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Abstract 
Recently, some authors (Li, Yang and Wu, 2014) studied the parameterized preconditioned HSS 
(PPHSS) method for solving saddle point problems. In this short note, we further discuss the 
PPHSS method for solving singular saddle point problems. We prove the semi-convergence of the 
PPHSS method under some conditions. Numerical experiments are given to illustrate the efficien-
cy of the method with appropriate parameters. 
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1. Introduction 
We consider the iterative solution of the following linear system: 

* 0
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E z g

    
= = ≡    −    

                              (1) 

where p pB C ×∈  is Hermitian positive definite, p qE C ×∈  is rank-deficient, i.e., p q≥ , *E  denotes the 
conjugate transpose of E, pf C∈  and qg C∈ . Linear systems of the form (1) are called saddle point prob-
lems. They arise in many application areas, including computational fluid dynamics, constrained optimization 
and weighted least-squares problem, see, e.g., [1] [2]. 

We review the Hermitian and skew-Hermitian splitting (HSS) [3] of coefficient matrix A: 
A H S= +  
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The PPHSS Iteration Method ([4]): Denote n p q= + . Let (0) nx C∈  be an arbitrary initial guess, com-
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pute ( 1)kx +  for 0,1, 2,...k =  by the following iteration scheme until ( ){ }kx  converges, 

( 1/2) ( )

( 1) ( 1/2)

( ) ( )
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( ) ( )

k k

k k

P H x P S x b
P S x P H x b
α α
β β
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+ +

 + = − +


+ = − +
                            (2) 

where α , β  are given positive constants and 
0

0
B

P
C

 
=  
 

                                     (3) 

matrix C is Hermitian positive definite. 
Evidently, the iteration scheme (2) of PPHSS method can be rewritten as 

( 1) ( )( , ) ( , )k kx T x F bα β α β+ = +                               (4) 

here, ( , )T α β  is the iteration matrix of the PPHSS method. In fact, Equation (4) may also result from the split-
ting 

( , ) ( , )A M Nα β α β= −                                  (5) 
with 

1
*

( 1) ( 1)1 1( , ) ( )( )
B E

M P P H P S
E C

β α α
α β α β

α αβα β α β
− + + 

= + + =  −+ +  
           (6) 

Evidently, the matrix ( , )M α β  can act as a preconditioner for solving the linear system (1), which is called 
the PPHSS preconditioner. The PPHSS method is a special case of the generalized preconditioned HSS (GHSS) 
method [5]. When / ( 1)β α α= + , we can obtain a special case of the PPHSS (SPPHSS) method. In order to 
analyze the semi-convergence of the PPHSS iteration, we let 

1/2 1/2 1/2 1/2
*

00
0 0 0
P EI

H P HP S P SP
E

− − − −
  
 = = = =     − 

，  

where pI  is the identity matrix of order p and 1/2 1/2E B EC− −= . In the same way, we denote 

1/2 1 1/2( , ) ( , ) ( , )T P M N Pα β α β α β− −=                           (7) 

Owing to the similarity of the matrices ( , )T α β  and ( , )T α β , we only need to study the spectral properties 

of matrix ( , )T α β  in order to analyze the semi-convergence of the PPHSS iteration. 

2. The Semi-Convergence of the PPHSS Method 
As the coefficient matrix A is singular, then the iteration matrix T has eigenvalue 1, and the spectral radius of 
matrix T cannot be small than 1. For the iteration matrix T of the singular linear systems, we introduce its pseu-
do-spectral radius ( )Tν  by follows,  

{ }( ) max | |: ( ), 1T Tν λ λ σ λ= ∈ ≠ , 
where )(Tσ  is the set of eigenvalues of T . 

For a matrix nnRK ×∈ , the smallest nonnegative integer i such that 1( ) ( )i irank K rank K +=  is called the 
index of K, and we denote it by ( )i index K= . In fact, ( )index K  is the size of the largest Jordan block corres-
ponding to the zero eigenvalue of K. 

Lemma 2.1 ([6]). The iterative method (4) is semi-convergent, if and only if, 
( ( , )) 1index I T α β− =  and ( ( , )) 1Tν α β < . 

Lemma 2.2 ([7]). ( ( , )) 1index I T α β− = , if and only if, for any 0 ( )Y R A≠ ∈ , 1( )Y N AM −∉ . 
Theorem 2.3. Assume that B and C be Hermitian positive definite, E be of rank-deficient. Then 

( ( , )) 1index I T α β− = . 
Proof. The proof is similar to the proof of Lemma 2.8 in [8], here is omitted. 
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Lemma 2.4 ([4]). Let B and C be Hermitian positive definite, E be of rank-deficient. Assume that 
' 1 *

qS βI E E
β

= + . Then, we can partition ( , )T α β  in Equation (7) as 
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T
α β αβ β α β β α βS E I S
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− −

− −

− + + − + − − + ++ =
 + + − − +

+ + + + 

. 

