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Abstract 
In order to depict the complex price volatility of carbon emission permits under the European 
Union Emission Trading Scheme (EU ETS) accurately, we use the multifractal analysis based on 
wavelet leaders to extract the useful information from the carbon price series in this paper. Firstly, 
we test the multifractal property of the EU carbon market, and the empirical results show that the 
three phases of the EU ETS have shown significant multifractal characteristics. Compared with the 
other two phases, the multifractal characteristics of phase three are the strongest and the prices 
are the most uneven. Then, based on the width of the multifractal spectrum and the variances of 
the Hausdorff dimension, we innovatively propose an indicator VhS which has been proved to be 
effective in depicting the price volatility of the European carbon market. This paper provides a 
new train of thought for the risk identification and management in the multifractal market. 
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1. Introduction 
With the aim of preventing the excessive greenhouse gases emissions from bringing irreversible effect on the 
environment and human society, the international community made mandatory emission reduction task for the 
each participating nation via the Kyoto Protocol. Thus, carbon emission permits became a kind of relatively 
scarce resource and began to be regarded as a kind of financial asset. In order to reduce the cost of emission re-
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duction as much as possible, the so-called carbon trading markets were established among participating nations. 
The European Union Emission Trading Scheme, New South Wales Greenhouse Gas Abatement Scheme in Aus-
tralia and the American emissions trading system are the famous carbon trading markets in the world. These 
carbon trading markets can improve the allocation efficiency of the carbon emission permits. 

Many factors can dramatically affect the carbon price levels such as the climate, the international emissions 
policy, the design of market system and the financial crisis. So, the market prices of carbon emission permits 
fluctuate in an extremely complex way. For example, during the pilot phase of European Union Emission Trad-
ing Scheme, the European Union allowances (EUAs) prices dropped from a peak of 30 Euro to near zero, be-
cause of the regulation of “No Banking” and excessive releases of EUAs. The highly volatile carbon prices have 
brought a huge challenge to the market participants and regulators. Therefore, the purpose of this paper is to find 
out a way to depict the volatility characteristics of carbon prices accurately which may have a vital practical sig-
nificance for the trading and risk management in the carbon market. 

2. Literature Review 
The volatility of the carbon prices has already attracted some interest in the literature. Daskalakis et al. [1] found 
that there was a high level of volatility and extreme discontinuous variations in carbon market, so the general 
models couldn’t depict the behavior of the carbon price efficiently. Chevallier [2] used three indicators (condi-
tional variance, implied volatility and realized volatility) to measure price volatility for European Union Allow-
ances. He detected the instability in volatility of carbon prices based on retrospective tests and forward-looking 
tests. The empirical results showed that there were strong shifts in carbon market. Benz and Trück [3] examined 
the spot price dynamics of European Union Allowances and found that the returns showed skewness, excess 
kurtosis and dissimilar volatility behaviors during different phases. So, they used Markov switching and AR- 
GRACH models to build a forecasting model for EUAs. Based on an in-sample and out-sample forecasting 
analysis and the comparing analysis of different approaches, their study supported this kind of models which 
could capture characteristics and dissimilar volatility behaviors of the log returns during different phases. Seifert, 
Uhrig-Homburg and Wagner [4] developed a stochastic equilibrium model and analyzed the carbon spot price 
dynamics. They found that the carbon prices didn’t follow any seasonal patterns. An adequate carbon price 
process should possess the martingale property and exhibit a time- and price-dependent volatility structure. 
However, Paolella and Taschini [5] found that a generalized asymmetric t innovation distribution suited the sty-
lized features of CO2 price very well. 

