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Abstract 
The relativity of cosmic time is developed within the framework of Cosmological Relativity in five 
dimensions of space, time and velocity. A general linearized metric element is defined to have the 
form ( ) ( )s c t r v2 2 2 2 2 2d 1 d d 1 d= + − + +φ ψ τ , where the coordinates are time t, radial distance 

r x y z2 2 2= + +  for spatials x, y and z, and velocity v, with c the speed of light in vacuum and τ  
the Hubble-Carmeli time constant. The metric is accurate to first order in t τ  and v c . The fields 

φ  and ψ  are general functions of the coordinates. By showing that =φ ψ , a metric of the form 

s c t r v2 2 2 2 2 2d d d d= − +τ  is obtained from the general metric, implying that the universe is flat. For 

cosmological redshift z, the luminosity distance relation ( ) ( )LD z t r z t 2 2, 1 1= + − τ  is used to 
fit combined distance moduli from Type 1a supernovae up to z 1.5<  and Gamma-Ray Bursts up 
to z 7< , from which a value of M 0.800 0.080Ω = ±  is obtained for the matter density parameter 
at the present epoch. Assuming a baryon density of B 0.038 0.004Ω = ± , a rest mass energy of 

( )9.79 0.47 GeV±  is predicted for the anti-baryonic Y  and the ∗Φ  particles which decay from a 

hypothetical X1  particle. The cosmic aging function ( ) ( ) ( )g z t z t 2 2
1 , 1 1= + − τ  makes good fits to 

light curve data from two reports of Type 1a supernovae and in fitting to simulated quasar like 
light curve power spectra separated by redshift z 1∆ ≈ . We determine the multipole of the first 
acoustic peak of the Cosmic Microwave Background radiation anisotropy to be l 224 5≈ ±  and a 
sound horizon of ( )sh0 0.805 0.020≈ ± θ  on today’s sky. 
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1. Introduction 
It has recently been reported [1] on the apparent null effect of cosmic time dilation upon light curve power 
spectra measurements of some 800 low and high redshift quasars (QSO) monitored for 28 years. This appears to 
contradict two Supernovae Type Ia (SNe-Ia) light curve evolution studies [2] [3] which show the effect of  
broadening of the power spectra time series consistent with a cosmic time dilation of ( )1 z+  for redshift z. In  
this paper, we show that both the QSO and SNe-Ia results are compatible if account is made for the relativity of 
cosmic time as developed in the theory of Cosmological Special Relativity (CSR) [4]. We also apply these 
concepts to fitting the combination of high redshift SNe-Ia distance data [5] and Gamma-Ray Bursts (GRB) data 
[6]. 

The Cosmological Relativity of Carmeli [7], the general and special theories, is a five dimensional brane 
world model based on time t, space , ,x y z  and velocity v. It makes only one new assumption, that of the 
maximum value of cosmic time τ  which is the Hubble-Carmeli time constant. In the same way that the 
constant speed of light c constrains the observations in space and time, so too the constant of cosmic time τ  
constrains the observations of space and velocity. The familiar Lorentz transformations of Einstein Special 
Relativity (SR) between observers moving at constant relative velocity v carry over into Cosmological Special 
Relativity (CSR) between observers separated by relative cosmic time t. And just as in SR, there is the special 
way that velocities add together which reduces to the Galilean form 1 2v v+  at low velocities with respect to the 
speed of light, in CSR cosmic times add in an analogous way which has the form 1 2t t+  for low values with 
respect to cosmic time τ  but is modified for larger cosmic times. 

In this paper, we derive only the minimum CSR framework we require for the development of cosmic time 
transformation effects and the luminosity distance relation. We show that for weak fields φ  and ψ  (to be 
defined below), the universe has a flat, Euclidean geometry. And, due to the additive properties of cosmic time 
in CSR, this gives us a unique form for the luminosity distance relation. We model cosmic time aging effects in 
light curve data from SNe-Ia. In comparison to the standard Friedmann-Lemaître-Robertson-Walker (FLRW) 
model, the CGR luminosity distance relation performs quite well in fits to SNe-Ia and GRB distance data, 
although it requires more dark matter in the mass density. As a consequence, larger rest masses are predicted for 
the hypothetical 1X  particle [8] decay products Y  and *Φ . We also derive a relation for the first acoustic 
peak of the Cosmic Microwave Background (CMB) anisotropy. 

2. The Universe 
The five dimensional Cosmological General Relativity of Carmeli [7] is approximated by the linearized metric 
element,  

( ) ( )2 2 2 2 2 2d 1 d d 1 d ,s c t r vφ ψ τ= + − + +                           (1) 

where  
2 2 2 2d d d d .r x y z= + +                                   (2) 

The coordinates are time t, spatials x, y and z and velocity v, with c the speed of light in vacuum and τ  the 
Hubble-Carmeli time constant. The linearized model is accurate to first order in 1v c  and 1t τ  . The 
parameter 1h τ=  is the Hubble constant at zero distance and no gravity and 0h H≈  where 0H  is the  
Hubble constant. The fields φ  and ψ  are general functions of the coordinates. The CGR standard value for h 
is (to three digits) [9],  

1 172.2 0.84 km s Mpc .h − −= ± ⋅ ⋅                                (3) 

This gives  

( ) 174.28 0.15 10 s 13.6 0.48 Gyr.τ = ± × = ±                           (4) 

In Cosmological Relativity the time coordinate is measured backwards from the present at 0t =  to the big 
bang at t τ= . Just as the speed of light c is the maximum observable speed, the time τ  is the maximum 
observable cosmic time. The gravitational fields are specified by the functions φ  and ψ . The expansion of 
the universe occurs when  
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d 0,s =                                        (5) 

and it is observed at a specific cosmic time t, so that  

d 0.t =                                         (6) 
Applying (5) and (6) to (1) yields for the expanding universe  

( )2 2 2d 1 d 0,r vψ τ− + + =                                  (7) 

which reduces to  
2d 1 .

d
r
v

ψ
τ
  = + 
 

                                    (8) 

The metric (1) defines the Einstein field equations in five dimensions [7] (Sect. 7.3)  
1 ,
2

R R Tν ν ν
µ µ µδ κ− =                                  (9) 

where Rν
µ  is the mixed Ricci tensor [7] (Appendix A), R is the Ricci scalar and effT u uν ν

µ µρ=  is the mixed 

energy-momentum tensor, where effρ  is the effective mass density and ( )1,0,0,0,1u uµ
µ = =  is the velocity 

vector. The indices , 0,1, 2,3, 4ν µ =  for the five dimensions of 0 1 2 3 4, , , ,x ct x x x y x z x vτ= = = = = . The 

Kronecker delta 1ν
µδ =  for µ ν= , and 0ν

µδ =  for µ ν≠ . The Carmeli gravitation constant 2 28πG cκ τ=  
where G is Newton's gravitation constant. The 0,0  component of (9) gives us the equation  

0 2
0

1 ,
2 effR R κτ ρ− =                                 (10) 

where  

( ) ( )0 2 2 2
0 ,44 ,00 ,44 ,00

1 1 1 ,
2 2 2

R R φ φ ψ φ ψ φ ψ− = ∇ − − − ∇ +∇ − −               (11) 

21 ,
2

ψ= − ∇                                      (12) 

where 2 2
,00 tψ ψ= ∂ ∂  and 2 2

,44 vφ φ= ∂ ∂ . From (10) and (12) we get the Poisson equation for cosmology, in 
the space-velocity domain,  

2 22 .effψ κτ ρ∇ = −                                   (13) 

The effective mass density is defined by  

,eff cρ ρ ρ= −                                      (14) 

where ρ  is the mass density and cρ  is the critical mass density. Under the assumption that the mass is 
uniformly distributed, the mass density ρ  is independent of the spatial coordinate r, but can depend on time t 
and velocity v. The critical mass density cρ  is a constant defined by  

23 8π .c Gρ τ=                                    (15) 

It is useful to express the effective mass density as a parameter in terms of the critical mass density. Dividing 
by cρ  we have  

