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Abstract 
We have studied periodic orbits generated by Lagrangian solutions of the restricted three-body 
problem when both the primaries are triaxial rigid bodies and source of radiation pressure. We 
have determined periodic orbits for different values of   ′ ′ ′1 1 2 2, , , , , , andµ h A A A A P P  (h is energy 
constant; μ is mass ratio of the two primaries; 2, ,   ′ ′1 1 2 andA A A A  are parameters of triaxial rigid 
bodies and   ′andP P  are radiation parameters). These orbits have been determined by giving 
displacements along the tangent and normal at the mobile co-ordinates as defined in our papers 
(Mittal et al. [1]-[3]). These orbits have been drawn by using the predictor-corrector method. We 
have also studied the effect of triaxial bodies and source of radiation pressure on the periodic or-
bits by taking fixed value of μ. 

 
Keywords 
Restricted Three-Body Problem, Periodic Orbits, Triaxial Rigid Body, Radiation Pressure 

 
 

1. Introduction 
This paper is the extension of our papers, Mittal et al. [1]-[3]. Charlier [4] and Plummer [5] studied the existence 
of two families of small periodic motions in the neighborhood of Lagrangian solutions in the plane circular re-
stricted three-body problem, with different values of the parameter μ. Riabov [6] investigated periodic motions 
analytically. Szebehely [7] has described the results on the periodic motions of circular restricted three-body 
problem. Deprit and Henrard [8] gave more results on periodic motions in their paper. Markeev and Sokolsky 
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[9] worked on the small periodic motions generated by Lagrangian solutions for all values of μ and for small 
values of h for which the conditions of holomorphic integral theorem are valid. Hadjidemetriou [10] has dis-
cussed the continuation of periodic orbits from the restricted to the general three-body problem. Karimov and 
Sokolsky [11] have studied the periodic motions generated by Lagrangian solutions of the circular restricted 
three-body problem by using mobile co-ordinates and by taking displacements along the tangent and the normal. 
Aggarwal et al. [12] have discussed the non-linear stability of the triangular libration point when both the pri-
maries are radiated axe symmetric rigid bodies in the presence of third and forth order resonance. Abouelmagd 
et al. [13] have studied the periodic structure of the restricted three-body problem considering the effect of the 
zonal harmonics J2 and J4 for the more massive body. They showed that the triangular points in the restricted 
three-body problem have long or short periodic orbits in the range 0 ≤ µ < µc. Perdios et al. [14] have studied the 
equilibrium points and related periodic motions in the restricted three-body problem with angular velocity and 
radiation effects. Jain and Aggarwal [15] have studied the stability and existence of non-collinear libration 
points in restricted three-body problem with stokes drag effect when smaller primary is an oblate spheroid. 

The celestial bodies are in general axis-symmetric bodies, so its shape should be taken into account as well. 
The replacement of mass point by rigid-body is quite important because of its wide applications. The re-entry of 
artificial satellite has shown the importance of periodic orbits.  

That is why, we have thought of studying, in this paper, the periodic orbits generated by Lagrangian solutions 
of the restricted three-body problem when both the primaries are triaxial rigid bodies and source of radiation 
pressure. We determine the periodic orbits by giving displacements at the mobile co-ordinates along the tangent 
and normal. We have also determined family of periodic orbits by fixing μ (mass ratio of the two primaries) and 
changing the values of 1 2 1 2, , ,A A A A′ ′  (parameters of the triaxial rigid bodies), P and P′  (the radiation parame-
ters) and varying h (energy constant). We have also studied the effect of triaxial parameters and the radiation 
pressure on the energy constant (h). 

Most of the authors have not taken into account the effect of the solar radiation pressure in the motion of the 
third body whereas we have taken both the primaries as radiating triaxial rigid bodies. Besides taking both the 
primaries as triaxial rigid bodies and the source of radiation, we have used mobile-coordinates and given the 
displacement along the normal and the tangent to the orbit which has wider applications in space dynamics. We 
have drawn the periodic orbits by using the predictor-corrector method which is given in detail in our papers 
[1]-[3].  

