

* 2
* *

T 1

2

IMC 2 2 2

22 2 2
2 2

ˆˆ
.

p

Res
o o

Res

o o o o o

o

o o o o o

C o
o

SSE N p E p N
SS

X I H XN pN p p N
N p N p

E X I H X
p

β β
σ

β β
θ

σ

−

−

 
= − − + − − 

 
 Σ −− − ≈ − − + + − + − − − −  

Σ −
≈ + ≈ ∆

 

Hence, IMCp is an asymptotically unbiased estimator of the expected overall transformed Gauss discrepancy 

( )
pC oθ∆  in Equation (2.7). The advantage of IMCp is that it avoids the bias of using 2

1
σ̂

 to estimate 2
1

oσ
 to 

derive the criterion comparing to the derivation of MCp. 
We comment that the proposed MCp and IMCp are justified based upon the assumption that the true model is 

contained in the candidate models. Hence, we can calculate the MCp and IMCp values for the correctly and over-
fitted candidate models. However, the proposed criteria are also can be utilized for the underspecified models 
except that the values will be quite large and not behave well.  

4. Simulation Study 
In this simulation study, we investigate the ability of MCp in (3.4) and IMCp in (3.5) to determine the correct set 
of fixed effects for the simulated data in different models. 
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4.1. Presentation of Simulations 
Consider a setting in which data are generated by the model of the following form  

T , 1, , , 1, , ,ij ij i ijy X b i m j nβ ε= + + = =   

where the random effects 1, , mb b  are uncorrelated with mean 0 and variance 2τ , the errors ijε  are inde-
pendent with each other with mean 0 and variance 2σ . It follows that the correlation between any two observa-  

tions from the same case is 
2

2 2
τ

τ σ+
, whereas the observations from different cases are uncorrelated. Let φ de-

note the proportion between the variance of the random effects and the variance of the errors, i.e. 
2

2
τφ
σ

= . We 

can obtain that the correlation between the observations from the same case equals 
1
φ
φ+

, which is an increas-  

ing function of φ. Therefore, a higher φ implies a higher correlation between the observations in the same case. 
For convenience, the generating model can also be expressed by  

,y X Zbβ ε= + +  

where β  are unknown coefficients of the fixed effects. It is assumed that the random effects ( )2~ 0,b N Gσ  
with mG Iφ= , and 1r = . We set 

ii nZ j=  for ( )T1, ,1
inj =  , an ni-vector of ones, and  

1 mn n n N m= = = = . We also assume that the error term ( )2~ 0, NN Iε σ , and is independent of the 
random effects b. 

Since the random part of the model (i.e. Zb) is not subject to selection, we would like to express the model by 
its marginal form. Let ij i ijbζ ε= + , we have  

T ,ij ij ijy X β ζ= +  

which can also be expressed by the general form as  

( )2, ~ 0, ,y X Nβ ζ ζ σ= + Σ                              (4.1) 

where Zbζ ε= + , 
2

T
2 NZZ Iτ

σ
Σ = +  is a scaled covariance matrix. Equivalently, the term ζ  has the follow-

ing exchangeable correlation structure: ( ) ( ) 21 1
1 1

Var I Jφ φζ φ σ
φ φ

  
= + − +  + +  

, where 
2

2
τφ
σ

= , I is the 

identity matrix and J is the matrix of 1’s. 
In this simulation study, we generate the design matrix X with ( )rank X  of 5. The first column of X is 1 and 

the other four columns of X are generated randomly from uniform distributions but are fixed throughout the si-
mulations. Therefore, the number of fixed effects including the intercept in the largest model is * 5p = . We as-
sume that the candidate vectors of covariates, 1 5, ,X X  from which the columns of X are to be selected, then 
there are * 12 16p − =  candidate models in the candidate pool. Here, we will illustrate the behavior of model se-
lection criteria by choosing three generating models:  

