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Abstract 
The aim of the work has two folders: the first is to apply numerical and approximated methods to 

solve the integral comparing in the thermoluminescence theory, i.e.   ′ ′ ∫
0

exp d−
T

T

E T
kT

. The second 

point is to compare the influence of the two different ways of calculation on the values of the pre- 
exponential factor. 
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1. Introduction 
The thermoluminescent intensity, I , as a function of temperature, is obtained developing the rate-equations 
describing the different TL kinetic processes, i.e. the Randal-Wilkins or first order kinetics [1], the Garlick- 
Gibson model related to the second order [2] and the general order kinetics introduced by May-Partridge [3]. 
The equations describing the different processes are the following: 
- for first order 

( )
0

0 exp exp exp d
T

T

E s EI T n s T
kT kTβ

     ′= − − − −    ′     
∫                       (1) 

- for second order 
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 ′   ′ ′= − + −    ′     

∫                      (2) 

where s s N′ = . 
- for general order, 1 2b< < , the TL intensity is given by 

( ) ( )
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exp 1 exp d

b
T b
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s bE EI T n s T
kT kTβ

−
− ′′ −   ′′ ′= − + −    ′     

∫                    (3) 

where ( )1
0
bs s n −′′ ′= . 

In the previous equations the meaning of the symbols is the following:  
- 0n  (cm−3) is the numbert of electrons contained in the electron trap at temperature 0T , 
- N  is the trap concentration, 
- E  (eV) is the energy depth related to the trap below the bottom of the conduction band, 
- k  (ev∙K−1) is the Boltzmann’s constant, 
- β  is the linear heating rate d d .T t  

The quantity s , which appears in the case of Randal-Wilkins equation, is called frequency factor and it has a 
precise physical meaning: it should represent the number of times for second that a bound electron interacts with 
the lattice phonons, multiplied a transition probability factor. In the case of Garlick-Gibson second order model 
and May-Partridge general order, the quantities s′  and s′′  are called pre-exponential factors. 

All equations contain the integral 

( )
0

, exp d
T

T

EF T E T
kT

  ′= − ′ ∫                                 (4) 

which cannot be solved analytically. 
The aim of this paper has two folders. The first one is to compare the solutions of (4) obtained by the approxi-

mation method and by its numerical solution. The second aspect is to investigate the influence of the two different 
ways of calculation on the values of the pre-exponential factor s′′ . 

2. Integral Approximation 
A method which is usually followed for evaluating the value of the integral is by integration in parts, when the 
lower limit of integration is 0 instead of 0T . So, a good approximation is provided by the asymptotic series 

( ) ( ) 1

0
1

, exp d exp 1 !
n

T n

n

E E kTF T E T T n
kT kT E

−

=

     ′= − = − −     ′     
∑∫                  (5) 

The value of (4) is then given by 

( ) ( )
0

0exp d , ,
T

T

E T F T E F T E
kT

  ′− = − ′ ∫  

Since ( ),F T E  is a very strong increasing function of T , ( )0 ,F T E , considering 0 0T = , is negligible 
compared to ( ),F T E , the right hand side of Equation (5) can be considered to represent the integral value from 

0T  as well. 
In the most practical cases, a good approximation of the integral is given by the second order approximation, 

I2, of Equation (5) [4] [5]: 

( )
2 2, exp 1kT E kTF T E

E kT E
  = − −  
  

                            (6) 

Equation (6) has been calculated as a function of E  and T . The range of the activation energy E  was from 
0.5 eV to 2.25 eV in steps of 0.25 eV and the temperature was ranging from 300 to 500 K. Table 1 gives the data 
obtained. I2 indicates the second order approximation. 
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Table 1. Second order approximation of the Equation (6).                                                        
Te

m
pe

ra
tu

re
 

[K
] ( )2 , 0.5I T E =

 
( )2 , 0.75I T E =  ( )2 , 1I T E =  ( )2 , 1.25I T E =  ( )2 , 1.5I T E =  ( )2 , 1.75I T E =  ( )2 , 2I T E =  ( )2 , 2.25I T E =  