2. Equations of Motion 
Following the procedure of our papers [1]-[3], we consider three masses 1 2 3,  and m m m  with 1 2m m≥  and bo-
dies with masses 1 2 and m m  revolve with angular velocity n (say) in circular orbits without rotation about the 
centre of mass O. Let there be an infinitesimal mass 3m  which is moving in the plane of motion of 1 2 and m m  
and is being influenced by their motion but not influencing them. Let the line joining 1 2 and m m  be taken as 
X-axis and O their centre of mass as origin. Let the line through O and perpendicular to OX, and lying in the 
plane of motion of 1 2 and m m  being Y-axis. Let us consider a synodic system of coordinates O(XYZ), initially 
coincident with the inertial system O(XYZ), rotating with the angular velocity n about Z-axis; (the Z-axis is coin-
cident with Z-axis). We choose unit of mass such that 1 2 1,m m+ =  the unit of distance 1AB =  and unit of 
time is so chosen that 1G = . Using the dimensionless variables, we find the Lagrangian function L and the eq-
uations of motion of the infinitesimal mass in the restricted three-body problem when both the primaries are ra-
diating triaxial rigid bodies in the synodic co-ordinate system (Figure 1). 

Equations of motion with Lagrangian function L are given by   

d d0, 0,
d d

L L L L
t x x t y y

 ∂ ∂ ∂ ∂  − = − =  ∂ ∂ ∂ ∂   � �
 

where 

( ) ( ) ( ) ( )
22

2 2 2 2 1 2
3 5

1 11 1

2
1 2
3 5

2 22 2

31  1 1
2 2 2 2

31      ,
2 2

A A yn PL x y n xy xy x y
r rr r

A A y P U
r rr r

µ

µ

 
= + + − + + + − + + − 

 
 ′ ′ ′

+ + + − + 
 

� � � �

            (1) 
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Figure 1. Configuration of the restricted three-body problem with masses m1 
and m2 as radiating triaxial rigid bodies.                                       

 

( ) 3

1 2

the synodic rectangular dimensionless co-ordinates of the infinitesimal mass . 
            Here we have assumed both the primaries, with masses and are radiating triaxial rigid b dies,

,
o

m
m

y
m

x =
 

1 1
3 3mean motion 1
4 4

n A A′= = + + ; 1A  and 1A′  are the parameters of triaxial rigid bodies. It may be noted 

that n is independent of 2A  and 2A′  and P and P′  (the radiation parameters), 

Radiation pressure due to the bigger primary
Gravitational force due to the bigger primary

P = , 

Radiation pressure due to the smaller primary
Gravitational force due to the smaller primary

P′ = , 

2 2 2 2 2 2

1 12 2

2 2,
5 5

a b c a b cA A
R R

′ ′ ′− − − −′= = , 

( )
2 2 2 2

2 2 1 2 1 22 2

 , , ,
5 5

, , 1b a b aA A A A A A
R R

′ ′− −′ ′ ′= = � , 

a, b, c = length of the semi axes of the triaxial body of mass 1m , 
, ,a b c′ ′ ′  = length of the semi axes of the triaxial body of mass 2m , 

R = dimensional distance between the primaries, 

( ) ( )2 22 2 2 2
1 2, 1x y x yr rµ µ= + + = + − + , 

2

1 2

m
m m

µ =
+

, 

U = constant to be so chosen such that h (energy constant) will vanish at 4L  (libration point). 
The coordinates of 4L  (libration) are  

4 1 1 1 1 1 2 1 2 1 1
1
2Lx A A A A P Pµ α α γ γ β β ′′ ′ ′ ′ ′= − + + + + + + + , 

4 2 1 2 1 2 2 2 2 2 2
3

2Ly A A A A P Pα α γ γ β β′ ′ ′ ′ ′ ′= + + + + + + , 
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where 1
1
2

