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Abstract 
 
For a family F  of meromorphic functions on a domain D, it is discussed whether F  is normal on D if for 

every pair functions  f z ,  g z F , nf af 

,b  

 and  share value  on D when , where a, 

b are two complex numbers, . Finally, the following result is obtained:Let 

nagg  d 2,3n 

0,a   F  be a family of 
meromorphic functions in D, all of whose poles have multiplicity at least 4 , all of whose zeros have multi-
plicity at least 2. Suppose that there exist two functions  a z  not idendtically equal to zero,  analytic 

in D, such that for each pair of functions 

d z 
f  and g in F ,   2f a z f  and   2g a z g   share the function 

. If  has only a multiple zeros and  d z a z   f z    whenever  a z 0 , then F  is normal in D. 

 
Keywords: Normal Family, Meromorphic Function, Shared Value, Differential Polynomial 

1. Introduction and the Main Result 
 
In 1959,Hayman[4] proved 

Theorem 1.1.  Let f  be meromorphic functions in 
C, n be a positive integer and a, b be two constant such 
that , . If  5n  0,a and b   

nf af b    

then f  is a constant. 
Corresponding to Theorem 1.1 there is the following 

theorems which confirmed a Hayman’s well-known con- 
jecture about normal families in [5]. 

Theorem 1.2. Let F be a meromorphic function family 
in D,  be a positive integer and a, b be two constant 
such that . If and for each 
function

n
0,a and b    3n 

f F n, f af b   , then F is normal in D. 
This result is due to S. Y. Li [8]( ), X. J. Li [9] 

( ), X. C. Pang [10]( ), H. H. Chen and M. L. 
Fang [2]( ). 

5n 
5n  4n 

3n 
In 2001, M. L. Fang and W. J. Yuan [3] obtained 
Theorem 1.3. Let F be a meromorphic function family 

in D, a, b be two constants such that . 
If, for each function 

0,a and b   
f F , 2f af  b and the poles 

of  f z  are of  multiplicity 3 at least, then F is nor-
mal in D. 

Let D be a domain in C,  f z  be meromorphic on 
D,and. a C  

     1 :fE a f a D Z D f z a       

Two functions f and g are said to share the value a if 
   fE a Eg a . For a case  in Theorem 1.2, Q. 

C. Zhang [14] improved Theorem 1.2 by the idea of 
shared values and obtained the following result. 

4n 

Theorem 1.4. Let F be a family of meromorphic func-
tions in D, n be a positive integer and a, b be two con-
stant such that ,4n  0,a and b  

n
 . If, for each 

pair of functions f and g in F, f af  and ng ag   
share the value b, then F is normal in D. 

In this paper, we shall discuss a condition on which F 
still is normal in D for the case  and obtain the 
following result. 

2 n  3

Theorem 1.5. Let F be a family of meromorphic func-
tions in D, all of whose poles have multiplicity 2 at least, 
and a, b be two constant such that . 0,a and b   
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If, for each pair of functions f and g in F, 3f af  and 
3g ag   share the value b in D, then F is normal in D. 

We denote  
 
 

#
2

1

f z
f z

f z





 for the spherical de- 

rivatives of  f z .The following example imply that the 
restriction of poles in Theorem 1.5 is necessary. 

Example 1. [14] Let  : 1D z z   and  nF f , 

where 

  1
, , 1,2, 

( 1 )
nf z z D n

n z n
  


 

Then for each pair m, n, 3
m mf f   and 3

n nf f 
z

  

share the value 0 in D. But F is not normal at 0  

since  #
n 1f n  . 

But we also have the following examples which imply 
that on the same as restriction of poles in Theorem 1.5 F 
is not normal in D if for each pair of functions f and 
g  in F, 2f af   and 2g ag   share the value b on 
D. 

Example 2. [3] Let    2
1nf z nz z n 



for 

1,2,n   , and  : 1z z     Clearly,  

    4
2 1 0n nf z f n z n


     , 

and n f z

 
only a double pole and a simple zero. Since 

 # 0nf n 
 

, as  from Marty’s criterion we n 
have that nf z  is not normal in  In fact, in the-

present paper we also obtain two results as follows. 


