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Abstract 
The site effects relating to the amplification of ground motion under earthquake loading are strong-
ly influenced by both the subsurface soil condition and the geologic structure. In this study, for site 
characterization at the Imam Khomeini International Airport (IKIA) area in south of Tehran, in- 
situ seismic refraction tomography were carried out as a part of site investigations project, in ad-
dition geologic setting, borehole drilling, ground waters information and measurements. Based on 
seismic refraction studies, three layers are separable which with increasing in depth the S and P 
wave velocity is increased and this indicates increasing in compaction of soil and geologic mate-
rials. In the second and third separated layers, the zones with low and high seismic shear wave 
velocity is approximately equal, and northeast and southwest of the airport site has the low veloc-
ities, in addition to containing loose soils, highly weathered stones, and low depth to groundwater. 
In terms of Poisson’s ratio, the most important and key installations of airport site are located in 
suitable positions. According to Iranian Seismic Code, most of the lands around the airport are in 
class 2 and 3. It seems that a fault or a discontinuity is passed from northwest to the southeast of 
the study area. This site, according to geological, subsurface geophysical, and geotechnical bore-
holes studies, is high risk-earthquake prone. 
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1. Introduction 
Information such as faulting and fracturing, bedding plane direction, the presence of pore fluids, complex geo-
logical structure and detailed stratigraphy are commonly interpreted from 2D or 3D seismic data sets [1]-[6]. 
These geological structures are objects of geological discern in geophysical investigation that inform the “com-
petence” or otherwise of the sub-surface. In the world of shallow geophysics, there are similarities between 
seismic reflection, seismic refraction, and ground-penetrating radar. In a seismic investigation, acoustic energy 
propagation is measured within a medium. The velocity of acoustic energy in the form of compressional and 
shear waves is related to the dynamic elastic module and density of a material [3] [7] [8].  

The use of seismic surveys in foundation studies and groundwater exploration has traditionally relied on 
seismic refraction techniques using compressional waves which show increasing velocity with density [6] [7]. 
The earth is characterized by many layers, each with different physical properties. When sound waves travel 
through the earth encounter a change in the physical properties of the material in which they travel, they will ei-
ther reflect back to the surface or penetrate deeper into the earth; where they may again be reflected at another 
interface. At a geological interface some seismic energy will react when it encounters a subsurface layer [8] [9]. 
This physical property is closely associated with the density of a layer. Acoustic energy is diffracted by frac-
tured rock surfaces in much the same way that a visual image is distorted in a shattered mirror. Identifying dif-
fracted energy patterns is one way in which geological structures such as faults and fractures can be identified 
and mapped [7] [9].  

The field measurements can be carried out on the ground, in boreholes, on the seabed, or just below the sea 
surface. In each case, the refracted head wave travels parallel to the ground surface. Seismic wave velocities are 
calculated from the slope in a ‘travel time versus distance’ graph worked out from the registrations in geophones 
placed along the measured profile. The determination of the seismic velocities and the thickness of the various 
layers of is a complex process, and a great deal of practical experience is required of the operator before the re-
sults can be regarded as reliable [10]. 

The purpose of this paper is not to present a thorough explanation of exploration seismic methods, since this 
explanation can be found in any basic textbook on exploration geophysics [11]-[13]. It is important to know, 
however, that certain similarities exist between various seismic methods, and what the general limitations of the 
methods are. In all seismic methods, some source of seismic energy is used and some type of receiver is needed 
to detect seismic energy that has traveled through some volume of the earth.  