α = − , 1
1
2

α′ = , 2
1

2 3
α = − , 2

1
2 3

α′ = − , 

1
7 1
8 2

γ
µ

= − − , 
( )1

7 1
8 2 1 2

γ
µ

′ = +
−

, 2
3 5 1

2 4 3
γ

µ
 

= − 
 

, 
( )2

3 5 1
2 4 3 1

γ
µ

 
′ = −  − 

, 

1
1 ,
3

β =  1
1 ,
3

β ′ = −  2
1 ,

3 3
β = −  2

1
3 3

β ′ = −  

and  

( ) ( ) ( )

( ) ( ) ( )
( )

2 2 21 1

2 3 2 32 2

1 3 3 3 5 5 3
2 4 4

       6 11 2 4 11 2 24 37
8   8 1

        + 1 .

A AU

A A

P P

µ µ µ µ µ µ

µ µ µ µ µ µ
µ µ

µ µ

′
= − − + − − + − − +

′
− + − − − + + −

−

′+ −

  

Equations of motion can also be written as 

xx ny W− =�� � , 

2 yy nx W+ =�� �                                       (2) 

where  

( ) ( )
2

1 2
3 5

1 11 1

2
1 2
3 5

2 22 2

2
2 2 311

2 2

31 ,
2 2

2

       

A A y P
r rr r

A A y P
r rr r

nW x y

U h

µ

µ

 
+ − + + − 

 
 ′ ′ ′

+ + − 
 

= +

+ + +
 

The Jacobi integral is 

( ) ( ) ( )
2

1 2
3 5

1 11 1

2
1 2
3 5

2 22 2

2
2 2 2 2 311

2 2

31       .
2 2

1
2 2

A A y P
r rr r

A A y P h
r rr r

nC x y x y

U

µ

µ

 
− − − + + − 

 
 ′ ′ ′

− + + − − ≡ 
 

= + +� �
                (3) 

3. Normal and Tangent Variables  

We consider the system of generalized coordinates ( )T, .Q x y=  They depend upon the eight parameters 

( )T
1 2 1 2, , , , , , , .p h A A A A P Pµ ′ ′ ′=  The corresponding differential equations are given by the system of Equation  

(2) with Jacobi integral given by (3). We consider the solutions of Equations (2) for which C is zero. If we con-
sider the solutions of Equation (2) given by (4) for some fixed parameters value p then there may exist  

another solution given by (5) with another parameter value ( )T* * * * * * * * *
1 2 1 2, , , , , , ,p h A A A A P Pµ ′ ′ ′=  close to p. 

We have 

( )
( )
( )
( )

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

, , , , , , , ,

, , , , , , , ,

, , , , , , , ,

, , , , , , , ,

x x h A A A A P P

y y h A A A A P P

x x h A A A A P P

y y h A A A A P P

µ

µ

µ

µ

′ ′ ′=

′ ′ ′=

′ ′ ′=

′ ′ ′=

� �

� �

                                (4) 

and 
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( )
( )
( )
( )

* * * * * * * * *
1 2 1 2

* * * * * * * * *
1 2 1 2

* * * * * * * * *
1 2 1 2

* * * * * * * * *
1 2 1 2

, , , , , , , ,

, , , , , , , ,

, , , , , , , ,

, , , , , , , ,

x x h A A A A P P

y y h A A A A P P

x x h A A A A P P

y y h A A A A P P

µ

µ

µ

µ

′ ′ ′=

′ ′ ′=

′ ′ ′=

′ ′ ′=

� �

� �

                               (5) 

Solution (5) will reduce to Solution (4) as *p p→ . 
Now we give the displacements 