Theorem 1.6. Let F be a family of meromorphic func-
tions in D, all of whose poles have multiplicity 4 at least, 
all of whose zeros have multiplicity 2 at least, and a, b be 
two constant such that . If, for each 
pair of functions f and g in F, 

0,a and b   
2f af   and 2g ag   

share the value b in D, then F is normal in D. 
Theorem 1.7. Let F be a family of meromorphic func-

tions in D, all of whose poles have multiplicity at least 4 , 
all of whose zeros have multiplicity at least 2. Suppose 
that there exist two functions not idendtically equal 
to zero,  analytic in D, such that for each pair of 
functions f and g in F, 

 a z

 
 d z

2f a z f   and   2g a z 

  0a z

g


 
share the function  in D. If a z  has only a 
multiple zeros and whenever 

d z 
 f z


    then 

F is normal in D. 
The following example shows that the condition 
 f z  when  in Theorem 1.7 is necessary.   0a z 

Example 3. [7] Let  : 1D z z   and  nF f  

where   4

1
, , 1,2,nf z z D n

nz
    . We take 

  34a z z   and   0d z  . Clearly, F fails to be nor-
mal at 0z   However, all poles of  nf z are of multi-
plicity 4, and for each pair m, n,   2

m mf a z f  and 
  2

n nf a z f   share analytic functions  in  d z  . 
 
2. Lemmas 
 
To prove the above theorems, we need some lemma as 
follows: 

Lemma 2.1. ([1,2]) Let  f z be a meromorphic 
function in C, n be a positive integer and b be a non-zero 
constant. If nf f b  , then f  is a constant. Moreover 
if f is a transcendental meromorphic function, then 

 nf f z  assumes every finite non-zero value finitely 
often. 

Lemma 2.2. ([1]) Let  f z  be a transcendental me-
romorphic function with finite order in C. If  f z  has 
only multiple zeros, then it’s first derivative f  assumes 
every finite value except possibly zero infinitely often. 

Lemma 2.3. ([12]) Let  f z

 
 be a non-polynomials 

rational function in C. If f z  has only zeros of multi- 

plicity 2 at least, then 
 2
cz d

f
az b





 where a, b, c, d 

are four constants, 0, 0a c  . 
Lemma 2.4. ([4]) If  f z be a transcendental mero-

morphic function in C, then either  f z  assumes every 
finite value infinitely often or every derivative ( )lf  as-
sumes every finite value except possibly zero infinitely 
often. If  f z  is a non-constant rational function and 
 f z a , a is a finite value, then ( )lf  assumes every 

finite value except possibly zero at least once. 
Lemma 2.5. ([11]) Let  f z

k

 be a transcendental 
meromorphic function with finite order, all of whose ze-
roes are of multiplicity at least , and let 1  P z  be 
a polynomial,  P z  is not idendtically equal to zero. 

Then    ( )kf z P z  has infinitely many zeros often. 

Lemma 2.6. ([6]) Let  f z

 

 be a non-polynomial ra-
tional functions in C, all of whose zeroes are of multi-
plicity at least 4. Then rf z z has a zeros at least 
often. 

Lemma 2.7. ([13]) Let F be a family of meromorphic 
functions on the unit disc , all of whose zeroes have 
multiplicity p at least, all of whose poles have multiplic-
ity q at least. Let 



  be a real number satisfying 
p q   . Then F is not normal at a point 0z   if 

and only if there exist 
1) points nz  , ; 0nz z
2) functions nf F ; and 

3) positive numbers 0n   

such that  
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     n n n n nf z g g        

spherically uniformly on each compact subset of C, 
where  g   is a non-constant meromorphic function  
satisfying the zeros of  g   are of multiplicities p at 
least and the poles of  g  are of multiplicities q at 
least. Moreover, the order of  g   is not greater than 2. 
 