1) Model 1: 3 3ij o ij i ijy X bβ β ε= + + + , 32, 3oβ β= = − ;  
2) Model 2: 3 3 4 4ij o ij ij i ijy X X bβ β β ε= + + + + , 3 42, 3, 4oβ β β= = − = ;  
3) Model 3: 1 1 3 3 4 4ij o ij ij ij i ijy X X X bβ β β β ε= + + + + + , 2 2 42, 2, 3, 4oβ β β β= = = − = .  
These three models correspond to the three βs: ( )2,0,0, 3,0 ′− , ( )2,0,0, 3, 4 ′−  and ( )2,0,2, 3,4 ′−  in 

model (4.1) with the number of fixed effects op  equals 2, 3, 4, respectively. Again, the MLEs are used for 
estimation in the simulations. 

Furthermore, we consider the case where the correlated errors have varying degrees of exchangeable structure. 
The variance component of error term 2σ  is taken to be 1, and four values in an increasing order of 2τ  are 
considered: 3, 6, 9, corresponding to three values of φ: 3, 6, 9, respectively. We take the number of clusters (m) 
to be 5, 10 and 20, the number of repetitions in a cluster to be fixed at n = 5. We employ a total of 100 realiza-
tions for each model. 
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4.2. Results 
4.2.1. Model 1: ( )′= −β 2,0,0, 3,0  
Table 1 presents the performance of the two versions of marginal Cp (MCp and IMCp), mAIC and mBIC, under 
model 1 with the true fixed effects parameter ( )2,0,0, 3,0β ′= − , and corresponding to po = 2. The correct 
model selection rate for each criterion is listed. We observe that corresponding to each φ, the IMCp outperforms 
the MCp, and both outperform mAIC and mBIC in selecting the correct model for small samples. With the in-
creasing of the ratio φ, we can observe the better performance in selecting the correct model from our proposed 
criteria. 

4.2.2. Model 2: ( )′= −β 2,0,0, 3, 4  
We evaluate the proposed criteria for model 2 in the same manner as for model 1. Table 2 presents the perfor-
mance of MCp and IMCp, mAIC and mBIC under model 2, where the true fixed effects parameter is 

( )2,0,0, 3,4β ′= −  and po = 3. The only change on model 2 from model 1 is that we add one more fixed effect 
variable X5 and set the coefficient of that variable 5 4β = . In Table 2, the simulation results of model 2 are sim-
ilar to those of model 1. With the increasing of the ratio φ, we can have the better performance from our pro-
posed criteria MCp and IMCp, indicating that the proposed MCp and IMCp can effectively fulfill the mission of 
model selection in the mixed models. We can also observe and conclude that IMCp has improved the perfor-
mance of MCp for model selection in small samples. With the increasing of m, the performance of IMCp and 
MCp becomes closer. Comparing to the correct selection rates in model 1, all model selection criteria behave 
better in model 2. 

4.2.3. Model 3: ( )′= −β 2,0,2, 3, 4  
As in the first two models, we evaluate the performance of model selection criteria by the rates in correctly se-
lecting the true model. The results are presented in Table 3. Model 3 is identical to model 2 with the exception 
that we add one more significant fixed effect variable X2 with the coefficient 2 2β = . 

The simulation results of model 3 are similar to those of models 1 - 2. Considering the rates in choosing the 
correct model, we can find the trend of dramatic improvement of all criteria on model 3 over those on models 1 
and 2, implying that the proposed MCp and IMCp essentially and effectively implement model selection when 
the fixed-effects are significant. In moderately large (m = 20) sample sizes, compared to that of mAIC and 
mBIC, MCp and IMCp have comparative performance in selecting the correct model. 
 

Table 1. Correct selection rate in model 1. 