300 5.54E−08 2.42E–12 1.17E–16 5.96E–21 3.16E–25 1.72E–29 9.53E–34 5.36E–38 

310 1.10E–07 6.58E–12 4.34E–16 3.02E–20 2.19E–24 1.63E–28 1.23E–32 9.48E–37 

320 2.10E–07 1.68E–11 1.49E–15 1.39E–19 1.35E–23 1.34E–27 1.36E–31 1.40E–35 

330 3.85E–07 4.07E–11 4.73E–15 5.83E–19 7.44E–23 9.75E–27 1.30E–30 1.77E–34 

340 6.82E–07 9.35E–11 1.41E–14 2.25E–18 3.72E–22 6.32E–26 1.09E–29 1.92E–33 
350 1.17E–06 2.05E–10 3.96E–14 8.05E–18 1.70E–21 3.69E–25 8.14E–29 1.82E–32 
360 1.96E–06 4.32E–10 1.05E–13 2.69E–17 7.15E–21 1.95E–24 5.43E-–28 1.53E–31 
370 3.18E–06 8.76E–10 2.64E–13 8.43E–17 2.79E–20 9.46E–24 3.27E–27 1.15E–30 
380 5.06E–06 1.71E–09 6.35E–13 2.49E–16 1.01E–19 4.23E–23 1.80E–26 7.75E–30 
390 7.85E–06 3.23E–09 1.46E–12 6.98E–16 3.45E–19 1.75E–22 9.05E–26 4.75E–29 
400 1.19E–05 5.93E–09 3.23E–12 1.86E–15 1.11E–18 6.76E–22 4.21E–25 2.66E–28 
410 1.78E–05 1.06E–08 6.87E–12 4.72E–15 3.36E–18 2.45E–21 1.82E–24 1.37E–27 
420 2.60E–05 1.83E–08 1.41E–11 1.15E–14 9.67E–18 8.35E–21 7.35E–24 6.56E–27 
430 3.75E–05 3.10E–08 2.81E–11 2.68E–14 2.65E–17 2.69E–20 2.78E–23 2.92E–26 
440 5.31E–05 5.13E–08 5.42E–11 6.04E–14 6.96E–17 8.23E–20 9.92E–23 1.21E–25 
450 7.41E–05 8.31E–08 1.02E–10 1.31E–13 1.75E–16 2.40E–19 3.35E–22 4.74E–25 
460 1.02E–04 1.32E–07 1.86E–10 2.76E–13 4.24E–16 6.68E–19 1.07E–21 1.75E–24 
470 1.39E–04 2.05E–07 3.31E–10 5.62E–13 9.89E–16 1.78E–18 3.27E–21 6.10E–24 
480 1.86E–04 3.14E–07 5.77E–10 1.11E–12 2.23E–15 4.57E–18 9.54E–21 2.02E–23 

490 2.48E–04 4.73E–07 9.82E–10 2.15E–12 4.86E–15 1.13E–17 2.66E–20 6.39E–23 

500 3.25E–04 7.01E–07 1.64E–09 4.04E–12 1.03E–14 2.69E–17 7.15E–20 1.93E–22 

3. Numerical Solution of the Integral 
The integral (4) has been also calculated, as a function of E  and T , by means of the Matlab program. Special 
attention has been paid at the low temperature region where the exponential assumes initially very low values 
and then it changes very fast as the temperature increases.  

The lower limit of the integration interval is the smallest floating point number, i.e. realmin in Matlab, while 
the upper limit value changes from 300 K to 700 K. 

The integration limit has been divided in two subintervals: the first for 400 KT ≤  and the second for 
400 KT >  in order to define the first region where the integration function assumes very low values and in-

creases strongly with the temperature. 
In the following the numerical solution of the integral (4) is indicated by ( ),Q T E . Table 2 shows the data 

obtained. 

4. Condition at the Maximum 
Considering the equation for general order kinetics, the condition at the maximum is obtained by Equation (3) as 
following. The logarithm of ( )I T  is: 

( ) ( ) ( )
0

0

1
ln ln ln 1 exp d
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s bE b EI T s n T
kT b kTβ

′′ −  ′′ ′= − − + −      ′−   
∫                (7) 

then, the condition at the maximum is obtained quoting its derivative to zero: 
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I s n b s bE b E ET
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 ′′ ′′− −    ′= − + − − =    ′−      
∫  

http://dx.doi.org/10.4236/oalib.1100618


E. Chiaravalle et al. 
 

OALibJ | DOI:10.4236/oalib.1100618 4 August 2014 | Volume 1 | e618 
 

Table 2. Calculated values of ( ),Q T E  for given values of E  and T .                                           