3. Proofs of Theorem 1.5.-1.7. 
 
3.1. Proof of Theorem 1.5.  
 
Suppose that there exists one point 0  such that F 
is not normal at point 0 . Without loss of generality we 
assume that . By Lemma 2.7, there exist points, 

, 0n , functions 

z D
z

0 0z 
znz  z  nf F and positive numbers 

0n  such that 

     
1

1n
j j j j jg f z g              (3.1) 

spherically uniformly on each compact subset of C, 
where  g   is a non-constant meromorphic function 
with order , all of whose poles are of multiplicities k 
at least. 

2

From (3.1) we have 

    
     

1

1

n
nn

j j j j j j j

n
n nn

j j j

f z af z b

g ag b g ag

    

   





    

     

     (3.2) 

By the same method as [14], from Lemma 2.1 it is not 
difficult to find that ng ag   has just a unique zero 

0  . 
Set 1g   again, if then 3n 

2n ng ag a n          

thus 2n a n       has just a unique zero 0  . 

Thus 0  is a multiple pole of   or else a zero of 
.  2 n a  

If 0  is a multiple pole of  , since 
2n na       

has only one zero 0 , then . By Lemma 
2.1 again, 

2 0n a    
  is a constant which contradicts with g is 

not any constant. 
So we have that   has no multiple poles and 

a     have only a unique zero. By Lemma 2.1, and 
Lemma 2.4, we have   is not transcendental. 

If   is non-constant polynomial, then 

 2
0

ln a A        . 

Since all zeros of  are of multiplicity 2, then .  3l 
Denoting   for  1n 1n  , 1 1n n    , we 

have  0

l
A a      and   1

0

l
Al      . Since 

all zeros of  are of multiplicity , then  2 1 4n  
  00,     .  

If  0 0   , then   00  which contradicts with 

  0a0     . So   is a constant. 

Next we prove that there exists no rational functions 
such as  . Noting that  1 1n n     and   has 
no multiple pole, we may set 

   
 

   
 

1 2

1

mm m

s

nn
t

 

 

 

  

1, 1

1 2

1

1 2

,
( )

s 

  

 

1n
A

 
 

  



   (3.3) 

where A is a non-zero constant, s t  , 1 2, , , sm m m  
2, , )j s  

 
are s positive integers, j , ( 1 . For 
a convenience of stating, we denote 

 2 1  ,

,

m n

1 2 sm m m m                 (3.4) 

then  2 1m n s 

   
 

. 
From (3.3), we have 

   
 

 
 

1 1

1

1

m

n
A

  1sm

s

n

t

h  1

1

,
p

q

 
 

 

  

  



 





 
 

(3.5)  

where 

   1h m t n  1 2s t
s ta  
 2 0

s t   a    

    1

1 1

m

 

  1sm

sp h

     

 1      

  ,
n

t 

  a  

  

   1 1

n
q    

0

 

               (3.6) 

are three polynomials. Since has only a 
unique zero   then there exists a non-zero constant B 
such that 

 
 

 
  

0

1 2

l

n n

t

 

 



 

 
  

,
n

B

   
a 

 
  

 
 

   (3.7) 

so 

 


1

0 2

1 1 nn n

t

B p 

 



      1

1 2

,
l 

  




 

 
 


   (3.8) 

where    p l nt  1t tb  
2 1t 0b 

   

    

 
 

 is a poly-
nomial. From (3.5) we also have  

 
 

1m

A
2

1 3

1

sm

s

n

t

p
2

1

1

n

   


 

 



 





 

 
 

 



     (3.9) 

where  3p   is a polynomial also. 
We denote  deg p  for the degree of a polynomial 
 p  , from (3.5) and (3.6) we may obtain   

 
 

deg

deg

h s t

p m

  

 1 1deg q n

1

1,t t   
      (3.10) 
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t

From (3.8), (3.9) and (3.10) we may obtain 

 2deg ,p                  (3.11) 

 3deg 2 2 2.p t s           (3.12) 

Since  has only a unique zero   a   0   and  

2 1 ( 1, 2, , ),jm j    s  

then 0 j   ( 1 rom (3.8), (3.9) and (3.11)  

it follows

,2, ,j   .