*p p p∆ = −  and *Q Qξ = − , (where ( )T* * *,Q x y=  and ( )T
1 2,ξ ξ ξ= ) 

i.e., *µ µ µ∆ = − , *h h h∆ = − , *
1 1 1A A A∆ = − , *

2 2 2A A A∆ = − , 
*

1 1 1A A A′ ′ ′∆ = − , *
2 2 2A A A′ ′ ′∆ = − , *P P P∆ = − , *P P P′ ′∆ = −                 (6) 

and 
*

1 ,x xξ = −  *
2 ,y yξ = −                                   (6a) 

We consider p∆  and ξ  as small quantities of the same order. Then we have the following variational equ-
ations: 

1 2 1 21 1 2 2 1 2 1 22 ,xx xy x xA xA xA xA xP xPW W n W W A W A W A W A W P W Pµξ ξ ξ ξ µ ′ ′ ′′ ′ ′= + + + ∆ + ∆ + ∆ + ∆ + ∆ + ∆ + ∆�� �  

1 2 1 22 1 2 1 1 2 1 22 ,xy yy y yA yA yA yA yP yPW W n W W A W A W A W A W P W Pµξ ξ ξ ξ µ ′ ′ ′′ ′ ′= + − + ∆ + ∆ + ∆ + ∆ + ∆ + ∆ + ∆�� �      (7) 

with the integral constructed from Equation (3), retaining the first order terms only, we get  

1 2 1 21 2 1 2 1 2 1 2 .x y h A A A A P PC x y W W W W h W A W A W A W A W P W Pµξ ξ ξ ξ µ ′ ′ ′′ ′ ′= + − − − ∆ − ∆ − ∆ − ∆ − ∆ − ∆ − ∆ − ∆� �� �    (7a) 

The modulus of momentary velocity on the orbit is defined as ( ) ( ) 2 2V t Q t x y= = +� � � . We assume that (5)  

is not corresponding to the equilibrium state, i.e., ( ) 0V t ≠  and we further assume that ( ) 0V t ≠  on the 
whole orbit. Therefore, x and y become the mobile co-ordinates. We will, now, use the mobile coordinate system 
to draw the periodic orbits by resolving one of the axis along the velocity vector ( )T,X x y= � �  and the other axis 
along the normal vector ( )T,Y y x= − � � .  

In the new coordinate system, we consider the transition matrix S as follows: 
Consider the first column of S as  

( ) ( )
( )

Y t
r t

V t
=  = the unit vector which is normal to the orbit, i.e., it is orthogonal to the vector s(t). 

( ) ( )
( )

X t
s t

V t
=  = the unit vector which is tangent to the orbit and is the last column of the matrix S. 

So, we have { },S r s= , dim(r) = 2 × 1, dim(s) = 2 × 1, so that dim(s) = 2 × 2. 
It can be easily verified that 

( )TT T 11, 0 and 0,1s s r s S s e−= = = =  

It may be noted that,    

( ) ( ) ( ) ( )
11 1 1 1, , and

 
Ty x y x y x

r s S S S
x y x y x yV t V t V t V t

−− − −       
= = = = =       

       

� � � � � �
� � � � � �

. 

Now, we may further define  

( ) ( )* T 1r r y x
V t

= = − � � , the first line of S−1, 

( ) ( )* T 1s s x y
V t

= = � � , the last line of S−1.  
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We write α , the vector of local coordinates, in the new coordinate system as follows: 

( ) ( ), dim 1 1 and dim 1 1,N
N

M
M

α = × =


 
 

×


=  

where N is displacement along the normal to the orbit and M is displacement along the tangent to the orbit. 
Then, the new coordinates are given by  

( )
N

S r s rN sM
M

ξ α
 

= = = + 
 

 

1 * *,     ,     ,S N r M sα ξ ξ ξ−= = =                              (8) 

S S rN rN sM sMξ α α= + = + + +� � � �� � �                             (9) 

Substituting these values into the integral (7a), we have 

( ) ( )

'1 2 1

'
2

2

1 2 1

2

2 1
  

      

     0.