1,eff
eff

c

ρ
ρ

Ω = = Ω −                                   (16) 

where cρ ρΩ =  is the mass density parameter. For a spatially uniform mass distribution, ρ  is independent 
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of r, the solution to (13) then takes the form ([7], Sect.7.3.2),  
2

2 2 2
2 ,eff r GM

c c r
ψ

τ
Ω

= − −                                 (17) 

where M is an optional point mass centered at the origin of r. Assuming no central mass, we set 0M = . Then 
putting the expression for ψ  from (17) into (8) and simplifying we get  

2 2 2d 1 .
d eff

r r c
v

τ τ= −Ω                                 (18) 

3. General Solution in Space-Velocity 
The integration of (18) over r and v in the space-velocity domain is carried out at a specific time t. We assume 
that the mass density ρ  is a function of cosmic time only, so that effΩ  will be constant throughout the 
integration. Substitute 1 effΩ − = Ω  by (16) and put (18) into the integral form  

( )0 02 2 2

d d .
1 1

r vr v
r c

τ
τ

′
′=

′+ −Ω
∫ ∫                             (19) 

Integrating (19) and solving for r in terms of v we obtain the general solutions  

sinh 1 , for 1,
1
c vr

c
τ  = −Ω Ω < −Ω  

                        (20) 

sin 1 , for 1 and
1

c vr
c

τ  = Ω − Ω > Ω −  
                      (21) 

, for 1.r vτ= Ω =                                  (22) 

By use of the identities ( ) ( )sinh sini x i x=  and ( ) ( )sin sinhi x i x= , where x is real and 1i = − , we write 
the general solution as  

sinh 1 , for 0 .
1
c vr

c
τ  = −Ω ≤ Ω −Ω  

                      (23) 

4. Flat Space Metric 
Equation (17) gave the solution for the field ψ . Now consider the solution for the field φ  in (1). The 4, 4  
component of (9) gives us the equation [7]  

4 2
4

1 ,
2 effR R κτ ρ− =                                (24) 

where  

( ) ( )4 2 2 2
4 ,44 ,00 ,44 ,00

1 1 1 ,
2 2 2

R R ψ φ ψ φ ψ φ ψ− = ∇ − − − ∇ +∇ − −               (25) 

21 ,
2

φ= − ∇                                    (26) 

where 2 2
,00 tψ ψ= ∂ ∂  and 2 2

,44 vφ φ= ∂ ∂ . Similar to the case for obtaining ψ , we solve (26) to obtain  
2

2 2 2
2 ,eff r GM

c c r
φ

τ
Ω

= − −                              (27) 

where M is an optional point mass centered at the origin of r. We see by (17) and (27) that in fact,  

( ) ( ) ,r rφ ψ=                               (28) 

and furthermore, that the constants c and τ  are part of the (cosmological) first term while the constants c and 
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G are part of the (Newtonian) second term. Assuming no central mass ( 0M = ), for the case where the mass 
density becomes equal to the critical density, cρ ρ→ , from (16), the effective mass density parameter 

1 0effΩ = Ω − →  and the universe becomes Euclidean. 
On the other hand, more generally, we can derive a flatspace metric. Given (28), if we divide (1) by 

1 1φ ψ+ = + , we can write  
2 2 2 2 2 2d d d d ,s c t r vτ= − +                             (29) 

where  
d ,
1

ss
φ

=
+∫                                 (30) 

and  

d ,
1

rr
φ

=
+∫                                 (31) 

with the condition that  

1 .φ− <                                    (32) 

This implies that for weak fields φ  and ψ  we can express the cosmology of the expanding universe in 

terms of a flat space Euclidean geometry, with a metric of the form 2 2 2 2 2 2d d d ds c t r vτ= − + . In the next 
section we derive this flat space special theory for cosmology. 

5. The Cosmological Special Relativistic Transformation 
By (29), with notation r r→ , we have the metric  

2 2 2 2 2 2d d d d ,s c t r vτ= − +                             (33) 

where r is given by (31). The expansion of the universe occurs when d 0s =  and observations are made at a 
particular instant of time t so that d 0t = . Then for the expansion, (33) gives us  

d d ,r vτ=                                     (34) 

which, upon integration gives the Hubble law  

,v r hrτ= =                                   (35) 

where 1h τ= . 
In the observable universe there are two classes of objects, those that are bounded by the gravitation of their 

combined masses and those that are observed to be moving away from one another in the Hubble flow. In other 
words, if we lump all nearby neighboring galaxies into a super galaxy mass point, then the universe would 
consist of only super galaxy mass points flying apart in the Hubble flow. Cosmological Special Relativity (CSR) 
describes these super galactic objects in the universe. However, unlike SR which can have real observers in 
reference frames which move relatively at less than light speed, in CSR, all galaxies are in the Hubble flow and 
expand at the Hubble rate h. That is, there are no objects not in the Hubble flow from which to set up a frame of 
reference and compare observations. Consequently, for CSR we define hypothetical observers in their frames 
which move relatively at a rate 1 t h> . We derive the transformation of coordinates between these hypothetical 
frames. However, the coordinates of real galaxies are included in the transformation. 

In CSR the age of the universe is τ , the Hubble-Carmeli time constant, which is assumed to be the same for 
all cosmic time relative inertial observers and is the maximum cosmic time (just as in SR the speed of light c is 
the maximum velocity and is constant for all velocity relative inertial observers.) Assume that there are 
hypothetical observers in reference frames K and K ′  separated by a fixed cosmic time t τ< . Each frame is 
assumed to be unaccelerated (inertial) with respect to cosmic time. Transformations are made between K  
describing an object O with “4-vector” coordinates ( ), , ,v x y zτ  and K ′  describing the same object O with 4- 
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vector coordinates ( ), , ,v x y zτ ′ ′ ′ ′ . The magnitude of each 4-vector is defined by  
2 2 2 2 2 2 2 2 2 ,S v x y z v rτ τ= − − − = −                         (36) 

2 2 2 2 2 2 2 2 2 ,S v x y z v rτ τ′ ′ ′ ′ ′ ′ ′= − − − = −                       (37) 
with the invariant condition  

2 2 ,S S ′=                                     (38) 

where 2 2 2r x y z= + +  and 2 2 2r x y z′ ′ ′ ′= + + . For the case that object O is a galaxy in the expansion, the 

invariants 2 2 0S S ′= = . We refer to S and S ′  as 4-vectors even though there are only 2 components, since the 

3 spatial components ( ), ,x y z  are condensed into 2 2 2r x y z= + + . 
To obtain the cosmological transformation ([7], Sect. 2.2), analogous with the Lorentz transformation, assume 

that a linear transformation exists between the coordinates of hypothetical frames K and K ′ . In frame K define 
the space-velocity 4-vector ( ),S v rτ=  with magnitude  

2 2 2 2 0.S v rτ= − ≥                               (39) 
Similarly, in frame K ′  define the space-velocity 4-vector ( ),S v rτ′ ′ ′=  with magnitude  

2 2 2 2 0.S v rτ′ ′ ′= − ≥                               (40) 
By the requirement that the magnitude of a 4-vector is invariant under transformations between reference 

frames then  
2 2.S S ′=                                    (41) 

Clearly, by (39) and (40), the 4-vectors S and S ′  describe coordinates which can be either in the Hubble 
flow, when 2 2 0S S ′= = , or not in the Hubble flow, when 2 2 0S S ′= > . In order to obtain the transformation 
equations between the 4-vectors it is required that the reference frames K and K ′  be separated by a fixed 
cosmic time of t τ< . 

Then, for constants ( )cosh σ  and ( )sinh σ , where σ  is a constant hyperbolic angle, define r′  and v′  
such that  

( ) ( )cosh sinh ,r r vσ τ σ′ = −                          (42) 

and  

( ) ( )cosh sinh .v v rτ τ σ σ′ = −                          (43) 

To solve for the angle σ  use the boundary condition 0r′ =  which represents the origin of frame K ′ . At 
0r′ =  (42) yields,  

( ) ( )
( )

sinh
tanh ,

cosh
r t
v

σ
σ

σ τ τ
= = =                         (44) 

where  
rt
v

=                                   (45) 

is the fixed cosmic time separating the origins of frame K ′  relative to K. From (44), for  
,t τ≤                                   (46) 

where t τ=  is a limiting condition, we use the hyperbolic functional identities to obtain,  

( )
( )2 2 2

1 1cosh ,
1 tanh 1 t

σ
σ τ

= =
− −

                     (47) 

( ) ( )
( )2 2 2

tanh
sinh .