  
)s  F

 that  then 

,        (3.13) 

Since , then 
w

3deg 1p l  

 22 degm s p t    

 2 1jm n 
2

 2 1m n  s , so by (3.13) 
e have s t . 
If l n mt , fro  (3.8), (3.9) and (3.12), we have 

Then, . Combining with above inequality 

 31 1 deg 2 2 2nt l p t s        

2 1t s 
2s t , w out a contradiction. 

nt , then from (3.5) and (3.7) w
e bring ab

If e have 

that is . If , then 

1

this is impossible. Thus, 

l

   deg degp q  1 1

 degm s h nt  
2s t   . So 

 1m t n 
 deg h

1     
 

 

deg

deg

2 2

m t n s nt h t n

s t h

s t s t

     

  

    

 

 1m t n 
re, 

 and 
 deg 1h s t   .Therefo  1 1

. Then
m  
2s t

t n
e have m  2 1s  , this 

contradicts to 2

. Again from 
(3.8) and (3.9), w t

s t . 
This comple  ptes the roof of Theorem 1.5. 

 
.2. Proof of Theorem 1.6. 

or any points , Without loss of generality, we 

3
 
F 0z D

ose thatset 0 0z  . Supp  F is not normal at 0 0z  , then 
by L  2.7, we have that there exist a uence 

n

emma subseq
f F , points sequence 0z D , and a positive num-

bers n , 0n
 , such that 

  1 ,z   n n n n ng f g           (3.14) 

spherically uniformly on each compact subset of C, 
where  g   is a non-constant meromorphic function 
with or , all of whose poles are ofmultiplicities at 
least 2, all hose zeros are of multiplicities at least 4. 

From (3.14) we have 

der 2
of w

 
    

2
2 2n n
n

1 g a
g a d

g g
 

 
         (3.15) 

If , then  0g a      0g a c    , this contra-

di to which all fcts  zeros o   g   have multiplicity at 
least 4. If for any point C  , 

 
  0a   , then By 

Lemma 2.2, we have that
g

 g   is not transcendental in 
C, so  g  is non-constant al function in C. By 
Lemm we also have that 



 ration
a 2.3 

  3d

a b






 

c
g 

a contradictions. Theref



ore, 

 

 2g a g 

 
    have a  

zeros. We may claim that  2g a g   h   as a uni- 

que zero 0  . Otherwis *e, suppose that 0 0,   are two 
distinguis  of h zeros

   2g a g     

sitive nu



then there exists a po mber 0  such that 
   *

0 0, ,N N     .On the other han  by Hur-
n find two point sequences 

d,
witz rem we c’s Theo a

 0 ,n N   ,  * *
0 ,n N   Such that 

* *
0 0,n n    , and 

   n n 2 2 0n n ng g a d        

   *
m m 2 * 2 0m m mg g a d       

 

then,   we have

  2
n naf z  0n n n n n d   nf z     , 

  * 2
m maf z * 0m m m m m d   mf z   

ev

 . 

Fr ypothesis th ery pair functions om the h at for f , 
g  in F,   2f z af   and   2g z ag   share comp  

mber d ave 
lex

nu  in D, we h

 z af  2
n nz  0n n n n n d mf     , 

  * 2
m naf z * 0n n n n nf z d   m   

 

 . 

Fix , the 0m, let n  n   20 0m mf af d  . 

Since    2
m mf z af z d    

n  w

0, m

has no accumulation points, 
so for sufficiently larg e have 

*
m mz z   

e 

0n n n     

then 

*,n n n n

n n

z z

 
     

Thi radicts to s cont    *
0 0, ,N N     . Thus, 

   2g a g     has   zero 0a unique   . Further-
 either 0mo ve thatre, we ha    is a m e poles of ultipl

 g   or 0   is a un zero of ique  g a  . If 

0   is a le poles of  gmultip  , then   0g a  , 
Cfor any   . By Lemma 2  Lemm

mediately deduce that 
.2 and a 2.3, we im-

 g   must be a constant in C, 
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which contradicts to  g   is a non-constant mero-
morphic functions in C. erefore,  g Th   has only a 
simple poles and  g a   has a un 0ique   . But 
since  g   has o tiple poles, so w e that nly a mul e hav
 g   is entire in C and  g a   has a unique 