Because of the inherent complexity, there are linear and nonlinear patterns in carbon prices [7]. Obviously, 
the research within the scope of parametric and semi-parametric models can’t effectively depict the volatility 
behavior of carbon prices which contain the nonlinear patterns. As a result, some scholars began to use nonpa-
rametric models to capture the nonlinear characteristic of the carbon market missed by traditional parametric 
models. The nonparametric model was first introduced to the carbon market by Chevallier [8]. The empirical 
results showed that nonparametric modeling can significantly improve the forecasting accuracy of the carbon 
price compared with the traditional linear AR models. So, nonparametric models could describe the behavioral 
characteristics of carbon prices better. Feng ZH, Zou LL, Wei YM [9] examined the carbon price volatility from 
the perspective of nonlinear dynamics. Specifically, firstly, based on serial correlation and variance ratio tests, 
they tested whether current carbon prices fully reflected the related historical information. In this way, they 
wanted to determine whether the carbon market was weak-form efficient. Results showed that the weak-form 
efficiency was not realized in the carbon market. Then, they used the R/S, modified R/S and ARFIMA to test the 
long-term memory of carbon prices. But only the short-term memory had been found in the carbon market. So, 
the mono-fractal models were not applicable in the European carbon market. 

As we can see from the literature review above, neither the traditional econometric models nor the mono- 
fractal models can capture the characteristics of carbon prices accurately and effectively. Mandelbrot [10] pro-
posed that the multifractal model had better applicability and stronger practicability in portraying the complex 
volatility of the capital market. According to the financial asset attributes of carbon emissions permits, this paper 
will try to test and analyze the price fluctuation of the European carbon market based on the multifractal model. 
The remainder of this work is organized as follows: in next section, we give a simple introduction of multifractal 
theory and wavelet leaders, namely the theoretical analysis. In Section 4, we test and analyze the multifractal 
characteristics of the European carbon market, namely the empirical analysis. In last section, we summarize the 
main conclusions in this paper.  
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3. Theoretical Analysis 
3.1. Multifractal Theory 
Fractal market can be divided into the multifractal market and the mono-fractal market. The scaling characteris-
tics of mono-fractal sequences do not change over time. So we can use a global scaling exponent to characterize 
the singularity of mono-fractal sequences. This means that only a fractal dimension is needed to describe overall 
singularity features of mono-fractal sequences. But the scaling characteristics of the multifractal sequences 
change with time. So multifractal analysis need to study the fractal dimension’s probability distribution of the 
subsets at different scales so as to reflect their regularity and singularity of the signals in detail. To achieve an 
accurate and effective analysis of the European carbon market, we detect the multifractal property of carbon 
prices fluctuations firstly. 

In practice, we use the multifractal spectrum to describe the dynamic characteristics of the system in the mul-
tifractal analysis. The multifractal spectrum is composed of the local Holder exponent and the Hausdorff 
dimension. The Holder exponent depicts the singularity of the market volatility and the Hausdorff dimen-
sion depicts the probability distribution of the local Holder exponent. Their mathematical definitions are as 
follows: 

For the time series ( )x t , if there is a constant 0C >  and a polynomial P ( ( )deg P a< , 0a ≥ ) which make 
it satisfy the following condition: 0δ∀ > , if 0t t δ− ≤ , then ( ) ( )0 0

ax t P t t C t t− − ≤ − , we say that the 
time series ( )0x t  belongs to ( )0

aC t . The Holder exponent of ( )x t  at 0t  is ( ) ( ){ }0 0sup : ah t a x C t= ∈ . 

Set dA R⊂ , 0ε >  and let inf iR i
M A δδ

ε
 =  
 
∑  be the infimum of all ε-coverings of A. For any [ ]0, dδ ∈ , 

the δ-dimensional Hausdorff measure of A is ( )
0

limmes A M δ
δ εε→

= . If there is a [ ]0 0, dδ ∈  such that: 0δ δ∀ < ,  

( )mes Aδ = +∞  and 0δ δ∀ > , ( ) 0mes Aδ = , then 0δ  is the Hausdorff dimension of set A. 
According to the definition of the Holder exponent and the Hausdorff dimension, we know that multifractal 

spectrum can describe the diversity of price fluctuations at different scales. Thus, the multifractal spectrum is the 
comprehensive and detailed characterization of system’s dynamics characteristics. 