1 tanh 1
t
t

σ τσ
σ τ

= =
− −

                     (48) 
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Substituting from (47) and (48) into (42) and (43) we obtain  

2 2
,

1
r vtr

t τ

−′ =
−

                                   (49) 

2 2
.

1
v rtv

t
τ ττ

τ

−′ =
−

                                   (50) 

By inverting (49) and (50) we get the inverse transform equations  

2 2
,

1
r v tr

t τ

′ ′+
=

−
                                   (51) 

2 2
= .

1
v r tv

t
τ ττ

τ

′ ′+

−
                                   (52) 

It can be verified that the transformations (49)-(52) satisfy the invariance requirement of (41) that 2 2S S ′=  
by direct substitution into (36) and (37). As was previously mentioned, for a galaxy O with 4-vector ( ),S v rτ=  

observed by the observer in frame K, where 2 2 2 2 0S v rτ= − = , the transformation Equations (49) and (50)  
gives for the galaxy O observed in K ′  the 4-vector ( ),S v rτ′ ′ ′=  where, by the invariance of the 
transformation, 2 2 2 2 0S v rτ′ ′ ′= − = . Thus, Hubble coordinates are conserved. In the next section we will use 
this property to obtain the cosmological redshift relation. 

6. Cosmological Redshift of Light 
We wish to quantify observations of light wave phenomena in the expanding universe made by observers at 
different cosmic times. Consider the distance r to a galaxy O which is in the Hubble flow, measured by the 
observer at the origin of K. For the observer at the origin of K ′  the distance to the same galaxy O is r′ . If 
r Nλ=  and r Nλ′ ′= , where the λ’s are the measured wavelengths of the light from the galaxy and N is the 
fixed number of wavelengths, then taking the ratio of distances we get  

1 ,r N z
r N

λ λ
λ λ

= = = +
′ ′ ′

                               (53) 

where z is the cosmological redshift of the light due to the expansion of space during the cosmic time t between 
frames K ′  and K. Substituting for r from (51) into (53) gives  

( )
2 2

,
1

r tv rr
r t τ

′ ′ ′+
=

′ −
                                 (54) 

2 2

1 .
1

tv r
t τ

′ ′+
=

−
                                   (55) 

For a galaxy which is in the Hubble flow,  
1 .v

r τ
′
=

′
                                      (56) 

Substituting from (56) into (55), and along with (53) yields  

2 2

1 11 .
11

r t tz
r tt

λ τ τ
λ ττ

+ +
+ = = = =

′ ′ −−
                         (57) 

Equation (57) is the cosmological redshift of the wavelength of light measured between observers in frames K 
and K ′ . Inverting (57) we get  

( )
( )

2

2

1 1
.

1 1
zt
zτ

+ −
=

+ +
                                 (58) 
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7. Dilation of Cosmic Time Due to the Expansion of Space 
This transformation is similar to the lengthening of the wavelength of light from a distant galaxy by the factor 
( )1 z+ . From the cosmological redshift relation (57) and the fact that the periods λτ  and λτ ′′  of a wave of 

light are related to the wavelengths λ  and λ′ , respectively, by  

,
cλ
λτ =                                    (59) 

,
cλ
λτ
′

′ =                                    (60) 

we have from (53),  

1 ,NN c T z
N c N T

λ

λ

τλ
λ τ

= = = +
′ ′ ′

                           (61) 

where T λτ=  and T λτ′ ′= . Then the cosmic time dilation from (61) is given by  

( )1 ,T T z′= +                                 (62) 

where we assume that T ′  is an arbitrary time interval in K ′ . 

8. Relativity of Cosmic Time 
Dividing (51) by (52) we obtain the transformation for the addition of cosmic time from K ′  to K, analogous to 
the addition of velocities in SR,  

1
2 2 2

1

,
1

t tr r tvt
v v tr ttτ τ

′′ ′ ++
= = =

′ ′ ′+ +
                           (63) 

where 1t r v′ ′ ′= . The inverse transformation, from K to K ′  is obtained by dividing (49) by (50) giving  

2
1 2 2

2

,
1

t tr r tvt
v v tr ttτ τ
′ −−′ = = =
′ − −

                           (64) 

where 2t r v= . We refer to (63) and (64) as the general cosmic time addition relations. 
Setting 1t τ′ =  in (63) yields  

2 2 ,
1

tt
t
τ τ
τ τ
+

= =
+

                                  (65) 

implying that two cosmic times can never add up to more than τ . The identical result is obtained from (64) for 
the time 1t′  when 2t τ= . 

8.1. Contraction of a Small Interval of Cosmic Time in the Past 

An increase in cosmic time t by t′∆  in frame K ′  at cosmic time t, where t τ′∆  , will have a value t t+ ∆  
for the observer in K at cosmic time 0 given by the law of addition of cosmic times (63) by setting 1t t′ ′= ∆  and 

2t t t= + ∆ ,  

2 ,
1

t tt t
t t τ

′+ ∆
+ ∆ =

′+ ∆
                                (66) 

which yields  

2 ,
1

t tt t
t t τ

′+ ∆
∆ = −

′+ ∆
                                (67) 
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( )2

2

1
,

1

t t t t t

t t

τ

τ

′ ′+ ∆ − + ∆
=

′+ ∆
                               (68) 

( )2 21 ,t t τ′≈ ∆ −                                  (69) 

since t τ′∆  . This is a cosmic time contraction of a small time t′∆  in K ′  at cosmic time t measured by the 
observer in K [10]. It implies that when viewed from the present epoch, a clock will appear to tick more slowly 
the further back it is in cosmic time. However, this does not alter the physical constants like G,  , or e, which 
remain constants. This is analogous to the case in SR where a clock at the origin of a frame with relative 
velocity v to the local frame, ticks at the rate tδ ′  in its own frame but appears to run more slowly at the rate  

2 21t v cδ ′ −  when viewed from the local frame, but the physical constants do not vary. 

8.2. Dilation of a Small Interval of Cosmic Time in the Present 
There is a second kind of effect of time addition which is measured by the observer in K ′  situated at cosmic 
time t from K. Take the cosmic time lapse ( )t t t t∆ = + ∆ −  recorded in K where t τ∆  . What is the 
observation of that time lapse for the observer in K ′ ? In other words, in K ′  what is the difference of the later 
time t t+ ∆  with respect to the earlier time t? The time transformation we use for the K ′  frame is from (64) 
by setting 1t t′ ′= ∆ , 2t t t= + ∆  giving  

( )
( ) 2 ,

1
t t t

t
t t t τ
+ ∆ −

′∆ =
− + ∆

                              (70) 

2 2 ,
1

t
t τ
∆

≈
−

                                   (71) 

since t τ∆  . This is a cosmic time dilation of a small time interval in frame K measured in K ′ . It infers that a 
short time interval at the present epoch corresponds to a larger time interval further back in cosmic time. Note 
that if t t τ+ ∆ =  then (70) gives t τ′∆ =  so that we never get a time greater than τ  as long as we add times 
τ≤ . 

9. Total Cosmic Time Transformation Due to the Expansion of Space  
and the Additon of Cosmic Times 

Combine the two transformations by taking the product of time dilation (62) due to the expansion of the 
universe with time contraction (69) due to the addition of cosmic times. The total elapsed cosmic time t∆  
observed by the observer in K at cosmic time 0 for a small time change t τ′∆   in frame K ′  at cosmic time t 
is given by  

( ) ( ) ( )2 2
11 1 ,t z t t g t tτ ′ ′∆ = + − ∆ = ∆                        (72) 

where by substituting for 1 z+  from (57), the cosmic aging function ( )1g t  is defined by  

( ) ( )2 2
1

1 1 .
1

tg t t
t
τ τ
τ

 +
= −  − 

                           (73) 

Substituting for t τ  from (58) in terms of redshift z into (73) yields,  

( ) ( )
( )

3

1 22

4 1
.