0  . Also by Lemma 2.2, hat we have t  g   is a 
nstant polynomials, all of whose zeros  mul-

tiplicity at least 4. Setting 

    1

non-co are of

 1 2
2 sm  , 

2
sm

m
g A    m

s  

 

 

 1 21 1m m

we have 

 g  1
A h1 2            

   

    
1 2s sa  



0 2sa  , A Where  
,
h m 

2

 0 , 

0 1, , sa a   t
, s   are 

a 
 1, 2, 

 are some complex constan s, 

jm j s  positive integers, 4jm  , and 

1
j s
j j

 . m   m Thus, we have  

 g a B  l0  

 

   , 

g awhere 3l  . So we have that  0Bl  1l 

g

 

  



 0 0g 

.  

If 0g  , then  0 0g  0  

ctions. 

 . 

Bu 0 t  0
efore, 

 
F

g a
 is norm

, a contr
a

adi
Ther l at 0z  . 

 
.3. 

or a

3 Proof of 

ny 
he

Theorem

 a z
.7 

 1.7. 

  0 , 
by the

 
F z D

ore
, if plete we may give the com

proof of T m 1  same argument as Theorem 
1.6, we emit the detail. In the sequel, we shall prove that 
F is normal at which   0a z  . Set    ra z z b z , 
where  b z  is analytic 0 , 0 1b  
positive integer, 2r  . 

at 

 

z 

 

  , r  is a

 1

1
: ,

r
F F F

tion 

z
z f

 

 

f z F 
  

 
z

 

uncFor every f F z  in 1F , from the hypothesis 
in Theorem 1.7, we ca  that all zeros of n see  F z  are 
of order at least 4, all poles of  F z  are of m icity 
at least 2. 

Suppose

ultipl

 that 1F  
ex

is not normal at z 
n

0 , then by 
Lemma 2.7, there ists a subsequence 1F F , a point 
sequence 


, 1n nz z r  ,and a positive n equence 

n

umber s
 , n   

1 z

0

 
, such th

 

n n

at

 
n

n

r

n n

 
1 1

n

z f



 
n n nz

n
g F

g

   

 

 on com

 

act subsets of



 

rmly



 

p



rically uni

 (3.16) 

 C, wsphe fo here 
 g   is a non-constant  meromorphic function on C, 

whose zeros are of multiplicity at least 4, and all of 

whose poles are multiple. Moreover,  g

all of 

  has an or-
der at most 2. 

Now we distinguish two cases: 
Case 1. n nz   . Without loss of a generalization, 

w  exe assume that there ists a point z such that 
, 1nz z z r    , we have 

 
 

     

   

1

1

( )

1 1

r r
n

n n

r

g

2 2

22

n n n

n

n n nn n n n

n n
r

nn n n

f z

g

z gz g

g z
r

gz

 


  

 







note 1S

   


 

 


  



         
    

 

(3.17) 

For the sake of convenience, we de for 
of

 the set 
 all zeros of  g  , 2S  for the set of all zeros of 
 g  , and 3S  for t  s of all poles of  ghe et  . 

Since
 
 

 
 2 2n

ng g
lim n gg  

 
, 

 


   
1 1

lim
n ggn 



, and 


uni- 

formly on compact subsets of 1\C S

 
lim 0

n
n n

r

z  



ly on com s of C, 

thus 

 uniform pact subset

 lim n n nf z  
n

   , uniformly mpact sub- on co

sets of  1 2 3\C S S S  . Thus, it is not difficult to see 

that 

     
     

 
     

 
 

2

2

2

1

n n n n n n

n n n n n

n n

n n n n n

z a z f z

a z f z d z

d z

a z f z d

g

b z

n n

n n

n nz

f      
     

 
     



  

  




  


  



    (3.18) 

uniformly on compact subsets of . If 

 





\C S  1 2 3S S 

 
 