3.2. Wavelet Leaders 
The existing method of multifractal analysis can be divided into two categories: numerical analysis and wavelet 
analysis. Compared with the numerical analysis, wavelet analysis has an unparalleled advantage in studying the 
multifractal characteristics of the signal. The wavelet analysis mainly includes the wavelet transform modulus 
maxima method (WTMM) and the wavelet leaders (WL). The wavelet transform modulus maxima method 
adopts the continuous wavelet transform, so the cost of computation will increase with the signal’s dimension. 
In addition, this method is no longer applicable when there is oscillation singularity in signal. However, the 
wavelet leaders use the discrete wavelet transform which makes the decomposition algorithm faster and the cost 
of computation lower. And this method is also applicable when the signal contains oscillation singularity or 
chirp-type singularity. So, this article uses the wavelet leader to test the multifractal characteristics of the Euro-
pean carbon market. Specific steps are as follows: 

1) Let ( )0 tψ  with compact support be an elementary function and its number of vanishing moment Nψ  
should be a positive integer ( 1Nψ ≥ ). Let the collection of dilated and translated templates of ( )0 tψ :

( ) ( ) ( ){ }2
0 , 02 2 , ,j j

j kt t t k j Z k Zψ ψ ψ− −= − ∈ ∈  be the orthonormal basis of ( )2L R . Based on these, we can  
get the discrete wavelet transform coefficients of ( )0 tψ : ( ) ( ) ( )0, 2 2 dj j

x R
d j k x t t k tψ− −= −∫ . In essence,  

the time series ( )x t  and its discrete wavelet transform coefficients are different manifestations of the same 
subject. And the discrete wavelet transform (DWT) will not lost any information of the original sequence. So, it 
is possible and effective to study the characteristics of the original sequence based on the discrete wavelet trans-
form coefficients. 

2) Let ( ) ), 2 , 1 2j j
j k k kλ λ = = +  be the dyadic intervals and , 1 , , 13 j k j k j kλ λ λ λ− +=    be the union of the 

dyadic interval and its two adjacent intervals. Then, let’s define wavelet leaders as:  
( ) 3 ,, supx xL j k L dλ λ λ λ′ ′⊂≡ = . Namely, the wavelet leaders are the maximum of wavelet coefficients within the 

neighborhood of 3λ  for all finer scales. 
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3) Then, we can compute the structure functions from the wavelet leaders: ( ) ( )
1

1, ,
jn

qL
x

kj

S j q L j k
n =

= ∑ ,  

where jn  is the number of the wavelet leaders ( ),xL j k  at scale 2 j . 
4) In the limit 2 0j → , the structure functions decay as power laws of the scales: ( ) ( ), 2 j qL

qS j q F ζ= , where 
( )qζ  are the scaling exponents. So the scaling exponents can be obtained from the linear regressions of  

the structure functions vs. scales in a logarithmic graph. Namely, ( ) ( )
0

log ,
lim inf

log 2
L

jj

S j q
qζ

→
= . 

5) Through a Legendre transform of the scaling exponents, we can get the upper bound of the multifractal 
spectrum: ( ) ( )( )

0
min 1
q

D h qh qζ
≠

≤ + − . The inequality can be converted to equation directly in most multifrac-

tal models. Namely, ( ) ( )( )
0

inf 1 Lq
D h qh qζ

≠
= + − . In this way, we get the so-called multifractal spectrum. 