x y

h A A A

P PA

WC MV MV W y W x xy xy N W
VV

W h W A W A W A

W A W P W P

µ µ

′

= − + − + − − ∆

′− ∆ − ∆ − ∆ − ∆

′ ′− ∆ − ∆ − ∆ ≡

� � � � ��� ���

                   (10) 

Equation (10) can be solved for M�  as 

( )

( )1 2 1 2
1 2 1 2

1
2

1 .

x y

h A A P PA A

MVM W y W x xy xy N
V W

W W h W A W A W A W A W P W P
V µ µ

′ ′ ′

= − − + −

′ ′ ′+ ∆ + ∆ + ∆ + ∆ + ∆ + ∆ + ∆ + ∆

�
� � � ��� ���

          (11) 

Equations of motion (2) for the new coordinates are 

-12 or
 N pN
VS S S S F N F N F p Ms
V

α ξ α α α ∆

 
= − − = + + ∆ + 

 
�

��
�� � �� ��� � �� . 

where ( )1 2 1 2

1 2 3 4 5 6 7 8
p h A A A A P PF F F F F F F F Fµ ′ ′ ′∆ = , 

 
,    1 to 8,

 

l
l

l
l

l

x
l

y

W VW ny x x
W V

F l
W VW nx y y
W V

α
α

α
α

α

  
+ + −  

  = =   + − + −    

�
� � ��

�
� � ��

 

1 2 3 1 4 2 5 1 6 2 7 8, , , , , , , ,h A A A A P Pα µ α α α α α α α′ ′ ′= = = = = = = =  

2 2
0 and 0x yW Wα α= =  and NF  and NF �  are the same as in our papers [1]-[3]. 

Since 
N
M

α
 

=  
 

, therefore the equations of motion in normal and tangent co-ordinates can be written as  

( )*
N PNN r F N F N F P∆= + + ∆�

�� �                             (12) 

and  

( )*
N PN

VM M s F N F N F P
V ∆= + + + ∆�

��
�� � .                        (13) 

N��  can also be written as 
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( )( )

( ) ( )( )

( )

2 2 2
2

2 2 2 2

2

1 12

1       2

1       
i i

xx xy yy x y

x y xA yA

N W y W xy W x W y W x nV xy xy
WV

n xy xy xy xy nV xy xy x y V N
W

W
W y W x nV xy xy W y W x

V W
µ

µ µ µ

= − + + − + − + −


− − − − − + − + + − 


  
+ − + + − + − ∆ + − + +    

�� � �� � � � ��� ���

���� ��� ��� ��� ��� ��� �� ��

� � ��� ��� � � ( )

( ) ( )

( )

2
2

1

2
2 2

1

2 2

       

       

i

i

A
i

i

A P
xA yA i xP yP

i

hP
xP yP

W
nV xy xy A

W

W WW y W x nV xy xy A W y W x nV xy xy P
W W

WWW y W x nV xy xy P nV xy
W W

=

′
′ ′

=

′
′ ′

 
− + − ∆ 

 

   ′+ − + + − + − ∆ + − + + − + − ∆   
   

  ′+ − + + − + − ∆ + − + 
 

∑

∑

��� ���

� � ��� ��� � � ��� ���

� � ��� ��� ���( ) .xy h − ∆ 


���
 

Thus, we have derived the equation in N��  which possesses the remarkable property that the normal coordi-
nate (N) is independent of the tangent coordinate (M). Moreover, instead of the differential equation of the 
second order (13), we can use the first order differential Equation (11). If the investigated motion (4) is periodic, 
then the matrix S(t) can be taken as periodic and Equations (12) and (13) will have the periodic coefficients at 

0p∆ ≡ .  