1 0
g 
b z

   , then 


   g b z   , for any 

 1 2 3\C S S S    . Thus,   g b z    for any 
C  . By Lemma 2.5, we can see that  g   is not 

ndental in C, but is a rational functio o from 
Lemma 2.3, we deduce that  g
transce n. Als

  is constant, which 
contradicts to the fact that g    is non-constant. On 
the other hand, it is easy to see that  g   is not iden-
tically equal to  b z . Hence,   g b 

e as the
z   has one 

zeros at least in C rguments 
in Theorem 1.5 and Theorem 1.6, we deduce that 

. In fact, by the sam  a
 g   

has a unique zero 0  . By Lemma 2.5, we ca  
that 

n see
 g   is not tr dental in C, so  ganscen   is non- 

const tional function in C. For a non-c nt poly-ant ra onsta
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nomials  g  , and noting that  g   has only a zero 
with multiplicity at least 4, we hav

     

e 

0

l
, 3g b z B l       

Thus,     1

0

l
g Bl      . Hence,  g   has a zero 

0   at most. If 0   is a zero of  g  , then 
  g   0 0 0  0g g   . But    0 0g b z    , 

In the sequel, 
a contradiction. 

we denote r the degree of a 
po

 p  fodeg
lynomial  p  . If g   i

 
s n



on polynomials ra-
tional functions, then we set

       
    

11m    2

1 2

1 2

1 2

,
s

t

m

s

nn n

t


     

    (3.19) 

Wher t .  

t      (3.20)  

Then, 

m  

 

 



2jn  , 

s t

j kq n 

g A




e jm 

 

4 , 1, 2, ,j s  ; 1,2, ,j  

1 1

4 , 2
j k

m m s
 

    

 
 

     
   

1

1

1

1

A
1

1

1

1

s

t

mm

s

nn

t

h
g 1

1

p

q

   


    






  

 
 

(3.21) 

where 

2



   

 

1 2
0

s t    s t
s tq a   
       ,

 deg h s 

h m

p A

a    

1t   

1 1

2        1 2 1

1 1
smm m

s h  

 
      

     1

1 1
tn

tq      

   

1 21 1

2

n n         

Since    g b z    has a un o ique zer 0  , so we 
set 

   


 
1

0

1

l 

 

nt. Then 

 


1

1( ) tnn
t

B
z

    
  


   (3.22) 

where B nonzero consta from (3.22), we 

g b

 is a 

 

have 

 
  1

1

0 2

n

t

B p 

  

1t tb    

 

22

1
t

l

n

 

 








 
       (3.23) 

where 1b is a poly-  

 
hat 

g 

 
2deg

 

 2 0 tp l q t        

nomial,  p t . 
follow tFrom (3.21), it 

     
 

11 2m
A

1

1 3

22

1

n

p
g

2s

t

m

s

n

t

      

 







 

    3

2 2 2 2 2 3
0 2

1
s t s t

2 3s t

p m q m q

c c



    
 

   

    
 

is also a polynomial,  3deg 2 2 2p s t   . 
 cases to derivative a cWe distinguish five ontradiction: 

Subcase 1.1. m q . Then from (3.21), we have 
l q t  . So,  

 2 2 2deg , 1p t i i t    , 

  0 0deg 1 , 1 1h s t h h s t         

and 

 3 3 3deg 2 2 2 , 1 2 2 2p s t i t s t         

From (3.23) and (3.24), we have . S  also 
fro

 2 3 1i i 
e 

o
m (3.23) and (3.24), we also hav  3deg . 

Thus, we have 32 2 1 2 2l s t i s t
1 
i

l p

2     
Since l q

 . 
t  t and 2q t , then we have 22s i  . 

On the ot , from  and (3.24), we  her hand  (3.23)  also have
 22 degm s p  . Since 4m s , we have 22s t i  . 

. 
Subcase 1.2. m

This is impossible
1q  . Then l q t  , 

 2 2deg p t i  , 2i t1  ,  deg 1h s t   

and 

 3 3 3deg 2 2 2 , 1 2 2 2p s t i t s t         

Similarly to Subcase (1.1), from (3.23) and (3.24), we 
also have that 2 3 1i i  . 