1 1

z
g z

z

+
=
 + + 

                               (74) 

The cosmic aging function ( )1 1g t >  for 0.8392t τ < , which gives a time dilation, and ( )1 1g t <  for 
0.8395t τ > , which corresponds to a time contraction. The maximum occurs at 1 2t τ =  where  

( )1 2 1.299g τ =  which, from (57), corresponds to a redshift 0.732z ≈ . Figure 1 is a plot of the cosmic aging 

function ( )1g z . 
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Figure 1. Cosmic aging function ( ) ( ) ( )
23 2

1 4 1 1 1g z z z = + + +  , 

0 2z< < , solid line. The dashed line is 1 z+ .                     

10. Distances 
We use the distance relation (23) with the density MΩ = Ω , giving  

( )( )sinh 1

1
M

M

c v c
r

τ −Ω
=

−Ω
                            (75) 

where MΩ  is the average mass density parameter at the present epoch. 
In CGR the luminosity distance relation LD  includes the contraction of a small interval of cosmic time in 

the past (69). It enters through the concept that the energy measured over an interval of time t′∆  from a source 
with luminosity L at rest in frame K ′  at cosmic time t, radiates a proportional quantity of energy E measured 
by the observer in K given by  

( )( ) ( )2 2
11 1 ,E L t z t Lg t tτ ′ ′∝ − + ∆ = ∆                           (76) 

which from (73) is the cosmic aging function ( )1g t  operating on the time interval t′∆ . Using (76) as the form 
for the energy of the source in the derivation [10], the luminosity distance LD  is given by  

( )
2 2

1
,

1
L

r z
D

t τ

+
=

−
                                  (77) 

which is a factor ( ) 1 22 21 t τ
−

−  of the standard form ( )1LD r z= + , implying that in CGR sources appear less 
luminous and thus further away due to the relativity of cosmic time. Substituting for distance r from (75) and for 
1 z+  from (57), and simplifying, (77) becomes  

( )
( )( )

( )
sinh 1

.
1 1

M
L

M

c v c
D t

t

τ

τ

−Ω
=

− −Ω
                           (78) 

In practice we make the substitution t v cτ = , [4] (Appendix B. 4.2).  
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11. Distance Data Fitting 
We apply the luminosity distance relation (78) plus a calculated best fit fixed offset offa  to get the apparent 
magnitude ( )m z  of a distant luminous source,  

( ) ( )5log ,L B offm z D z M a= + +                             (79) 

where we apply (58) to convert from t τ  to z in obtaining ( )LD z . We use the CGR standard value [9] of 
4158 Mpccτ = . In practice the source absolute magnitude BM  is absorbed into the value of the offset offa . 

We include in our analysis data from both SNE-Ia and GRB studies. The SNE-Ia data come from the Supernova 
Cosmology Project SCP Union 2.1 data set [5] of 580 SNe-Ia magnitudes and errors up to 1.5z < . The GRB 
distance data of 69 burst events come from [6] which are selected events up to 7z <  from website data 
provided by [11]. For the jm  observed magnitudes and jmerr  respective errors, the 2χ  for the fit is defined 
by  

( ) 2

2

1
.

N j j

j j

m m z
merr

χ
=

 −
 =
  

∑                                (80) 

The reduced chi-squared 2
redχ  is given by  

( )
2

2 ,
1red N k

χχ =
− −

                                  (81) 

where N is the number of data samples and k is the number of fitting parameters. 
For the CDMΛ  model the luminosity distance relation is given by  

( ) ( )
( )0 3

d1 ,
1

z
L cdm

M

uD z c z
u

λ τ
Λ

= +
Ω + + Ω

∫                        (82) 

where 1M ΛΩ + Ω =  for flat space [12]. 
Although SNE-Ia data are independent of any particular cosmology, this is not so for GRB data which must 

be calibrated with a specified cosmological model. This is because SNE-Ia have nearby sources to use for 
calibration, but for GRB there are no nearby sources for this purpose. The original GRB data set was calibrated 
with the CDMΛ  cosmology. To recalibrate the GRB data for the CGR cosmological model [13] we use the 
relation  

( ) ( ) ( )
( )

1log ,cgr cdm
cdm

DL z
M z M z

DL zλ
λ

γ 
= +  

 
                        (83) 

where cdmMλ  is the original GRB distance modulus calibrated with the CDMΛ  model, ( )cgrM z  is the 
distance modulus calibrated for the CGR model and 1γ  is a conversion factor. The magnitude errors were also 
converted using (83). We determined a good fitting value of 1 1.044442γ =  which was used to convert the 
GRB distance moduli for all fits to the CGR model. The converted GRB data were combined with the SNE-Ia  
data to form the complete data set. For the CGR model, the number of parameters 3k =  for MΩ , offa  and 

1γ . The parameter τ  is fixed in this analysis, so the number of degrees of freedom 1 645dofN N k= − − = , 
the same as for the CDMΛ  model. The best fit for the CGR model is shown in Table 1 for 

0.800 0.080MΩ = ±  (a conservative estimate of 10%±  error) with offset 0.140offa =  and 1 1.044442γ =  

having a reduced chi-squared 2 1.001182dofNχ =  for 645dofN = . The results are shown in Figure 2. Figure  
3 shows the histogram of the normalized residual errors for the fit. The solid curve is a Gaussian with mean 

0µ =  and standard deviation 1σ =  with an amplitude 135A =  estimated “by eye” to give a close fit to the 
histogram. The fit appears good [6] [13] [14]. 

We fit the CDMΛ  cosmology to the original GRB data set, which was calibrated with 0.270MΩ =  and 
0.730ΛΩ = . We assume 3k =  parameters in the model, for MΩ , ΛΩ  and offa . We use a fixed Hubble  
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Figure 2. SCP Union 2.1 SNe-Ia data [5] (filled circles) and GRB [6] (dotted x’s). The solid line is for 
CGR ( )DL z  from (79). The CGR standard value was used for 1 72.2 0.84 km s Mpchτ = = ± . 

The parameters for the CGR model were the calculated best fit values, with mass density 0.800MΩ = , 
offset 0.140offa =  and GRB conversion factor 1 1.044442γ = . Magnitude and magnitude errors both 
were converted to the CGR model (83). For the fit to 649 data points with 3 parameters the reduced 

2 1.001182χ = .                                                                        
 

 

Figure 3. Histogram of CGR residuals ( )k km m z−  with ( )kDL z  from (79) with redshift kz  from 
the SCP Union 2.1 SNe-Ia data [5] and GRB data [6], for calculated best fits with mass density 

0.800MΩ = , offset 0.140offa =  and 1 1.044442γ = . The solid line is a standard Gaussian with mean 

0µ =  and standard deviation 1σ =  and the amplitude is scaled by the factor 135A =  to give a 
good “by eye” fit to the histogram.                                                         
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Table 1. CGR vs. CDMΛ  model performances with reduced ( )2 1n kχ − − . The number of samples 649n = , and 

number of parameters 3k =  for both models which gives 1 645n k− − = . The CGR row showing the best fit is marked 
with a (*). Refer to the text for an explanation of the best fitting model. The CDMΛ  model, with fixed MΩ  and fixed 

ΛΩ  has a single best fit for offa  based on the original data.                                                     

Model MΩ  offa  2χ  2 645χ  

CGR 0.650 0.140 640.656 0.993265 

CGR 0.700 0.140 642.143 0.995571 

CGR 0.750 0.140 643.844 0.998208 

*CGR 0.800 0.140 645.762 1.001182 

CGR 0.850 0.143 648.263 1.005059 

CGR 0.900 0.145 650.815 1.009015 

ΛCDM 0.270 0.060 635.397 0.985111 

 
constant of 1 1

0 1 72.2 km s MpcH τ − −= = ⋅ ⋅ . The best fit occurred for offset 0.060offa = . Figure 4 shows the 

Hubble Diagram for the fit of ( )L cdmD zλ  to the combined data, with the GRB moduli used unaltered from the  
data set. The parameter 0H  is fixed in this analysis, so the number of degrees of freedom is the same as for the 
CGR model. The reduced chi-squared 2 0.985111dofNχ = . Figure 5 shows the histogram of the normalized 
residual errors for the fit. The solid curve is a Gaussian with mean 0µ =  and standard deviation 1σ =  with 
an amplitude 135A =  taken from the CGR histogram. 