4. Periodic Orbits 
For determining the periodic orbits, the required equations of motion and the variational equations are given as: 

2 xx ny W= +�� �                                       (14i) 
2 yy nx W= − +�� �                                      (14ii) 

( ) ( )* * 1, ,, 2
0

0J
j j j j

N N

I
Z Z Z e

r F
j

r F
J

 
= =  
 

=
�

�� ,                       (14iii) 

( ), 0 0
2j j j j

V V g Z
V W υµ µ µ= − =
�

�                              (14iv) 

( ) ( )** *

00
, 0 0 , ,, 1

 k k k
k

J
P P P

PN N

I
r

k K
Fr F r F

υ υ υ∆ ∆ ∆
∆

  
= + =        

=
�

��                 (14v) 

( ) ( ) , 0 0
2k k k k kP P P P P

V V g g
V W υµ µ υ µ∆ ∆ ∆ ∆= − + =
�

� .                      (14vi) 

where ( )Z t  is the matrix of solutions of a homogeneous system with initial condition ( ) 20 JZ I=  and 

( )
kP t aυ∆ =  particular solution of the equations with zero initial conditions, i.e., ( )0 0

kPυ∆ = . The row-vector 

( )tµ  and ( )
kP tµ∆  are the solutions of Cauchy problem (iv) with (vi) of (14). The order of the above system is 

thirty-four. 
So, for finding the new periodic motion it is necessary to integrate the system (14) of the differential equa-

tions from t = 0 and t = T. In the formulae (i) to (vi) of (14), it may be noted that I2J = (e1… e2J), Z = (Z1…Z2J), μ 
= (μ1, …, μ2J) and the initial conditions x(0), y(0), ( )0x�  and ( )0y�  are known. 

After solving the above equations of motion (i) and (ii), the variational Equations (iii)-(vi) of (14) and apply-
ing the predictor-corrector method, we have determined the periodic orbits. 

We have drawn the periodic orbits for the following: 
1) for fixed μ = 0.001, A1 = 0.0, A2 = 0.0, 1A′  = 0.001, 2A′  = 0.0, P = 0.0 and P′  = 0.0 (Figure 2);  
2) for fixed μ = 0.001, A1 = 0.001, A2 = 0.0, 1A′  = 0.001, 2A′  = 0.0, P = 0.0001 and P′  = 0.00 (Figure 3); 
3) for fixed μ = 0.001, A1 = 0.001, A2 = 0.001, 1A′  = 0.0, 2A′  = 0.0, P = 0.0 and P′  = 0.0001 (Figure 4); 
4) for fixed μ = 0.001, A1 = 0.001, A2 = 0.001, 1A′  = 0.001, 2A′  = 0.001, P = 0.0001 and P′  = 0.0001 (Figure 5); 
5) for fixed μ = 0.001, A1 = 0.002, A2 = 0.003, 1A′  = 0.004, 2A′  = 0.005, P = 0.001 and P′  = 0.001 (Figure 6). 
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Figure 2. Periodic orbits when μ = 0.001, 1A  = 0.0, 2A  = 0.0, 1A′  = 0.001, 2A′  = 0.0, P = 
0.0 and P′  = 0.0.                                                                 

 

 
Figure 3. Periodic orbits when μ = 0.001, 1A  = 0.001, 2A  = 0.0, 1A′  = 0.001, 2A′  = 0.0, P = 
0.0001 and P′  = 0.0.                                                               

 

 
Figure 4. Periodic orbits when μ = 0.001, 1A  = 0.001, 2A  = 0.001, 1A′  = 0.0, 2A′  = 0.0, P = 
0.00 and P′  = 0.0001.                                                            
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Figure 5. Periodic orbits when μ = 0.01, 1A  = 0.001, 2A  = 0.001, 1A′  = 0.001, 2A′  = 0.001, P 
= 0.0001 and P′  = 0.0001.                                                              

 

 
Figure 6. Periodic orbits when μ = 0.003, 1A  = 0.002, 2A  = 0.003, 1A′  = 0.004, 2A′  = 0.005, P 
= 0.001 and P′  = 0.001.                                                               

 
In each figure, we have drawn 5 periodic orbits corresponding to different values of h. These orbits have been 

numbered 1, 2, 3, 4 and 5 corresponding to different values of h. 
The above analysis is summed up in Table 1. By taking both the primaries as radiating triaxial rigid bodies, 

the difference in the behavior of the values of h is obvious. 