Let * 'E U V= Σ  be the singular value decomposition [9] of E, where p pU C ×∈  and q qV C ×∈  are unitary 
matrices, and 

'
1 2( , ,..., )

0
q q

qdiag Cσ σ σ × Σ
Σ = Σ = ∈ 

 
， , 

( 1, 2,..., )i i qσ =  are the singular values of E . 

Lemma 2.5. The eigenvalues of the iteration matrix ( , )T α β  of PPHSS iteration method are ( 1)
( 1)

α β
β α

−
+

 

with multiplicity p q− , and the roots of quadratic equation 
2 22

2
2 22 2

(2 )( ) ( 1)( ) 0
( 1)( ) ( 1)( )

k k

k k

αβ β α αβ σ β β α σλ λ
α α β σ α α β σ

+ − − − +
− + =

+ + + +
, 1, 2,...,k q=              (8) 

Proof. Notice the similarity of matrices ( , )T α β  and ( , )T α β . The proof is essentially analogous to the 
proof of Lemma 2.3 in [4] with only technical modifications. So, it is omitted. 

Lemma 2.6. If 0kσ ≠ , then the eigenvalue λ  of the iteration matrix ( , )T α β  satisfies 1λ ≠ ; if 0kσ = , 

then 1λ =  or ( 1)
( 1)

α β
β α

−
+

. 

Proof. If 0kσ ≠ , we give the proof by contradiction. By Lemma 2.5, obviously, when ( 1)
( 1)

α βλ
β α

−
=

+
, it can 

not be equal to 1. We assume 1λ± = , by some algebra, it can be reduced to 
22 2 2 2(2 2 ) ( ) 4 0k k kd eα αβ α β σ α β αβ− + + + − + ± − = , 

here, 2
(2 )( )kkd αβ β α αβ σ= + − −  and 2 22 2( 1)( 1)( )( )k kke αβ α β α σ β σ= + − + + . It is equivalent to  

2 22( ) 0k kσ β σ+ = , so 0kσ = , which is in contradiction with 0kσ ≠ . 

If 0kσ = , we have 1λ+ =  and ( 1)
( 1)

α βλ
β α−

−
=

+
, which finishes the proof. 

Lemma 2.7 ([10]). Both roots of the real quadratic equation are less than one in modulus if and only if | | 1c <  
and | | 1b c< + . 

Theorem 2.8. If the iteration parameters α  and β  

2 1
α β α
α

< ≤
+

, 0α >                                    (9) 

then, the pseudo-spectral radius of the PPHSS method satisfies ( ( , )) 1Tν α β < . 

Proof. Using condition (9), it follows that | 1 | 1
( 1)

α β
β α

−
<

+
. According to Lemma 2.5, if 0kσ ≠ , we can obtain 

that 
2 22 2

2 22 2

( 1)( ) | 1 | ( )| | 1
( 1)( ) ( 1)( )

k k
k

k k

c β β α σ β β α σ

α α β σ α α β σ

− + − +
= = <

+ + + +
, 
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and 
2 2

2 22 2

(2 )( ) (2 ) [ ( 1) ( 1)] 1
( 1)( ) ( 1)( )

k k
k k

k k

b cαβ β α αβ σ αβ αβ β α α α β β σ

α α β σ α α β σ

+ − + + − + + + −
< < = +

+ + + +
. 

By Lemma 2.7, for the eigenvalues λ  of ( , )T α β , it holds | | 1λ < . 

If 0kσ = , by Lemma 2.6, the eigenvalues of ( , )T α β , except 1 are ( 1)
( 1)

α β
β α

−
+

. According to the definition 

of pseudo-spectral, we get ( ( , )) 1Tν α β < . 

Theorem 2.9. Let min 1min { : 0}k kk qσ σ σ≤ ≤= ≠  and max 1max { : 0}k kk qσ σ σ≤ ≤= ≠ . Then, the optimal value 
of the iteration parameter α  for the SPPHSS iteration method is given by 

2 2*
min min min

0

1arg min , 4
1 2

T
α

αα ν α σ σ σ
α>

     ≡ = + +     +     
, 

and correspondingly, 
*

*
* 2 2

min min min

2,
1 2 4

T αν α
α σ σ σ

  
=   +   + + +

.                        (10) 

Proof. According to Lemma 2.5 and Lemma 2.6, we know that the eigenvalues of the iteration matrix 

( , )T α β  are 1
1α

−
+

 with multiplicity p, and 

22

22 2(1 )
k

k

α σ

α α σ

+

+ +
, 1, 2,..., .k q=                              (11) 

If 0kσ = , the eigenvalues with the form of Equation (11) are 1, which can not affect the value of 
( ( , ))Tν α β . Therefore, without loss of generality, here we only need to discuss the case 0kσ ≠ . The rest is 

similar to that of the proof of Theorem 3.1 in [4], here is omitted. 