In General, there are four various seismic methods for underground exploration including Seismic Cross-hole 
Tomography, Vertical Seismic Profiling, Shallow Seismic Reflection, and Seismic Refraction. Cross-hole seis-
mic tomography offers means to investigate elastic properties of the rock mass between two or more boreholes. 
This technique has been developed and applied in the last 30 years in a number of settings worldwide [14]. 
Cross -hole seismic travel time tomography is based on the assumption that the energy travels from a source 
(lowered into a borehole) to a receiver (lowered into another neighboring borehole) along a well constrained ray 
path [15]. The technique is computationally intensive, and is costly because of the need for boreholes. It often 
gives a very detailed velocity model between the boreholes, and does not require any assumptions to be theoret-
ically correct. This method has been used to study the interior of the earth from scales of thousands of kilome-
ters to tens of meters [16] [17]. One of the more applications of this method is in economic geology and estima-
tion of metal grades in deposits [18]-[20]. The vertical seismic profiling (VSP) technique is seldom used alone, 
but rather is used to provide better interpretation of seismic reflection data.VSP allows accurate determination of 
one-way travel time to various geologic units and analysis of attenuation and acoustic impedances which are 
needed for construction of synthetic seismograms. The synthetic seismograms are then used for comparison with 
seismic-reflection data to identify specific geologic formations and to refine depth estimates of those formations. 
References on VSP include [21]-[23]. The studies of [24] and [25] can be referenced as new application of VSP 
in underground evaluation. Shallow seismic reflection involves using a surface seismic source to create a seis-
mic wave, which then travels into the subsurface. At interfaces that have an impedance contrast, (change in ve-
locity and/or density) a portion of these waves is reflected back to the ground surface, and a portion is transmit-
ted through the interface. These transmitted waves then reflect at the next impedance contrast and return to the 
ground surface. Geophones on the ground surface record these reflections. In shallow seismic reflection method 
the source and receiver intervals employed is 2.0 - 5.0 m [26]. seismic refraction is one of the most commonly 
used methods to determine bedrock depths, especially for depths of less than 30 m. Seismic refraction method 
makes use of waves travelling along the ground surface and of waves in the underlying more compact layers 
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where the velocities are higher (Figure 1) [13]. They return to the surface as refracted waves which are some-
times called head waves [27]. 

In this study, the seismic refraction method was used for addressing the Robat-Karim fault beneath the Imam 
Khomeini International Airport (IKIA) and its surrounding. The seismic refraction method has been used in 
various and numerous studies [28]-[31]. Such as this investigation, the seismic refraction technique has been 
used in several cases for evaluation, finding and detecting the faults and fracture zones in underground environ-
ments [32]-[34]. 

In IKIA site, seismic refraction studies were performed to determine the velocity of seismic waves in under-
ground layer sand strength of geological formations at different depth. In addition, other main objectives of this 
study was included: accurate detection of surface and subsurface layers and geologic units, sedimentological 
study of the region in terms of grading, sorting, porosity and permeability, identify and separate zones of loose 
clay soils according to geological hazards, study of tectonic and associated complications such as faults, discon-
tinuities, fractures and folding, and determine the depth of bed rock. All collected data in this study can be used 
to determine the different land-use positions in future, according to engineering fundamentals. 

 

 
Figure 1. ((a) (b)) Seismic wave travels; showing simple refraction occur-
ring at an interface; (c) Time-Distance graph for seismic refraction. 
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2. Materials and Methods 
2.1. Main Concept of Seismic Refraction Method 
The seismic refraction technique is based on the refraction of seismic energy at the interfaces between subsur-
face/geological layers of different velocity. The seismic refraction method uses very similar equipment to seis-
mic reflection, typically utilizing geophones in an array, and a seismic source (shot). When a seismic wave en-
counters an interface between two different rock types, some of the energy is reflected and the remainder con-
tinues on its way at a different angle, i.e., it is refracted [28] [35]. 

The law of reflection is very simple; the angle of reflection is equal to the angle of incidence. Refraction on 
the other hand is governed by Snell’s law, which relates the angles of incidence and refraction to the seismic 
velocities in the two media as follows [28]: 

1

2

sin
sin

vi
r v
=

 
If ν2 is greater than ν1, refraction will be towards the sini equals ν1/ν2, the parallel to the interface and some of 

its energy will return to the surface as a head wave that at the original angle of incidence. At greater angles of 
incidence there can be no refracted ray and all the energy is reflected. Simple refraction is showed in Figure 
1(a), Figure 1(b). The cross-over distance for which the travel times of the direct and refracted waves are equal 
is shown in below equation [9]:  

( ) ( )2 1 2 12CX h v v v v= + −    
Xc is always more than double the interface depth and is large if the depth is large or the difference in veloci-

ties is small. The cross over distance is the distance at which the first arrival times are direct signals (Miao et al., 
2012). It marks the point when the refracted wave overtakes and arrives before the direct wave. It is related to 
the refractor depth, h, (Figure 1(c)) and the velocities of the overlying medium and the refractor ν1 and ν2 re-
spectively. The term critical distance is used for the minimum distance at which refractions return to the surface 
[9]. When the velocity is higher in the underlying layer there is a particular angle of incidence known as the 
critical angle, ic, for which the angle of refraction is 90˚. This gives rise to a critically refracted ray that travels 
along the interface at the higher velocity ν2 [28]. 