Under the reduced chi-squared statistical model, the ideal reduced 2 1χ =  with the errors distributed 
normally (Gaussian) about 0µ =  with 1σ = . The model with a reduced 2χ  which is closest to 1 is 
preferred. Models with reduced 2 1χ >  are deemed to have too few parameters, so “under fit” the data. Models 
with reduced 2 1χ <  are deemed to have too many parameters and thus “over fit” the data. 

We see that the CGR model under fits the data by 0.001182≈ , while the CDMΛ  model over fits the data 
by 0.014889≈ . For this analysis, the CGR model is 10≈  times better at fitting the combined data. However, 
considering that we did not vary the mass densities MΩ  and ΛΩ , nor the Hubble parameter 0H , when fitting 
with the CDMΛ  model, we make this conclusion as mainly a statement of our confidence in the CGR model. 
A more rigorous analysis of the fitting operation would be required. 

Dark Matter and the X Particle Hypothesis 

Assume that the mass density M B DΩ = Ω +Ω , that is, composed of baryonic matter BΩ  and cold dark matter 

DΩ . For 2 0.020 0.002BhΩ ≈ ±  (95% confidence level) [15], with the CGR value 0.722h = , this gives  

0.038 0.004.BΩ ≈ ±                                     (84) 

Then, for 0.800 0.080McgrΩ = ±  and 0.270 0.013M cdmλΩ = ± , the CGR model gives a dark matter density 
of  

0.762 0.084,DcgrΩ ≈ ±                                   (85) 

compared to the CDMΛ  model which gives a dark matter density of  
0.232 0.017.D cdmλΩ ≈ ±                                  (86) 

In an extension to the standard model (SM), a hypothetical X particle [8] is theorized to exist, having 2 species, 
1X  and 2X  (and their conjugate species 1X  and 2X .) These particles were generated non-thermally during 

the early universe. The 1X  decays either into a visible three quark state (UDD), or the hidden state ( ,Y Φ ), 
with each state having baryon number +1. The conjugate state 1X  decays to the visible three quark state 
(UDD ) or the hidden state ( *,Y Φ ), with each state having baryon number −1. All of the dark matter today, in  
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Figure 4. SCP Union 2.1 SNe-Ia data [5] (filled circles) and GRB [6] (dotted x’s). The solid line is for 

( )cdmDL zλ  from (82). The CGR standard value was used for 1 72.2 0.84 km s Mpchτ = = ± . For 

the CDMΛ  model, with fixed 0.270MΩ =  and fixed 0.730ΛΩ = , the calculated best fit value for 

offset 0.060offa = . For the fit to 649 data points with 3 parameters the reduced 2 0.985111χ = .          

 

 

Figure 5. Histogram of CDMΛ  residuals ( )k km m z−  for ( )cdm kDL zλ  from (82) with redshift kz  

from the SCP Union 2.1 SNe-Ia data [5] and GRB data [6], for fixed mass density 0.270MΩ =  and 
fixed dark energy mass density 0.730ΛΩ = , with a calculated best fit offset 0.060offa = . The solid 

line is a standard Gaussian with mean 0µ =  and standard deviation 1σ =  and the amplitude factor 
135A =  comes from the CGR histogram.                                                   
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this extended model, is theorized to be composed entirely of hidden particle states ( *,Y Φ ). Rare processes can 
transfer baryonic number from the hidden sector to the visible sector through inelastic scattering of anti-baryonic 
dark matter states ( *,Y Φ ), annihilating baryons in the visible sector. The cosmic abundance of remnant Y  and 

*Φ  particles, with densities given by Yn  and *n
Φ

, respectively, is the same as the baryon density Bn  in the 
universe today, and thus would have the same abundance ratio as Bη , the baryon to photon ( nγ ) ratio. That is,  

* 106 10 ,Y B
B

nn n
n n nγ γ γ

η −Φ= = = ≈ ×                              (87) 

for a baryon density 0.04BΩ ≈ . Further details of this extension to SM is beyond the scope of this paper. From 
[8] (Equation (10)) we can relate the ratio of the density of dark matter (anti-baryonic) to baryonic matter in the 
universe to the ratio of the rest masses of the Y , *Φ  and proton by  

* 2
2 ,pYD

B p p

m m wm
w

m m
Φ

+Ω
= ≈ =

Ω
                            (88) 

where Ym  and *m
Φ

 are, respectively, the Y  and *Φ  particle rest masses and pm  is the proton rest mass 

and we assumed that * pYm m wm
Φ

≈ ≈ . For the CGR model, (88) yields  

0.762 0.084 2 ,
0.038 0.004

Dcgr
cgr

B

w
Ω ±

= =
Ω ±

                             (89) 

which implies  

10.43 2.18.cgrw = ±                                   (90) 

This gives rest mass energies for the Y  and *Φ  particles of  

( )*
2 2 9.79 0.47 GeV.Ycgr cgr

m c m c
Φ

≈ ≈ ±                          (91) 

For the CDMΛ  model, (88) yields  

0.232 0.017 2 ,
0.038 0.004

D cdm
cdm

B

wλ
λ

Ω ±
= =

Ω ±
                           (92) 

which implies  
2.61 0.55.cdmwλ = ±                                   (93) 

This gives rest mass energies for the Y  and *Φ  particles [8] of  
( )*

2 2 2.45 0.47 GeV.Y cdm cdm
m c m cλ λΦ

≈ ≈ ±                        (94) 

In both cases above we have tried to account for the constraint that * p eYm m m m
Φ

− < + , where em  is the 

electron mass, by restricting the range of values to be within 0.47 GeV± . This may be only an approximate 
treatment, at best. 

12. Time Dilation in SNe-Ia Light Curves 
We now consider two SNe-Ia (SNe) light curve experiments [2] [3]. Common to both experiments is the stretch 
of the SNe light curve interval for each distant source when compared to the standard nearby (local) source. 
Because these studies rely on a model for what the light curve looks like in the rest frame of the source SNe, we 
will require the use of both kinds of cosmic time additions described above. The light curve time interval  

obsspect′∆  from the distant SNe will be observed to have a time transformation which is a combination of cosmic 
time addition in the past combined with the time effect of the expansion of space, having the observed value 

obst∆  which is given by (72),  

( ) ( )2 21 1 .obs obsspect t z t τ′∆ = ∆ + −                           (95) 
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In CSR this is the time interval that is observed from a source light curve or any time varying phenomenon at 
a cosmic time t in the past. 

On the other hand, we can describe the light curve recorded by the observer in the frame K ′  at cosmic time t 
relative to our local observer in K at cosmic time 0. A light curve time duration of spect∆  in K, from (71) for a 

cosmic time addition in the present, corresponds to the value spect′∆  in K ′  given by  

( )2 2
.

1
spec

spec

t
t

t τ

∆
′∆ =

−
                               (96) 

If we make the assumption that  

,obsspec spect t′ ′∆ = ∆                                 (97) 

then combining (95) with (97) yields  

( )1 .obs spect t z∆ = ∆ +                               (98) 

It is evident that CSR, assuming (97), is consistent with the time dilation reports showing effects of cosmic 
aging equivalent with 1 z+  for redshift z. However, to offer a different perspective on cosmic time 
transformation, we will show plots of the ratio obs obsspect t′∆ ∆  given by (95), instead of obs spect t∆ ∆  which was 
used in those reports. 