Also from (3 (3  31 degl p  , .23) and .24), we have 
then, we have 22 1t s i    On the ot -
larly to the argu case (1.1), from (3.23) and 
(3.24), we also have 

her hand, simi
ment of Sub

 2 22 degm s p t i    , then 

22 1s t i   . This also is
3. 2m q

 impossible. 
Subcase 1.   . Then we still have 

  2 2 2 1l p t s t3 ,deg ,1 ,degq t t i i t h        
and 

, 
 3deg 2 2 2p s t   . Therefor, 2 2 2l s t   , so

2s
 

2t   . Similarly, we 22s t i   , t

22
have 2m s hen 

s t i  . . This is a contradiction
e 1.4. 1m qSubcas   . Thenl  q t , 

 deg 1h s t   ,  3 2 , deg 2 2t p s and 
 2 2deg p t 2,i i0 t    .

2 .t i
 From (3.23) and (3.24), we 

have 2m s   Thus, 22s t i  and 22 1 .t s i    
This i

Subcase 1.5. m
s impossible. 

. Then ,  2q  l q t 
 



  


 
   (3.24) 

where 

 

deg 1h s t   ,  3deg 2p s t2 2  d  2g p t, an de  . 
From (3.23) and (3.24), we have 

 31 deg 2 2 1l p s t      and  22 deg p t . m s
2 1t s

 
So, we have that   2 and s t . This is a con-
tradiction. 

Case 2. Suppose that there exists a complex number  

C   and a subsequence of sequence  1
n nz  , still 

noting it 1zn n
 , such that 1zn n   . We a con- have 
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verges 
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spherically uniform on compact subsets of C. Clearly, all 
zeros of  ĝ   are of multiplicity at least 4, all poles of 
 ĝ   ar ultiplicity at least 2. For each 0 0e of m   , it 

 to see that there exists a neighborhood ),is easy ( 0 N  
of 0 , such that    ˆr r

nH g    , the con  
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ng  uniform on  0N   . For 0 0  , 

since 0  is the pole of  g  , then there exists 0  , 
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spherically uniform on compact subsets of C. It follows 
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If , then    2 0rG G         rG     0 , so 
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1

01
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for any C  . Since  0 0G  , then . Also  0 0C 
since G   ha

0 , thi
s the zero iplicity at least 4, then 

 G  s is a contradiction. Therefore, 

   2rG G

s of mult


       
is not identically equal to zero. 

If    2rG G       for any C  , then  G   

has no multiple poles and . Note that    0G    r

 G   les, so  Ghas only multiple po   
at G

i  on C
e th

s entire . 
Also by Lemma 2.5, we hav    is not tran-
scendental in C, and then  G   is ynomial. Thus,  a pol

  0
rG C     , where 0 0C  . We ha ve  1rG r     , 

then from  0 0G   and a multiplicities of every zeros 
of  G   it follows that   0G    for any C  , this 

Hence, is impossible.    2G Gr        has some 

zeros. In fact, by the sa gument as the C  
may de that 

me ar ase 1, we
duce    2rG G    ha    s a unique 

zero 0  . Thus, we ha 0ve that either    is multi-
ple poles of  G   or 0   is a unique zero of 
 G r  . 

ilarlySim , if 0   is multiple poles of  G  , from 

that 
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atfollows th    rG      for any C  . By Lemma 
2.5, we have that  G   is not transcendent ain by al. Ag
Lemm  Ga 2.6, we have that   is a constant,  is which
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entire on C and   rG     has a unique zero 0  . 
By Lemma 2.5, we have that  G   must be a polyno-
mial. Setting 
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      2(3 1
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lrG r r Bl        .  (3.31) 

For  0 0G  , we have 0 0   and 0j  . From 

(3.29) it follows that 0j  ,

d (3.31)

1, 2, ,j s  . 

or 1,From
ha

 (3.29), (3.30)a , fn 2,j s  ,  , we 
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0
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    (3.33) 0
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, we have 

     (3.34) 

From (3.32) and (3.33)

  ,jr l 0 , 1r j  2, , s              (3.35) 

If l r , then 0 0  , this is im
 l r

possible. Therefore, 
we have  , and so  
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