Because of the complexity of the Legendre transform in practice, Chhabza [11] proposed the experience for-
mula to calculate the scaling exponents, the Holder exponent and the Hausdorff dimension based on the theory 
of Shannon, Eggelston and Billingsley. The experience formula is as follows: 

( )

( )

( ) ( )

2
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2
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2
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where ( ) ( ) ( )2 21, , log , logjnL q q
X X jkU j q R j k R f k n

=
= +∑ , ( ) ( ) ( )21, , log ,jnL q

X XkV j q R j k L j k
=

= ∑  and  

( ) ( ) ( )1, , ,jq qnq
X X XkR j k L j k L j k

=
= ∑ . The weights jw  can be expressed as ( ) ( )( )2

0 1 0 2 1j jw b V j V V V V= − −   

with 2

1

j i
i jjV j b= ∑  ( 0,1, 2i = ), where jb  reflects the confidence level of the scaling exponents. In addition,  

the weights must satisfy the following constraints: 2

1
1j

jj jw ≡∑  and 2

1
0j

jj w ≡∑ . 

According to the relationships between the scaling exponents ( )qζ  and the orders q of multi-resolution 
torques, the wavelet leaders can determine the fractal characteristics of the European carbon market. If the rela-
tionships between ( )qζ  and q are linear, the European carbon market is a mono-fractal market. However, if 
the relationships between ( )qζ  and q are nonlinear, the European carbon market is a multifractal market. Af-
ter determining the multifractal characteristics of the European carbon market, we can adopt multifractal analy-
sis to study the price volatility of this market. 

4. Empirical Test 
4.1. Data Introduction 
At present, the European Union Emission Trading Scheme is the most mature carbon trading market in the 
world where the trading mechanism is the most robust and trading volume is the largest. The BlueNext Ex-
change and the European Climate Exchange (ECX) are the largest trading markets of carbon spot and carbon 
futures in this system, respectively. So, we select the spot prices of European Union Allowances in these two 
markets as the research object of this paper. 

The sample data in this paper are from the Bloomberg database. To be specific, the data of the phase 1 are 
from BlueNext Exchange and the sample interval is June 27, 2005 to June 29, 20071 (a total of 500 data); the 
data of the phase 2 are also from BlueNext Exchange and the sample interval is February 26, 2008 to December 
5, 2012 (a total of 1186 data); the data of the phase 3 are from European Climate Exchange and the sample in-
terval is December 7, 2012 to May 8, 2015 (a total of 622 data). This paper adopts the Matlab R2012b for data 

 

 

1Due to the provision of “No Banking”, the residual EUAs of the first phase were invalid in next phase. As a result, the price of EUAs was 
almost zero at the end of the first phase. Considering the validity of the data, this paper deletes the data of the last half of 2007.  
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processing. 
To simplify the analysis of price volatility, this paper converts the spot prices of EUAs into logarithm yields: 

1ln lnt t tR P P−= −  

where t is the trading day, tP  is the closing price of carbon spot on t and tR  is the logarithm yield on t. 

4.2. Test the Multifractal Characteristics 
The discrete wavelet transform of carbon yield sequences in this paper is based on the Daubechies wavelet 
which chooses 3 as vanishing moment. Then, in order to get the complete multifractal spectrum, the orders of 
multi-resolution torques of three phases are selected as: [−15, 15], [−8, 8] and [−12, 12]. Finally, the relation-
ships between scaling exponents and the orders of multi-resolution torques can be obtained according to the 
Chhabza algorithm. And then we can examine the multifractal characteristics of the European carbon market in 
three phases. 

The relationships between the scaling exponents and the orders of multi-resolution torques in three different 
phases are shown in Figure 1. As we can see in the figure, the relationships between the scaling exponents and 
the orders of multi-resolution torques are significant nonlinear in three phases and show as the convex increas-
ing functions. Therefore, the European carbon market has shown the significant multifractal characteristics in all 
of the three phases. 

4.3. Analysis of the Empirical Results 
First of all, we use the width of the multifractal spectrum ( h∆ ) to analyze the multifractal characteristics of 
carbon price fluctuations on the whole. The width of the multifractal spectrum ( max minh h h∆ = − ) measures the 
absolute magnitude of price fluctuations from the point of extreme value, namely the non-uniformity of the price 
fluctuations. The bigger h∆  means the greater difference of volatility’s singularity and the greater multifractal 
characteristics. On the contrary, the multifractal characteristics are weaker. 