Temperature 
[K] ( ), 0.5Q T E =  ( ), 0.75Q T E =  ( ), 1Q T E =  ( ), 1.25Q T E =  ( ), 1.5Q T E =  ( ), 1.75Q T E =  ( ), 2Q T E =  ( ), 2.25Q T E =  

300 5.62E–08 2.44E–12 1.17E–16 5.98E–21 3.16E–25 1.72E–29 9.54E–34 5.37E–38 

310 1.12E–07 6.62E–12 4.35E–16 3.03E–20 2.19E–24 1.63E–28 1.23E–32 9.48E–37 

320 2.13E–07 1.69E–11 1.49E–15 1.39E–19 1.35E–23 1.34E–27 1.36E–31 1.40E–35 

330 3.92E–07 4.10E–11 4.75E–15 5.84E–19 7.46E–23 9.77E–27 1.30E–30 1.77E–34 

340 6.95E–07 9.43E–11 1.42E–14 2.26E–18 3.73E–22 6.33E–26 1.09E–29 1.92E–33 

350 1.20E–06 2.07E–10 3.98E–14 8.08E–18 1.70E–21 3.69E–25 8.15E–29 1.83E–32 

360 2.00E–06 4.37E–10 1.05E–13 2.70E–17 7.17E–21 1.96E–24 5.44E–28 1.53E–31 

370 3.26E–06 8.85E–10 2.66E–13 8.46E–17 2.80E–20 9.48E–24 3.28E–27 1.15E–30 

380 5.18E–06 1.73E–09 6.39E–13 2.50E–16 1.02E–19 4.24E–23 1.80E–26 7.76E–30 

390 8.04E–06 3.27E–09 1.47E–12 7.00E–16 3.46E–19 1.75E–22 9.07E–26 4.76E–29 

400 1.22E–05 6.00E–09 3.25E–12 1.86E–15 1.11E–18 6.78E–22 4.22E–25 2.67E–28 

410 1.83E–05 1.07E–08 6.92E–12 4.74E–15 3.37E–18 2.45E–21 1.82E–24 1.38E–27 

420 2.68E–05 1.86E–08 1.42E–11 1.15E–14 9.70E–18 8.37E–21 7.36E–24 6.57E–27 

430 3.86E–05 3.15E–08 2.83E–11 2.70E–14 2.66E–17 2.70E–20 2.79E–23 2.92E–26 

440 5.48E–05 5.21E–08 5.46E–11 6.07E–14 6.99E–17 8.26E–20 9.94E–23 1.21E–25 

450 7.66E–05 8.44E–08 1.03E–10 1.32E–13 1.76E–16 2.41E–19 3.35E–22 4.75E–25 

460 1.06E–04 1.34E–07 1.87E–10 2.77E–13 4.26E–16 6.70E–19 1.07E–21 1.75E–24 

470 1.44E–04 2.09E–07 3.34E–10 5.66E–13 9.93E–16 1.79E–18 3.28E–21 6.11E–24 

480 1.93E–04 3.20E–07 5.82E–10 1.12E–12 2.24E–15 4.58E–18 9.56E–21 2.03E–23 

490 2.57E–04 4.81E–07 9.92E–10 2.16E–12 4.88E–15 1.13E–17 2.67E–20 6.40E–23 

500 3.39E–04 7.14E–07 1.66E–09 4.06E–12 1.03E–14 2.70E–17 7.17E–20 1.93E–22 

 
from which we obtain 

( )
0

2
0 1

exp 1 exp dMTM
T

M

s bkT bs n E E T
E kT kTβ β

′′ −′′     ′− = + −   ′  
∫                     (8) 

From the last equation it is possible to obtain the expression for the pre-exponential factor. Rearranging 
Equation (8), we obtain:  

( )
0

1
2

0

exp 1 exp d
1

MT
M TM

E EkT b b TkT kTs
En β β

−
    − ′− −    ′    ′′ = ⋅ − 
 
  

∫
                   (9) 

or, considering 0s s n′′=  

( )
0

1
2 exp 1 exp dMT

M TM

E EkT b b TkT kTs
Eβ β

−
    − ′− −    ′    = − 
 
  

∫
                    (10) 

Using the second order approximation and 0 0T = , we get from Equation (9) 
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1
2

0

exp
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kT kT b
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−
  