For the SNe data from [2] the light curve agings are given as the light curve width w and the error in the width 
wσ , obtained directly from [2] (Table 1) for the SCP high z SNe and from [2] (Table 3) for the Calán/Tololo low 

z SNe. Since the goal of the experiment was to normalize each light curve to a single standard light curve, we  
will assume that the equivalent local rest frame time is 1spect∆ =  which implies from (96) that 

( )2 21 1spect t τ′∆ = − . The reduced observed quantity is w  and we will assume using (98),  

( ) ( )1 1 .obs spect t z z w∆ = ∆ + = + =                          (99) 

We will use (99) to acquire the redshift z and hence t τ  from the light curve rather than using the redshift 
from the host galaxy. The quantity we use is the ratio obs obsspect t′∆ ∆  from (95),  

( ) ( )2 21 1 .obs

obsspec

t z t
t

τ∆
= + −

′∆
                           (100) 

The plotted data are shown in Figure 6. For data points with 1w <  the redshift was set to 0z = . The plot 
shows the reduction of apparent light curve aging at higher redshift. This is the effect which would be seen in 
the observed light curve without scaling by the rest frame aging rate. The reduced chi-squared is 2 57 10.8χ =  
for the data fitted to the cosmic aging rate ( )1g z , (74). 

The next SNe data are from [3]. We take the aging rates ( )spec obst t∆ ∆  from [3, Table 3], in the last column, 
unparenthesized. We compute  

( ) ( )2 21 .obs
obs spec

obsspec

t t t t
t

τ∆
= ∆ ∆ −

′∆
                       (101) 

The errors come from [3] (Table 3), in the last column, parenthesized. The redshifts are computed from the 
aging rate data instead of from the given host galaxy values. The plotted data are shown in Figure 7. Again we 
note the reduction in the aging rate at higher redshifts. The reduced chi-squared for the data fitted to the cosmic 
aging rate ( )1g z  is 2 34 0.690χ = . In Figure 8 we show the combination of all the SNe aging data from the 
two reports. With 93 total data points the reduced chi-squared is 2 92 6.98χ = . 

13. Simulation of Quasar Like Light Curve Power Spectra 
The purpose of this section is to simulate quasar like light curve power spectra to compare with the report of 
observed low and high redshift quasar light curve power spectra [1]. The observed light curve power  
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Figure 6. Calán/Tololo low z and SCP high z SNe-Ia light curve time intervals [2] (Goldhaber, et al.). 
Open circles are obs obsspect t′∆ ∆  for each of the 58 SNe-Ia. Error bars are computed from the wσ  data 

errors. The solid line is the cosmic aging function ( )1g z  of (74). The reduced 2χ  for the fit of 

( )1g z  to the data is 2 57 10.8χ = .                                                         

 

 
Figure 7. SCP low z and high z SNe-Ia light curve time intervals [3] (Blondin, et al.). Filled circles are 

obs obsspect t′∆ ∆  for each of the 35 SNe-Ia. Error bars are computed from the data errors. The solid line 

is the cosmic aging function ( )1g z . The reduced 2χ  for the fit of ( )1g z  to the data is 
2 34 0.690χ = .                                                                            
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Figure 8. Combined SNe-Ia light curve time intervals obs obsspect t′∆ ∆ . Open circles are from 
[2] (Goldhaber, et al.). Filled circles are from [3, Blondin, et al.]. The solid line is the 
cosmic aging function ( )1g z . The reduced 2χ  for the fit of ( )1g z  to the combined 

data is 2 92 6.98χ = .                                                                 
 

spectra [1] (Figure 5, left-hand panel) were found to be identical within the experimental errors. Therefore, we 
will assume the low and high redshift light curves are identical in the observer frame K. In addition, it is 
assumed that the redshifts are of pure cosmological origin, with no components of gravitational redshifts or  
Doppler shifts. In our simulation, the pseudo quasar light curve apparent magnitudes ( )m j  at epoch j is 
generated by the function  

( ) 2 20 0800 2002πexp cos sin ,
y e e

f j f jjm j
N N N

     
= −           

                 (102) 

for each epoch 1, 2, , ej N=  , where 560eN = , 56yN =  years and 1
0 1 16.3 yr 0.0613 yrf −= = . The 

redshifts used are low 0.765z =  and high 1.711z =  and 1
0 16.3 yrf − =  are from the quasar time dilation 

report [1]. For better resolution we used 56 yryN =  instead of the 28 yr which was used in the report. The 

Fourier power spectrum ( ),SP z j  is determined from the magnitudes ( )m j  by [1] (Equation (1))  

( ) ( ) ( ) ( ) ( )
2 2

1, 1,

2π 2π, cos sin ,
e e

S
k N k Ne e e e

T z T zjk jkP z j m j m j
N N N N= =

      
= +      

      
∑ ∑         (103) 

where j runs over eN  equally spaced epochs of simulated data separated by time ( ) eT z N . Then the time 
transformations will take us from the origin of observer frame K to the quasar rest frame K ′  at cosmic time t. 
For CSR the sampling interval ( )T z  we use is defined by  

( ) ( )
0

1

,TT z
g z

=                               (104) 

where ( )1g z  is given by (74) and  

0 01 .T f=                                 (105) 

We divide by ( )1g z  in (104) because we are going back in time to the quasar rest frame. 
For our purposes, the flat space Friedmann-Lemaître-Robertson-Walker (FLRW) model is the CSR model 

with the cosmic aging function ( )1g z  replaced by ( )1 z+ . For the flat space FLRW model we use for ( )T z ,  
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( ) 0 ,
1
TT z

z
=

+
                               (106) 

where we have again divided out the time transformation to get to the quasar rest frame. 
For either model we use the fitting function ( ),P f z  defined by [1], Equation (2)  

( )
( )( ) ( )( )

0, ,a b
c c

CP f z
f f z f f z

−=
+

                      (107) 

where 0C  is the power, f is the frequency, ( )cf z  is the redshift dependent frequency at maximum power and 

a and b are constants. We use the appropriate form of ( )cf z  for the CSR or the FLRW models. We show light 

curve power spectrum plots of ( ) ( )( )log ,S jP z j f z×  vs. ( )( )log jf z  for the light curves at low and high 
redshift. 

Assuming both quasars have identical power spectra in the observer frame K, we obtain the power spectrum 
from (103) by setting the redshift 0z =  which is given by ( )0,SP j . This is shown in Figure 9 with the fitting 
power function ( ),fP f z  parameters 0 0.020524C = , ( ) 00 2.4cf z f= = , 1.4a α=  where 0.81α =  from 
[1] (Table 1, Observer frame Sample = z < 1, Index = −0.81) and b a= . This can be compared with [1] (Figure 
5, left-hand panel). 

Next we show the light curve power spectra for the low and high redshift quasars, low 0.765z =  and 
high 1.711z = , respectively, as it would be observed in their rest frame. The light curves are corrected by 

( )11 g z  since we are obtaining the light curve back in time. We show the quasar power spectrum along with 
the fitting function ( ),fP f z , which has the same parameters as were used at the origin of K except for the 
frequency at maximum power which is given by  

 

 
Figure 9. Simulated quasar light curve power spectrum, filled circles, observed at origin of 
frame K at cosmic time 0t = . Low redshift and high redshift quasar power spectra overlap 
so are shown as one spectrum. The frequency f is 1yr− . The abscissa (horizontal) axis is 

( )log f  and the ordinate (vertical) axis is ( )log power f× . Both axes have unit scaling. 

The function ( )fP f , solid line, was fitted iteratively with parameters 0 0.020524C = , 

( ) 10 0.14724 yrcf
−= , 1.134a =  and b a= − , yielding 2 2 0.042673.yNχ =                
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( ) ( )0 12.4 ,cf z f g z=                                (108) 

with ( )1g z  from (74). This is plotted in Figure 10. The fitting function has the same parameters for both the 

low and high redshift spectra as were used in the spectrum at the origin of K except for ( )cf z . 
To show what the power spectra might look like for a flat space FLRW observation we show the low and high 

redshift quasar light curve power spectra when the light curves are corrected for time dilation by ( )1 1 z+ , 
assuming a flat space cosmology. This is shown in Figure 11. This plot is similar to [1] (Figure 5, right-hand 
panel). The fitting function ( ),fP f z  has the same parameters for both the low and high redshift spectra as 
were used at the origin of K except for the frequency at maximum power which is given by  

( ) ( )02.4 1 .cf z f z= +                                (109) 

In Figure 12 we show a contour plot of the cosmic aging ratio ( )Γ ,z z′  defined by  

( ) ( )
( )

1

1

, ,
g z

z z
g z

′Γ =
′

                                (110) 

between two source fields, one at redshift z and the other at redshift z′ . This is to demonstrate that it is possible 
to obtain similar aging rates (eg. within 10%) between two sources separated by large redshift. For the above 
low and high redshifts, ( )1.711,0.765 0.8803Γ = . 