The width of multifractal spectrum of the European carbon market in three phases is shown in Table 1. The 
width of multifractal spectrum of the third phase is greater than that of other two phases. It suggests that the 
price volatility is the most uneven and multifractal characteristics are the strongest in third phase. By contrast, 
the width of the multifractal spectrum of phase two is the smallest, which means that the price volatility is rela-
tively homogeneous, namely a higher market efficiency in second phase. The reason for this result might be that: 
at the first stage, the policy and market mechanism was imperfect and participants didn’t have a profound un-
derstanding about the carbon market, so the market efficiency was low. At the second stage, the market me-
chanism was more robust and participants were more rational, so the market efficiency had improved. In 
Post-Kyoto period, the uncertainty of the international carbon emission reduction policy makes the European 
carbon market to be extremely sensitive to many factors so that market efficiency has fallen dramatically. 

Because the Hausdorff dimension reflects the way of price fluctuations, the variance of Hausdorff dimension 
( ( )( )DS Var D h= ) can indicate the singularity of the price volatility from a more detailed perspective. Thus the 
variance of the Hausdorff dimension ( DS ) can be used to measure the complex multifractal market volatility. 
Given the variance of the Hausdorff dimension and the width of the multifractal spectrum can measure the mar-
ket volatility from different perspectives, this paper combines these two measures and innovatively put forward 
an indicator, namely, * DVhS h S= ∆ . The VhS can comprehensively reflect price fluctuations in the multi-frac- 
tal market. This indicator not only solves the inapplicability of the traditional risk measure indicators in the mul-
tifractal market, but also overcomes the limitation of the traditional risk measure indicator that they can only de-
pict the range of price fluctuations. To test the validity of VhS in capturing carbon price fluctuations characteris-
tic within each phase, we adopt the sliding window method to get these indicators in different periods. We select 
255 days (about one year) as the width of the sliding window and one day as the sliding step.  

The logarithm yield sequences, variances and VhS of the European carbon market in three different phases are 
 

Table 1. The width of the multifractal spectrum of three phases.                                                  

Indicator Phase 1 Phase 2 Phase 3 

h∆  0.6361 0.5400 0.9123 
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shown in Figures 2-4. As we can see in the Figure 3, in the second phase VhS are less than 0.5 most of the time. 
It also proves that the market efficiency is relatively higher in phase two. By comparing variances with VhS in 
every phase, we find that the indicator VhS not only can describe the range of carbon price fluctuations just 

 

 
Figure 1. The relationships between the scaling exponents and the orders of multi-resolution torques.                     

 

 
Figure 2. The logarithm yield sequences, variances and VhS in phase 1.                                              

 

 
Figure 3. The logarithm yield sequences, variances and VhS in phase 2.                                             
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Figure 4. The logarithm yield sequences, variances and VhS in phase 3.                                            

 
as the variance do, but also can capture the complex behaviors of price fluctuations sensitively. When we com-
pare the logarithm yield sequences with the VhS, we find that the VhS can seek out the abrupt change points in 
the logarithm yield sequences effectively, which may play an important role in the identification and manage-
ment of market risk in future study. It can be seen that the indicator VhS can depict the complex price volatility 
in the multifractal market effectively. 

5. Conclusions 
In this paper, the research results show that: 

1) The nonlinear relationships between the scaling exponents ( )qζ  and the orders q of multi-resolution tor-
ques in three phases indicate that the European carbon market is a multifractal market.  

2) By the comparative analysis of the width of multifractal spectrum of different phases, we find that the mul-
tifractal characteristics of the European carbon market in phase 3 are the strongest. 

3) The proposed indicator VhS in this paper can depict the price fluctuations of the multifractal market effec-
tively, which provides a new train of thought for the risk management in multifractal market. 
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