In a seismic refraction survey, the data extracted consist of sets of times (usually first-arrival times) measured 
by geophones at various distances from the source positions [9] [36]. These times are plotted against distances 
(Figure 1(c)). The gradient of any line is equal to the reciprocal of a velocity, i.e. steep slopes correspond to 
slow velocities [9]. 

The total travel time along the refraction ray path, is “acdf” (where “a” is the source of the wave). The refrac-
tion time TR is given by: 
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where v1 and v2 are the true velocities in the first and second media, respectively. The intercept time, Tic is de-
fined as the time at which the back-extrapolated refracted arrival line cuts the time axis [9] [36]. Intercept times 
are conventionally obtained by drawing best-fit lines through the refracted arrival times but even a very good fit 
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is no guarantee that the depth of the refractor does not change in the region near the shot point, from which no 
refractions are observed. 

2.2. Materials 
In this study, a seismic equipment-set consist of a hammer for striking the shot-point (wave source), a high- 
speed digital data recording systems called seismographs (ADEN Terraloc MK8 24 channel seismograph), a 
seismic imager software (Seistw program) and acoustic sensors called geophones (30 Geophone (P) 10 HZ, 25 
Geophone (P) 30 HZ, and 30 Geophone (S) 10 HZ) were used. 

2.3. Data Acquisition 
In this study, the approximately 100 square kilometers of Imam Khomeini International Airport (IKIA) site were 
considered for seismic data collecting. The 24 seismic refraction profiles including 12 longitudinal wave profiles 
and 12 shear wave profiles were performed. For each data gathering in P profiles five shots and in S profiles six 
shots with shear wave sources and mutual reverse polarity are done. Figure 3 is presented the position of seis-
mic refraction profiles. 

In addition, data from field observations, condition of surface sediments, morphology of the area, slope and 
topography of formations in plain, the shallow excavated trench for subway, and spatially 6 boreholes data were 
used as guideline for better interpretation of seismic refraction survey. 

3. Site Description 
The study area was Imam Khomeini International Airport (IKIA) and its environs, between longitudes 505,000 
to 518,000 and latitudes 391,400 to 392,300. This site which has about 100 km2 area is located about 30 kilo-
meters (19 mi) southwest of the city of Tehran, near the localities of Robat-Karim and Eslamshahr. Based on 
hydrologic divisions, this area is the lowest parts of the Tehran basin and Robat-Karim, Shour rivers reach to 
this area in the end of their path. Morphologically, the study area composed of flat alluvial plain and low-lying 
hilly and the general topography slop is north to the south. Average slope angle of hills is approximately 20 to 
40 degrees and for flat alluvial plain is generally between5 to 10 degrees. Field observations show that the sur-
face sediments in the northern part of the area are mostly fine grain and loose sediments and in the south of area 
coarse grain and dense conglomerate layers can be observed. In this area, sediments have the poor and very poor 
sorting which fall in range from gravel to clay. Due to Robat-Karim fault, study area has the relatively high 
seismicity and risk potential (Figure 2, Figure 3). 

4. Results and Discussion 
Seismic refraction data obtained on all 12 profiles were plotted in a time-distance graph which one of them 
shown below in Figure 4 for example, the compressional velocity; νp and shear velocity; νs of the various zones 
measured on whole profiles are recorded as shown in the Table 1. In all profiles, results show that the IKIA site 
is generally composed of three layers with different P and S wave velocities and consequently thickness and 
Poisson’s ratios (Table 2).  