3. Numerical Results 
In this section, we use an example to demonstrate the numerical results of the PPHSS method as a solver by 
comparing its iteration steps (IT), elapsed CPU time in seconds (CPU) and relative residual error (RES) with 
other methods. The iteration is terminated once the current iterate satisfies 810RES −≤  or the number of the 
prescribed iteration steps 1,000k =  are exceeded. All the computations are implemented in MATLAB on a PC 
computer with Intel (R) Celeron (R) CPU 1000M @ 1.80 GHz, and 2.00 GB memory. 

Example 3.1 ([11]). Consider the saddle point problem (1), with the following block form of coefficient ma-
trix: 

2 22 20
0

l lI L L I
B R

I L L I
×⊗ + ⊗ 

= ∈ ⊗ + ⊗ 
, 

2 22 ( 2)
1 2( ) l lE E b b R

∧
× += ∈ , 

where symbol ⊗  denotes the Kronecker product, and 
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b E e
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, 

2 /2
2 /2

1,1,...,1 lT
l

e R= ∈（ ） , 1 ( 1,1,0) l lQ tridiag R
h

×= ⋅ − ∈ , 1
1

h
l

=
+

, 

the right-hand side vector b is chosen by p qb Ae += , where (1,1,...,1)T p q
p qe R +
+ = ∈ , 22p l= , 2 2q l= + . 

For the Example 3.1, we choose 1ˆTC E B E−=  where B̂  is the block diagonal matrix of B. In Table 1, it is  
clear to see that the pseudo-spectral radius of the PPHSS and the SPPHSS methods are much smaller than of the 
PHSS method when the optimal parameters are employed. In Table 2, we list numerical results with respect to  
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Table 1. The optimal iteration parameters and pseudo-spectral radius. 

Method l  8 16 24 32 

PHSS 
*α  1.6328 2.1999 2.6511 3.0367 

* *( ( , ))Tν α α  0.6756 0.8112 0.8667 0.8969 

SPPHSS 

*α  1.0216 1.0059 1.0027 1.0015 

*
*

*
( ( , ))

1
T αν α

α +
 0.4947 0.4985 0.4993 0.4996 

PPHSS 

expα  1.9815 2.6990 2.5976 2.9953 

expβ  0.6853 0.7845 1.0336 1.1234 

exp exp( ( , ))Tν α β  0.5209 0.5258 0.5340 0.5452 

 
Table 2. IT, CPU and RES for 1ˆTC E B E−= . 

Method l  8 16 24 32 

PHSS 

IT 26 37 47 54 

CPU 0.399 1.548 7.286 27.178 

RES ( 910− ) 6.6914 7.2250 7.3711 9.3294 

SPPHSS 

IT 26 26 26 26 

CPU 1.075 1.583 4.879 8.610 

RES ( 910− ) 5.3781 6.7198 7.0689 7.2124 

PPHSS 

IT 16 16 16 16 

CPU 0.220 1.008 3.620 12.558 

RES ( 910− ) 7.8783 7.6704 7.7535 8.1446 

GMRES 

IT 883 2560 5450 10376 

CPU 0.524 3.179 12.572 16.264 

RES ( 910− ) 9.8243 9.9925 9.9903 9.9950 

PHSS-GMRES 

IT 22 35 44 50 

CPU 0.111 0.467 1.649 3.751 

RES ( 910− ) 9.6710 8.0874 9.3990 9.8588 

SPPHSS-GMRES 

IT 10 11 13 14 

CPU 0.082 0.372 1.831 3.892 

RES ( 910− ) 4.7178 6.7487 6.2498 4.2212 

PPHSS-GMRES 

IT 11 13 13 16 

CPU 0.070 0.428 1.564 3.366 

RES ( 910− ) 5.4534 2.3975 9.8449 9.8690 

 
IT, CPU and RES of the texting methods with different problem sizes l. We see that the PPHSS and SPPHSS 
methods with appropriate parameters always outperforms the PHSS method both as a solver and as a precondi-
tioner for GMRES in iteration steps and CPU times. Notice 
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1 1 * 1 1 1

1

1 * 1 1

1( )
( 1)

( , )

( 1)

B I ES E B B ES
M

S E B S

α β α β
β α β αβ

α β
α β α β
β α α

− − − − −

−

− − −

+ + ′ ′− − + =
 + +′ ′ + 

 

where * 11S C E B Eβ
β

−′ = + . To compute the matrix-vector products with 1( , )M α β − , we make incomplete 

LU factorization of B and S ′  with drop tolerance 0.001. In the two tables, we use restarted GMRES (18) and 
preconditioned GMRES (18). 
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