For another demonstration of the cosmic aging ratio, we show in Figure 13 the power spectrum for each 
quasar in its rest frame where 1 0.7z =  and 2 1.4z = . The aging ratio is ( )2 1, 0.9317z zΓ = . 

14. CMB Anisotropy Acoustic Peak 
In CGR the big bang occurred at velocity v c= . At the recombination of protons and electrons in the 
baryon-photon plasma, when the photons decoupled to form the CMB radiation field, the velocity was rcv v= ,  

 

 
Figure 10. Simulated quasar light curve power spectra in the rest frame K ′  of each quasar where each light curve 
transforms according to CSR. The frequency f is 1yr− . For the low redshift power spectrum, filled circles, low 0.765z = , the 

horizontal axis is scaled by ( )1 lowg z  with ( )1g z  from (74) and the vertical axis has unit scaling. The power spectrum 

time interval is transformed by ( )1 low1 g z  and the frequency is scaled by ( )1 lowg z  which effectively sets the scale to unity. 

For the high redshift power spectrum, open circles, high 1.711z = , the horizontal axis is scaled by ( )1 highg z  and the vertical 

axis has unit scaling although the power spectrum time interval is transformed by ( )1 high1 g z  and the frequency is scaled by 

( )1 highg z . The fitting function ( )fP f  has the same parameters as used at the origin of K except the central frequency is 

scaled by ( ) ( )10.14724cf z g z= ×  with lowz z= , solid line, and highz z= , dashed line.                               
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Figure 11. Simulated quasar light curve power spectra in the rest frame K ′  of each quasar where each light curve 
transforms according to flat space FLRW. The frequency f is 1yr− . For the low redshift power spectrum, filled circles, 

low 0.765z = , the horizontal axis is scaled by 1 lowz+ . and the vertical axis has unit scaling. The power spectrum time 
interval is transformed by low1 1 z+  and the frequency is scaled by low1 z+  which effectively sets the scale to unity. For 
the high redshift power spectrum, open circles, high 1.711z = , the horizontal axis is scaled by high1 z+  and the vertical axis 

has unit scaling although the power spectrum time interval is transformed by high1 1 z+  and the frequency is scaled by 

high1 z+ . The fitting function ( )fP f  has the same parameters as used at the origin of K except the central frequency is 

scaled by ( ) ( )0.14724 1cf z z= × +  with lowz z= , solid line, and highz z= , dashed line.                                       

 

 

Figure 12. Contour plot of ( ) ( ) ( )1 1Gamma ,z z g z g z′ ′=  where ( ) ( ) ( )
23 2

1 4 1 1 1g z z z = + + +   from (74). The 

horizontal and vertical axes are redshift z. Of interest is the curved unity (1) contour going from horizontal lower right to 
vertical upper left in the graph.                                                                             
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Figure 13. Simulated quasar light curve power spectra in the rest frame K ′  of each quasar, assuming each light curve 
transforms according to CSR. The frequency f is 1yr− . For the low redshift power spectrum, filled circles, 1 0.7z = , the 

horizontal axis is scaled by ( )1 1g z  and the vertical axis has unit scaling. The power spectrum time interval is transformed 

by ( )1 11 g z  and the frequency is transformed by ( )1 1g z  which effectively makes the scale unity. For the high redshift 

power spectrum, open circles, 2 1.4z = , the horizontal axis is scaled by ( )1 2g z  and the vertical axis has unit scaling 

although the power spectrum time interval is transformed by ( )1 21 g z  and the frequency is scaled by ( )1 2g z . The fitting 

function ( )fP f  has the same parameters as used at the origin of K except the central frequency is scaled by 

( ) ( )10.14724cf z g z= ×  with 1z z= , solid line, and 2z z= , dashed line.                                            

 
which is related [4] to the time rct  of recombination by rc rcv c t τ= . Applying (58), we have  

( )
( )

2

2

1 1
,

1 1
rcrc rc

rc

zv t
c zτ

+ −
= =

+ +
                            (111) 

where rcz  is the cosmological redshift at recombination. The coordinate distance bbr  to the big bang is given 
by (23) with 1v c = ,  

( )sinh 1 .
1bb M

M

cr τ
= −Ω

−Ω
                        (112) 

Likewise, the coordinate distance rcr  to the recombination epoch with rcv c v c= , is given by  

sinh 1 .
1

rc
rc M

M

vcr
c

τ  = −Ω −Ω  
                      (113) 

We construct a simple model to determine the size of the sound horizon [16] [17] for the longest sound wave, 
which generates the first acoustic peak. If er  is the radius of the sphere of expanding plasma, ( ) 2e rcv c v= +  

is the average expansion velocity between the big bang and the recombination epoch and 3sc c=  is the 
speed of the longest sound wave in the plasma, then, by proportion of velocities, ( )sh s e er c v r=  is the radius of 
the sphere containing the longest wave. Assuming that the wave travels along a great circle path of the sphere, 
the size of the sound horizon shd  is given by  

( )
4π2π .

3 1
e

sh sh
rc

rd r
v c

= =
+

                          (114) 

Defining e bb rcr r r= − , which is the difference of (112) and (113), then from (114), the size of the sound 
horizon at recombination is given by  
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( )
( )

( )
( )

sinh 1 sinh 14π 4π .
13 3 1 1

M rc Mbb rc
sh

rc M rc

v cr r cd
v c v c

τ     −Ω − −Ω−     = =  + −Ω +  
           (115) 

The angle shθ  of the sound horizon at recombination is given by  

,sh
sh

rc

d
DA

θ =                                  (116) 

where the angular diameter distance rcDA  is given by [10]  

( )2 ,
1

rc
rc

rc

DLDA
z

=
+

                              (117) 

where rcDL  is the luminosity distance of the recombination epoch. Substituting from (111)-(115) and (117) 
into (116) and simplifying we obtain  

( )
( )

2 2 sinh 11 14π 1 .
13 sinh 1

Mrc rc
sh

rc rc M

z t
v c v c

τ
θ

    −Ω+ −    = − +    −Ω     
             (118) 

The CMB radiation escaped the matter sphere and expanded to fill all space. The size of the sound horizon 
0shd  in the CMB on today’s sky is obtained by applying (53) with shd ,  

( )0 1 .sh sh rcd d z= +                               (119) 

Then, the angle 0shθ  of the sound horizon in the CMB radiation field on today's sky is given by  

( )0
0 1 .sh

sh sh rc
rc

d z
DA

θ θ= = +                          (120) 

The multipole l of the first acoustic peak [16] recorded in the CMB radiation field is proportional to the 
inverse of (120),  

( )0

π π .
1sh sh rc

l
zθ θ

≈ =
+

                            (121) 

Substituting 0.800 0.080MΩ = ±  and 1100rcz =  into the above equations we obtain a value of  

224 5,l ≈ ±                                      (122) 
which is in good agreement with observation [18] [19] and,  

0 0.805 0.020 .shθ ≈ ±                                (123) 

The size of the sound horizon on today’s sky is 0 30.2 Mpcshd ≈ , which is 1/5 the value of the standard 
model. 