5. Conclusions 
Karimov and Sokolsky [11] have studied periodic orbits in the restricted three body problem by giving the dis-
placements along the normal and the tangent to the orbit at the mobile co-ordinates. They have taken both the 
primaries as point masses while in this paper besides taking both the primaries as triaxial rigid bodies, we have 
also taken both the primaries as source of radiation pressure as well. In this paper, we have again determined  
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Table 1. The summary analysis of the periodic orbits.                                                           

μ = 0.001 Oblate body Figure 2 Triaxial body Figure 3 Triaxial body Figure 4 Triaxial body Figure 5 Triaxial body Figure 6 

Values of 
Energy  

Constant 
h 

1

1

2

2

0.0
0.001
0.0
0.0

0.0
0.0

A
A
A
A
P
P

=
′ =
=
′ =
=
′ =

 

1

1

2

2

0.001
0.001
0.0
0.0

0.0001
0.0

A
A
A
A
P
P

=
′ =
=
′ =
=
′ =

 

1

1

2

2

0.001
0.0
0.001
0.0

0.0
0.0001

A
A
A
A
P
P

=
′ =
=
′ =
=
′ =

 

1

1

2

2

0.001
0.001
0.001
0.001

0.0001
0.0001

A
A
A
A
P
P

=
′ =
=
′ =
=
′ =

 

1

1

2

2

0.002
0.003
0.004
0.005

0.001
0.001

A
A
A
A
P
P

=
′ =
=
′ =
=
′ =

 

1h  0.05 0.15 0.25 0.28 0.30 

2h  0.10 0.20 0.20 0.23 0.22 

3h  0.15 0.23 0.15 0.18 0.16 

4h  0.20 0.28 0.10 0.12 0.15 

5h  0.3258 0.31205 0.0895 0.09225 0.10215 

 
five periodic orbits in a family for fixed value of the mass parameter μ, the triaxial parameters 1 2 1 2, , ,A A A A′ ′  
and the radiation parameters P and P′  with varying energy constant h. 

We have observed the following effects on the periodic orbits and on the energy constant h due to triaxial ri-
gid bodies and radiation pressure if we compare it with the results of Karimov and Sokolsky [11] and our papers 
[1]-[3]. 
1) The energy constant h increases in a family (for Figure 2 and Figure 3) then it decreases (for Figures 4-6) 

for fixed trixial parameters 1 2 1 2, , ,A A A A′ ′  and radiation parameters P and P′ . 
2) As we increase the radiation parameters P and P′ , the energy constant h increases whereas the periodic or-

bits shrink a little. 
3) The periodic orbits go away from the libration point 4L  as we increase triaxial parameters 1 2 1 2, , ,A A A A′ ′  

and radiation parameters P and P′  whereas energy constant h decrease. 
We have investigated the family up to the member which touches the point 4L . It is observed that the fami-

lies of periodic orbits in Karimov and Sokolsky [11] terminate at both the triangular equilibrium points simulta-
neously, while in our case these families are non-symmetrical, so they may continue. 

Acknowledgements 
We are thankful to the Centre for Fundamental Research in Space Dynamics and Celestial Mechanics (CFRSC), 
Delhi and the Deanship of Scientific Research, College of Science in Zulfi, Majmaah University, KSA for pro-
viding all the research facilities in the completion of this research work. 

References 
[1] Mittal, A., Aggarwal, R. and Bhatnagar, K.B. (2011) Periodic Orbits around L4 in the Photogravitational Restricted 

Problem with Oblate Primaries. WSEAS 6th International Conference Proceedings on Optics Astrophysics and Astrol-
ogy, Article ID: 650927. 