−   −   ′′ = ⋅ +    
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                       (11) 

and finally 

( ) 1

2

exp
2 1

1M M

o M

EE
kT kT b

s
En kT

β −
 
  −  ′′ = + 

 
                          (12) 

or, considering 0s s n′′= , 

( ) 1

2

exp
2 1

1M M

M

EE
kT kT b

s
EkT

β −
 
  −  = + 

 
                          (13) 

expressed in sec−1. 
Observing the previous equations, it is clear that both the heating rate, β , and the initial dose, 0n , are multip-

lication factors: for this reason it is possible to compare directly the Equations (10) and (13) and to find a possible 
differences in the pre-exponential factor values when it is obtained by second order approximation, 2s , i.e. Equ-
ation (13), or using the numerical solution of the integral, s , in Equation (10). In both cases only one parameter 
has been varied in each simulation, i.e. the kinetics order b , the heating rate β , the temperature at the maxi-
mum MT  or the initial delivered dose 0n .  

Tables 3-6 show the frequency factor as a function of the kinetic order b . The activation energy changes from 
0.5 eV to 2.0 eV in steps of 0.5 eV. MT  and β  have been kept constant and the values are 500 K and 10 K/sec 
respectively. Figures 1-4 show the behaviour of s  as a function of the kinetic order b  for various values of 
the activation energy, i.e. E  equal to 0.5 eV, 1.0 eV, 1.5 eV and 2.0 eV; MT  and β  are kept constant, re-
spectively equal to 500 K and 10 K/sec. 
 
Table 3. Frequency factor as a function of the kinetic order b, for a value of the activation energy E = 0.5 eV. s has been 
evaluated by means of numerical integration, Equation (10), s2 by means of the second order approximation, Equation (13); 
s2/s is the ratio of the two values. TM and heating rate β are respectively fixed to 500 K and 10 K/s.                        

Activation Energy 0.5 eVE =    
b  (kinetics order) s  2s  2s s  

1 3.108E+05 3.108E+05 1.000 
1.2 3.036E+05 3.022E+05 0.995 
1.4 2.967E+05 2.940E+05 0.991 
1.6 2.901E+05 2.862E+05 0.987 
1.8 2.838E+05 2.788E+05 0.983 
2 2.777E+05 2.718E+05 0.979 

 
Table 4. Frequency factor as a function of the kinetic order b, for a value of the activation energy E = 1.0 eV. s has been 
evaluated by means of numerical integration, Equation (10), s2 by means of the second order approximation, Equation (13); 
s2/s is the ratio of the two values. TM and heating rate β are respectively fixed to 500 K and 10 K/s.                        

Activation energy 1 eVE =    
b  (kinetics order) s  2s  2s s  

1 5.57E+09 5.57E+09 1.00 
1.2 5.49E+09 5.48E+09 1.00 
1.4 5.41E+09 5.39E+09 1.00 
1.6 5.33E+09 5.30E+09 0.99 
1.8 5.25E+09 5.21E+09 0.99 
2 5.18E+09 5.13E+09 0.99 
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Table 5. Frequency factor as a function of the kinetic order b for a value of the activation energy E = 1.5 eV. s has been eva-
luated by means of numerical integration, Equation (10), s2 by means of the second order approximation, Equation (13); s2/s 
is the ratio of the two values. TM and heating rate β are respectively fixed to 500 K and 10 K/s.                           

Activation energy 1.5 eVE =    

b  (kinetics order) s  2s  2s s  

1 9.163E+14 9.163E+14 1.000 

1.2 9.067E+14 9.059E+14 0.999 

1.4 8.972E+14 8.957E+14 0.998 

1.6 8.880E+14 8.857E+14 0.997 

1.8 8.790E+14 8.760E+14 0.997 

2 8.701E+14 8.665E+14 0.996 

 
Table 6. Frequency factor as a function of the kinetic order b for a value of the activation energy E = 2.0 eV. s has been eva-
luated by means of numerical integration, Equation (10), s2 by means of the second order approximation, Equation (13); s2/s 
is the ratio of the two values. TM and heating rate β are respectively fixed to 500 K and 10 K/s.                           