Sample size Criterion 
correlation parameter 

φ = 3 φ = 6 φ = 9 

m = 5 

MCp 0.78 0.86 0.85 

IMCp 0.85 0.92 0.88 

mAIC 0.55 0.48 0.53 

mBIC 0.81 0.75 0.69 

m = 10 

MCp 0.76 0.88 0.89 

IMCp 0.77 0.89 0.90 

mAIC 0.62 0.52 0.53 

mBIC 0.86 0.82 0.80 

m = 20 

MCp 0.81 0.88 0.93 

IMCp 0.82 0.89 0.93 

mAIC 0.57 0.61 0.59 

mBIC 0.86 0.93 0.91 
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Table 2. Correct selection rate in model 2. 

Sample size Criterion 
Correlation parameter 

φ = 3 φ = 6 φ = 9 

m = 5 

MCp 0.81 0.90 0.93 

IMCp 0.82 0.92 0.93 

mAIC 0.63 0.66 0.62 

mBIC 0.76 0.83 0.74 

m = 10 

MCp 0.81 0.88 0.94 

IMCp 0.83 0.88 0.94 

mAIC 0.62 0.65 0.69 

mBIC 0.85 0.85 0.83 

m = 20 

MCp 0.87 0.94 0.91 

IMCp 0.88 0.94 0.91 

mAIC 0.74 0.70 0.63 

mBIC 0.92 0.93 0.88 

 
Table 3. Correct selection rate in model 3. 

Sample size Criterion 
Correlation parameter 

φ = 3 φ = 6 φ = 9 

m = 5 

MCp 0.92 0.87 0.92 

IMCp 0.93 0.89 0.92 

mAIC 0.81 0.72 0.77 

mBIC 0.93 0.85 0.87 

m = 10 

MCp 0.93 0.93 0.96 

IMCp 0.93 0.96 0.96 

mAIC 0.83 0.83 0.87 

mBIC 0.93 0.94 0.94 

m = 20 

MCp 0.92 0.96 0.97 

IMCp 0.93 0.96 0.98 

mAIC 0.84 0.85 0.77 

mBIC 0.97 0.96 0.96 

5. Concluding Remarks 
The simulation results illustrate that the proposed criteria MCp and IMCp outperform mAIC and mBIC when the 
observations are highly correlated in small samples. The results also show that with the increasing of the ratio φ 
between the variance for the random effects and that for errors, the MCp and IMCp perform better. Since a larger 
φ implies a higher correlation between the observations, we can conclude that with the correlation between ob-
servations increases, a better performance from the proposed criteria MCp and IMCp would be observed. Since 
the model with a small φ which close to 0 is similar to a linear regression model with independent errors, our 
proposed criteria are not advantageous to be applied in such case. 
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The simulation results show that the proposed criteria MCp and IMCp significantly outperform mAIC and 
mBIC when the sample size is small. As the sample size increases, the performance of the proposed criteria be-
comes comparable to that of mAIC and mBIC. Therefore, MCp and IMCp are highly recommended in small 
samples in the setting of linear mixed models. 

Our research (not shown in this paper) also shows that both proposed criteria behave best when the maximum 
likelihood estimation (MLE) is employed, comparing to those when the restricted maximum likelihood estima-
tion or least squares estimation are used. The research on MCp and IMCp under REML estimation needs to be 
further developed in the future. 

In the simulation study, by the comparison among models 1, 2 and 3, we see that when the true model in-
cludes more significant fixed effect covariates, the proposed criteria perform better in selecting the correct mod-
el. This fact indicates that the models with more significant variables (larger βs) are more identifiable by the 
proposed criteria than the models with variables which are not quite significant. 

Comparing the performance between MCp and IMCp, we find that when the sample size is small, IMCp ob-
tains a higher correct selection rate than MCp, which demonstrates that IMCp improves the performance of MCp 
in selecting the most appropriate model. However, when the sample size becomes larger, the performance of 
MCp and IMCp is quite identical. 