[2] Mittal, A., Iqbal, A. and Bhatnagar, K.B. (2008) Periodic Orbits Generated by Lagrangian Solutions of the Restricted 
Three-Body Problem When One of the Primaries Is an Oblate Body. Astrophysics and Space Science, 319, 63-73.  
http://dx.doi.org/10.1007/s10509-008-9942-0 

[3] Mittal, A., Iqbal, A. and Bhatnagar, K.B. (2009) Periodic Orbits in the Photogravitational Restricted Problem with the 
Smaller Primary an Oblate Body. Astrophysics and Space Science, 323, 65-73.  
http://dx.doi.org/10.1007/s10509-009-0038-2 

[4] Charlier, C.L. (1899) Die Mechanik des Himmels. Walter de Gryter and Co., Berlin and Leipzig. 
[5] Plummer, H.C. (1901) On Periodic Orbits in the Neighborhood of Centres of Liberation. Monthly Notices of the Royal 

Astronomical Society, 62, 6-17. http://dx.doi.org/10.1093/mnras/62.1.6 
[6] Riabov, U.A. (1952) Preliminary Orbits Trojan Asteroids. Soviet Astronomy, 29, 5. 

http://dx.doi.org/10.1007/s10509-008-9942-0
http://dx.doi.org/10.1007/s10509-009-0038-2
http://dx.doi.org/10.1093/mnras/62.1.6


P. Jain et al. 
 

 
121 

[7] Szebehely, V. (1967) Theory of Orbits: The Restricted Problem of Three Bodies. Academic Press, New York. 
[8] Deprit, A. and Henrard, J. (1968) Advances in Astronomy and Astrophysics. Academic Press, New York, London. 
[9] Markeev, A.P. and Sokolsky, A.G. (1975) Investigation of Periodic Motions near the Lagrangian Solutions of Re-

stricted Three-Body Problem. Publ. Inst. of Appl. Math. Acad. Sci., Moscow. 
[10] Hadjidemetriou, J.D. (1984) Periodic Orbits. Celestial Mechanics, 34, 379-393. http://dx.doi.org/10.1007/BF01235816 
[11] Karimov, S.R. and Sokolsky, A.G. (1989) Periodic Motions Generated by Lagrangian Solutions of the Circular Re-

stricted Three-Body Problem. Celestial Mechanics and Dynamical Astronomy, 46, 335-381.  
http://dx.doi.org/10.1007/BF00051487 

[12] Taqvi, Z.A.A.R. and Iqbal, A. (2006) Non-Linear Stability of L4 in the Restricted Three-Body Problem for Radiated 
Axes Symmetric Primaries with Resonances. Bulletin of Astronomical Society of India, 35, 1-29. 

[13] Abouelmagd, E.I., Alhothuali, M.S., Guirao, J.L.G. and Malaikah, H.M. (2015) Periodic and Secular Solutions in the 
Restricted Three-Body Problem under the Effect of Zonal Harmonic Parameters. Applied Mathematics & Information 
Sciences, 9, 1659-1669. 

[14] Perdios, E.A., Kalantonis, V.S., Perdiou, A.E. and Nikaki, A.A. (2015) Equilibrium Points and Related Periodic Mo-
tions in the Restricted Three-Body Problem with Angular Velocity and Radiation Effects. Advances in Astronomy, 
2015, 1-21. 

[15] Jain, M. and Aggarwal, R. (2015) A Study of Non-Collinear Libration Points in Restricted Three-Body Problem with 
Stokes Drag Effect When Smaller Primary Is an Oblate Spheroid. Astrophysics and Space Science, 358, 1-8. 

http://dx.doi.org/10.1007/BF01235816
http://dx.doi.org/10.1007/BF00051487

	Periodic Orbits in the Photogravitational Restricted Problem When the Primaries Are Triaxial Rigid Bodies
	Abstract
	Keywords
	1. Introduction
	2. Equations of Motion
	3. Normal and Tangent Variables 
	4. Periodic Orbits
	5. Conclusions
	Acknowledgements
	References