Activation energy 2.0 eVE =    

b  (kinetics order) s  2s  2s s  

1 1.339E+20 1.339E+20 1.000 

1.2 1.328E+20 1.327E+20 0.999 

1.4 1.317E+20 1.316E+20 0.999 

1.6 1.307E+20 1.305E+20 0.998 

1.8 1.297E+20 1.294E+20 0.998 

2 1.287E+20 1.283E+20 0.998 

 

 
Figure 1. Behaviour of s as a function of b for a given activation energy E = 
0.5 eV.                                                             
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Figure 2. Behaviour of s as a function of b for a given activation energy 
E = 1.0 eV.                                                   

 

 
Figure 3. Behaviour of s as a function of b for a given activation energy 
E = 1.5 eV.                                                   

 
The following Figure 5 shows the frequency factor as a function of MT  for a value of the activation energy, 

i.e. 0.5 eVE = . 
Figure 6 shows s  and 2s  calculated using Equation (9), as a function of the initial charge concentration 

0n ; the other parameters, i.e. E , b , MT  and β  are constant. 
Figure 7 shows the s  and 2s  values as a function of various heating rates, from 10 K/sec to 50 K/sec in 

steps of 10 K/sec. 

5. Higher Order Approximation 
In this paragraph higher order approximations are presented and the results are compared with the second order 
approximation.  
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Figure 4. Behaviour of s as a function of b for a given activation energy E = 
2.0 eV.                                                          

 

 
Figure 5. Frequency factor as a function of the temperature of the maximum 
TM. The activation energy value has been fixed at 0.5 eV and the kinetics 
order at 2. TM ranges from 300 to 700 K.                                 

 
By means of the asymptotic series, the expression of s becomes: 
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where the second order approximation is obtained for 2n = ; the third order approximation for 3n = , and so 
on. 

In particular, the third order expression is the following 
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Figure 6. The pre-exponential factor s" as a function of the dose n0 
evalueted numerically and by means of the second order approxima-
tion. Activation energy is fixed at 0.6 eV, the temperature of the 
maximum TM is fixed at 500 K and the heating rate at 10 K/s. s" is 
expressed in [s−1∙cm3(b-1)].                                      

 

 
Figure 7. Frequency factor s as a function of the heating rate β. The 
activation energy is fixed at 0.6 eV and the temperature of the maxi-
mum, TM, at 500 K.                                          
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and the fourth order approximation is given by 
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Considering 1
0
bs s n −′′ = , the expressions for the exponential factor in higher order approximation are ob-

tained. 
The calculated values are reported in Table 7 as a function of the kinetic order; the other parameters are con-

stant as before. Figure 8 shows the frequency factor evaluated according to the various approximations used. It 
seems evident that the increase of the order of approximation does not produce a real benefit in the final result; a 
very little difference in the results can be observed as the kinetic order increases from 1 to 2.  

6. Conclusions 
Figures 1-4 show that the disagreement between the data, obtained using the numerical evaluation and the ones 
calculated with a second order approximation, becomes larger as the value of the kinetics order, b, increases; the 
difference is more evident for low values of the activation energy, i.e. 0.5 eVE = ; this difference tends to dis-
appear as the activation energy increases: at 2.0 eVE =  no difference can be observed. 

The behaviour of the frequency factor as a function of the peak temperature at the maximum, TM, is given in 
Figure 5 and Figure 6: the numerical evaluation gives the same results of the numerical approximation in the 
range of used temperature: from 300 K to 700 K and an activation energy value of 0.5 eV, and from 450 K to 
700 K with an activation energy equal to 1.5 eV.  
 
Table 7. s numerical evaluation; s2 second order approximation; s3 third order approximation; s4 fourth order approximation; 
s2/s, s3/s, s4/s are respectively the ratios between second order approximation s2 and s, third order approximation s3 and s 
and finally fourth order approximation s4 and s.                                                                

Activation energy 0.6 eVE =        

b  (kinetics order) s  2s  2s s  3s  3s s  4s  4s s  

1 3.108E+05 3.108E+05 1.000 3.108E+05 1.000 3.108E+05 1.000 

1.2 3.036E+05 3.022E+05 0.995 3.040E+05 1.001 3.035E+05 1.000 

1.4 2.967E+05 2.940E+05 0.991 2.974E+05 1.003 2.964E+05 0.999 

1.6 2.901E+05 2.862E+05 0.987 2.912E+05 1.004 2.897E+05 0.999 

1.8 2.838E+05 2.788E+05 0.983 2.851E+05 1.005 2.833E+05 0.998 

2 2.777E+05 2.718E+05 0.979 2.794E+05 1.006 2.771E+05 0.998 

 

 
Figure 8. Frequency factor as a function of the kinetic order, evaluated 
using different methods.                                            
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No difference can be observed between numerical and second order calculation for the pre-exponential factor as 
a function of the irradiation dose (Figure 7). A difference appears for high values of the heating rate (Figure 8); 
the difference increases as the value of the kinetic order increases too. 
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