Regarding the consistency of a model selection criterion, it means that as the sample size increases, the model 
selection will select the true model with probability 1. Note that MCp, IMCp, and mAIC are not consistent, whe-
reas mBIC is consistent as expected since its penalty term ( )log N  prevents the overfitting in large samples. 
As the simulation study demonstrates, we can address again that the proposed criteria MCp and IMCp validate 
their advantages in small samples, although they are originally justified with large sample approximations, 
which is similar to quite a few other model selection criteria. The details for the consistency of model selection 
criteria in linear mixed models can also see Jiang and Rao [20]. 
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Appendix 
Proof of Theorem 1. 1) To prove that Ĥ  is idempotent, we calculate  

( ) ( ) ( )1 1 1T 1 T 1 T 1 T 1 T 1 T 1ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ .HH X X X X X X X X X X X X H
− − −− − − − − −= Σ Σ Σ Σ = Σ Σ =  

Thus, we prove that Ĥ  is idempotent.  
2) By the properties of trace, we have  

( ) ( )( ) ( )( ) ( )1 1T 1 T 1 T 1 T 1ˆ ˆ ˆ ˆ ˆ .ptr H tr X X X X tr X X X X tr I p
− −− − − −= Σ Σ = Σ Σ = =  

Therefore, we have  

( ) ( ) ( )ˆ ˆ .N Ntr I H tr I tr H N p− = − = −  

Thus, Theorem 1 is proved.                                                                   □ 
Proof of Theorem 2. Let ( )Ty C K X∈ . We need to show that ( )T

*y C K X∈ . 
Since ( )Ty C K X∈ , there exists a p × 1 vector β1 such that T

1y K X β= . 
By ( ) ( )*C X C X⊆ , there also exists a p × 1 vector β2 such that 1 * 2X Xβ β= , which makes  

T T
1 * 2y K X K Xβ β= = . 

So we have ( )T
*y C K X∈ .                                                                □ 

Proof of Corollary 2. 1) Since oΣ  is positive definite, there exists an N × N matrix V with ( )rank V N= ,  

such that T
o VVΣ = . It follows that ( ) ( ) ( ) ( ) ( )

1 1 T1 11 T T 1
o VV V V V V

− − − −− −Σ = = = . 

Let ( )T1K V −= , we can have 1 T
o KK−Σ = . Then, we arrive at  

( ) ( )
( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )

1 1 T 1 T 1 T 1 T 1
* * * * *

1 1T T T T T T T T T
* * * *

1 1T T TT T T T T T T T T
* * * * .

o o o o o oHH X X X X X X X X

KK X X KK X X KK X X KK X X KK

K K X K X K X K X K X K X K X K X K

− − − − − −

− −

− −

Σ = Σ Σ Σ Σ Σ

=

=

 

Now, let  

( ) ( ) ( )( ) ( )
1T TT T T TH K X K X K X K X
−

=  

and  

( ) ( ) ( )( ) ( )
1TT T T T

* * * * * .H K X K X K X K X
−

=  

Since ( ) ( )*C X C X⊆ , by Theorem 2, we have ( ) ( )T T
*C K X C K X⊆ , so that we can have *HH H= , 

which leads to  

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )
( )

( )

1 1T T T1 T T T T T T T T T
* * * * *

1T T T T T T T
*

11 T 1 T 1 1 .

o

o o o o

HH K K X K X K X K X K X K X K X K X K

KHH K KHK KK X X KK X X KK

X X X X H

− −
−

−

−− − − −

Σ =

= = =

= Σ Σ Σ = Σ

 

The first part of Corollary 2 is therefore proved. 
2) Following the first part proof of Corollary 2, since ( ) ( )T T

*C K X C K X⊆ , we have ( )* T T
1H K X K X= . 

Then, we can conclude that  

( ) ( )( ) ( ) ( )
( )

1T T1 T T T T
* * * *

* T T 1
1 .

o

o

H X K K X K X K X K X

KH K X KK X X

−
−

−

Σ =

= = = Σ
 

Therefore, the proof for the second part of Corollary 2 is completed.                                □ 
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