The seismic P wave velocity maps for IKIA site are showed in Figure 5. The first layer in the central area of 
Terminal 2 and West of site has the high is over 900 m/s while in the north, south, and east is reduced to about 
300 to 400 m/s. Low velocity shows weakness and lack of soil stability in north, south and east Airport site. Al-
so in second layer, the northeast and southwest of site are shown the low velocities, and center and northwest of 
the site are shown the high velocities for compressional (P) wave. The second layer has a higher velocity values 
than first layer. It seems that most chosen positions for band and second terminal did not have a problem. The 
third layer shows the same trend as the second layer to the P wave. Based on the recorded seismic P waves for 
second layer, a number of active terminal bonds have not suitable condition and are constructed on weakness 
and loose lands. 

The seismic S wave velocity maps for IKIA site are showed in Figure 6. Recorded Waves in the first layer 
shows the high velocity (more than 400 m/s) in central area of terminal 2 and west of site, and very low values 
(less than 200 m/s) is recorded for north and south of the site. Areas with low velocities are composed of loose 
and weak compaction which construction planes in these areas will be required to comply the standard design 
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principles. In the second and third separated layers, the zones with low and high seismic shear (S) wave velocity 
is approximately equal, and northeast and southwest of the airport site has the low velocities, in addition to con-
taining loose soils, highly weathered stones, and low depth to groundwater. Therefore, the engineering condition 
of these areas should be more considered during the construction operations. Based on average seismic S wave 
velocity map, the north and south lands of the airport have the velocity faster than 420 m/s, and is composed of 
loose and inappropriate formations (earth type 3 and 4). In addition, the center and northwest lands of the airport 
site is very strength and according to Iranian Seismic Code [37] are first class.  

 

 
(a) 
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(b) 

Figure 2. Geological map (a) and topographic map (b) of study area.  
 

In this study, the thickness of each layer is calculated and the beginning and the end of them are measured and 
the iso-depth of layers is mapped (Figure 7). In first layer, the maximum thickness (up to 11 m) can be ad-
dressed in north and south of area and minimum thickness (1 to 3 m) is available in west and east of this site. 
For second layer, maximum (17 to 19 m) and minimum (7 to 8 m) thickness can be observed in south and 
northwest, and west and east of area, respectively. At the northeast and southwest of the area, seismic bedrock is 
in the deepest state (about 22 to 24 meters), and at the northwest of the airport site is located about 13 meters. Of 
course, the seismic bedrock is not equal to geology bedrock, it seems that high compaction of coarse-grained al-
luvial sediments has been cause the making of seismic bedrock. 
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Figure 3. Position of seismic refraction profiles. 

 
The maps of Poisson’s ratio for the three layers are showed in Figure 8. Poisson’s ratio for the first layer is in 

rang 0.28 to 0.4, and this value is gradually increases from east to west of site. The east of airport site shows the 
lowest and southwest and north of active terminal bands Airport lowest has the highest Poisson’s values. Ac-
cording to Poisson’s ratio, the first layer is composed of sand with medium density [38] so; most parts of this 
site are suitable for future constructions. Poisson’s ratio of the second layer has changed in range 0.22 to 0.37 
(loose sands) and just central parts and terminals 1, 2 are showed higher values and lowest Poisson’s ratio was 
recorded for east and west of site. In third layer, the Poisson’s ratio was between 0.18 to 0.43 which show the 
vast range of particle size from sand and gravel, silty sand and dens sand [38]. 

5. Conclusions 
The geology conditions and risk assessment in Imam Khomeini International Airport (IKIA) based on seismic 
refraction survey can be expressed as follows: 
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• Based on seismic refraction studies, three layers are separable which with increasing in depth the S and P 
wave velocity is added and this indicates increasing in compaction of geology formations. 

• In the second and third separated layers, the zones with low and high seismic shear (S) wave velocity is ap-
proximately equal, and northeast and southwest of the airport site has the low velocities, in addition to con-
taining loose soils, highly weathered stones, and low depth to groundwater. Therefore, the engineering con-
dition of these areas should be more considered during the construction operations. 

 

 
Figure 4. Time-Distance graph of P wave for profile 3 (for example). 

 
Table 1. Values of P and S wave velocity for all layers. 