15. Discussion 
Let us review briefly some aspects of the Carmeli five dimensional brane world cosmological model. 

15.1. Velocity, Acceleration and Cosmic Distances in CSR  

From (33), for d 0t =  with 2 2 2 2d d d dx y z r+ + =  we have,  

( )2 2 2 2 2 2d d d d d ,s v x y zτ= − + +                          (124) 

This can be manipulated to obtain  
2 22 2 2 2

2 2
2 2 2

d d d d d1 1 1 ,
d dd
v x y z v t
s sv

τ τ
τ τ

   + +   = − = −      
      

                (125) 

where  
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( )2 2 2 2 2d d d dt x y z v= + +                            (126) 

is the cosmic time (squared). Using (125) this gives for the components of the four-velocity in CSR,  

2 2

d d d 1 d d ,
d d d d d1
x x v x xu
s v s v vt

µ µ µ µ
µ γ

ττ τ
= = = =

−
                     (127) 

where 0,1, 2,3µ =  and  

2 2

1 .
1 t

γ
τ

=
−

                                (128) 

We have from (127) that  
0 ,u γ=                                     (129) 

{ }d , 1, 2,3 .
d

k
k xu k

v
γ
τ

= =                             (130) 

Defining u uµ
µ =  we obtain for the invariant 4-vector length, from (127), (129) and (130),  

0 1 2 3
0 1 2 3 1,u u u u u u u u u uµ

µ = − − − =                          (131) 

that is, the length of uµ  is unity in all CSR frames of reference. Multiplying (125) by 4
0a τ , where 0a  is the 

ordinary acceleration measured in the cosmic frame at time 0, the local frame, we obtain after some 
manipulation,  

2 4 2 2 2 2 4
0 ,a a t aτ τ τ− =                             (132) 

where  

0
2 2

,
1

aa
t τ

=
−

                               (133) 

is the acceleration at any cosmic time t. Equation (132) can be put into the form  
2 4 2 2 2 4

0 ,a v aτ τ τ− =                                 (134) 

where  

0
2 21

a tv at
t τ

= =
−

                               (135) 

is the velocity of a point which had an acceleration a over a time t. Defining the cosmic distance 2S aτ=  we 
have from (134)  

2 2 2 2
0 ,S v Sτ− =                                  (136) 

where 2
0 0S a τ= . This is analogous to the energy equation in SR, 2 2 2 2

0E c p E− = . Refer to [20] for a thorough 
treatment of this topic. 

15.2. Behavior for Large Cosmic Time 
The cosmological redshift (57) and the cosmic aging function (74) are two functions which can be used to 
describe the behaviour expected at large cosmic time t τ≈ , where τ  is the Hubble-Carmeli time constant and 
is the largest possible time. For the cosmological redshift, for observations of events close to the big bang we 
have  

11 as .
1

z t
t

τ
τ

+ ∝ →∞ →
−

                         137) 

The luminosity distance (78), as t τ→ , 1v c → , has the form  
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( ) ( )
as .

1L
cD t t
t
τ τ
τ

∝ →∞ →
−

                       (138) 

For the standard model, the luminosity distance relation, by (137), 1SMDL c tτ τ∝ − , for large t. We see 

that the CGR luminosity distance, by (138), is larger than the standard model by the factor 1 1 t τ− . On the 

other hand, from the cosmic aging function (73), for an observation t∆  of an elapsed time t′∆  which 
occurred close to the big bang time we have  

( ) ( ) 2 2
1 1 1 0 as .t t g t t t t tτ τ τ′ ′∆ = ∆ = ∆ + − → →                (139) 

This implies that durations of events, such as for example star formation, star collapse or star bursts, observed 
in nearby galaxies at cosmic times 0.84t τ<  (redshifts 3.4z < ) should be observed to have shorter durations 
the further back we look beyond cosmic times 0.84t τ>  (redshifts 3.4z > ). 

15.3. The Cosmological Redshift vs. the Cosmic Aging Function 
One may ask why the cosmological redshift of the wave length λ  of light is given by the relation ( )1 z λ+  
instead of with the cosmological aging function ( )1g t λ . The answer is that light wave phenomena do not 
involve the addition of cosmic times as do evolutionary phenomena such as a star burst or collapse. Light 
propagation is only affected by cosmic expansion while evolutionary phenomena are affected by cosmic time 
addition and cosmic expansion. 

15.4. The Accelerated Expansion 
CGR does not have a cosmological constant, but it does have a critical mass density cρ . From (14), the 
effective mass density can be defined in terms of a vacuum mass density  

,eff vacρ ρ ρ= +                                  (140) 

where  
23 8πvac c Gρ ρ τ= − = −                              (141) 

is the constant negative mass density of the vacuum, which is not the common view of a vacuum density. 
Differentiating (18) with respect to v we obtain the acceleration in space-velocity, which we put in the form  

2

2
d 0,
d

r Kr
v

+ =                                   (142) 

where  

( ) ( )2 21 ,vac cK c cρ ρ ρ= + = Ω −                           (143) 

and we have made the substitution, using (141),  

1.vac vac cρ ρΩ = = −                                (144) 

Equation (142) is Hooke’s law of the universe [7, Section 5.4] where K is Hooke’s constant for the universe. 
If 1Ω >  then K is positive and its solution is a sum of sine and cosine functions and the universe has a 
decelerated expansion and is closed. If 1Ω <  then K is negative and the solution is a sum of hyperbolic sinh 
and cosh functions, which means the universe has an accelerated expansion and is open; this is the situation in 
our universe today where we derived 0.800MΩ = Ω = . If 1Ω =  then 0K =  and the universe is not 
accelerating and is neither open nor close. 

Although beyond the scope of this paper, we give an expression [21] for the vacuum density vacρ  in relation 

to the Bekenstein-Hawking black hole entropy [22] given by ( ) ( )3 4S kc A G=  , where k is Boltzmann’s  

constant,   is Planck’s constant over 2π  and 2 24πA c τ=  is the area of the event horizon. For our universe 
of mass 3 4M c Gτ= , where the universe radius is twice the Schwarzschild radius, the entropy is given by  
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2 5π ,k cS
G
τ

=


                                 (145) 

which can be put into the form relating to the vacuum mass density  

( )2
3 ,

8π
P

vac S kG
ρρ

τ
−

= =                              (146) 

where the cosmological Planck mass density 3
P P PM Lρ = − . The cosmological Planck mass  

3 8PM c G=   and length P PL M c=  . The value of ( ) 1221.980 10S k ≈ × . 

15.5. Gravitational Waves as a Theoretic Selection Criteria  
When gravitational waves are detected we will be able to better quantify the strengths and weaknesses of the 
standard model (GR) and other models. In this regard, a paper on gravitational wave interferometry [23] has a 
good description of alternative theories to GR and is a fine starting place for further research. Along those lines 
of inquiry, [24] describes the behaviour of gravitational waves in Carmeli cosmology, predicting a highly 
attenuated result for gravitational waves from galactic sources but possible detectability for gravitational waves 
from within the Milky Way Galaxy. 

16. Conclusion 
In this paper, we used the linearized approximation of the 5-D Cosmological General Relativity as developed by 
Carmeli. A flat space CSR model was derived in a general way from the curved space CGR model. The CGR 
luminosity distance relation was applied to SCP Union 2.1 SNe-Ia distance data up to redshift 1.5z <  
combined with GRB distance data up to redshift 7z < . Utilizing the reduced 2χ  method in the data analysis, 
it was shown that the CGR model with a best fit mass density of 0.800 0.080MΩ = ±  performed as well as the 

CDMΛ  flat space model with an apriori mass density of 0.270MΩ = . Regarding the hypothetical X particle  
constituents, the CGR model determines rest mass energies for the Y  and *Φ  particles of  

*
2 2 9.79 0.47 GeVYm c m c

Φ
= ≈ ± . We also found that CSR could confirm the CDMΛ  model result of time 

dilation of ( )1 z+  in SNe-Ia light curves. We also showed how the cosmic aging function ( )1g z  produced a 
null effect of time dilation in simulated light curve power spectra between two groups of hypothetical QSO’s 
separated by a redshift 1.0z∆ ≈ . Finally, we gave a model for obtaining the first acoustic peak of the CMB 
anisotropy, deriving a multipole 224 5l ≈ ± , in good agreement with observation, and with an angle on the sky 
of 0 0.805 0.020shθ ≈ ±  . 
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