νs 
(Ave. to 30 m) 

Third layer Second layer First layer 
Y (m) X (m) Profile 

No. νs (m/s) νp (m/s) νs (m/s) νp (m/s) νs (m/s) νp (m/s) 

424 630 1150 500 950 300 650 3,918,967 516,864 1 

370 490 900 400 750 260 550 3,920,627 512,626 2 

705 1520 2600 940 1650 270 600 3,921,954 509,004 3 
466 700 1200 550 950 250 550 3,917,899 517,711 4 
696 800 1750 680 1500 360 800 3,918,739 512,826 5 
390 620 1050 460 800 235 500 3,920,174 509,528 6 
765 910 1550 780 1350 390 850 3,922,227 505,599 7 
443 820 1600 590 1150 260 550 3,916,781 516,513 8 
706 940 1650 750 1400 460 950 3,917,596 512,791 9 
573 780 1300 630 1100 350 800 3,918,967 506,829 10 
643 820 1400 660 1150 360 750 3,914,942 515,002 11 

476 830 2250 670 1450 250 500 3,914,209 511,675 12 
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Table 2. Values of Poisson’s ratio and thickness for all layers.  

Profile 
No. X (m) Y (m) 

First layer Second layer Third layer 
Z (m) Poisson’ ratio Z (m) Poisson’ ratio Z (m) Poisson’ ratio 

1 516,864 3,918,967 −10.5 0.36 −11.5 0.31 −22 0.29 
2 512,626 3,920,627 −7 0.36 −15.5 0.3 −22.5 0.29 
3 509,004 3,921,954 −6.5 0.37 −7.5 0.26 −14 0.24 
4 517,711 3,917,899 −6.5 0.3 −12.5 0.25 −19 0.35 
5 512,826 3,918,739 −2 0.37 −11.5 0.37 −13.5 0.23 
6 509,528 3,920,174 −8.5 0.36 −11 0.25 −19.5 0.24 
7 505,599 3,922,227 −2.5 0.37 −14 0.25 −16.5 0.32 
8 516,513 3,916,781 −9.5 0.36 −13 0.32 −22.5 0.26 
9 512,791 3,917,596 −6.5 0.35 −12.5 0.3 −19 0.22 

10 506,829 3,918,967 −5.5 0.38 −17 0.26 −22.5 0.22 
11 515,002 3,914,942 −3.5 0.35 −15.5 0.25 −19 0.24 
12 511,675 3,914,209 −8.5 0.33 −11 0.36 −19.5 0.42 

 

 
(a) 
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(b) 
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(c) 

Figure 5. Seismic P wave velocity map of (a) First, (b) Second, and (c) Third layers. 
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(d) 

Figure 6. Seismic S wave velocity map of (a) First, (b) Second, (c) Third layers, and (d) Average velocity to depth 30 m. 
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(c) 

Figure 7. Iso-depth map for (a) First, (b) Second, and (c) Third (Bedrock) layers. 
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(c) 

Figure 8. Iso-Poisson’ ratio map for (a) First, (b) Second, and (c) Third (Bedrock) layers. 
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• Based on average seismic S wave velocity map, the north and south lands of the airport have the velocity 
faster than 420 m/s, and is composed of loose and inappropriate formations (earth type 3 and 4). In addition, 
the center and northwest lands of the airport site are very strength and according to Iranian Seismic Code 
(Standard 2800) are first class. 

• In terms of Poisson’s ratio, the most important and key installations of airport site are located in suitable po-
sitions. 

• At the northeast and southwest of the area, seismic bedrock is in the deepest state (about 22 to 24 meters), 
and at the northwest of the airport site is located about 13 meters. Of course, the seismic bedrock is not equal 
to geology bedrock, it seems that high compaction of coarse-grained alluvial sediments has been causing the 
making of seismic bedrock. 

• According to Iranian Seismic Code [37], most of the lands around the airport are in class 2 and 3 and the fu-
ture construction in this region will be required to comply with the standard design principles. 

• It seems that a fault or a discontinuity is passed from northwest to the southeast of the study area and is 
caused the change in this part of the airport land range. 

• In general, according to geological, subsurface geophysical, and geotechnical boreholes studies, this site in 
addition to soluble minerals has the high thickness of fine grain sediments with low to moderate compaction, 
Thus, this region is high risk-prone due to earthquake. 
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