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Abstract

Fractal interpolation function (FIF) is a special type of continuous function which interpolates
certain data set and the attractor of the Iterated Function System (IFS) corresponding to a data set
is the graph of the FIF. Coalescence Hidden-variable Fractal Interpolation Function (CHFIF) is both
self-affine and non self-affine in nature depending on the free variables and constrained free
variables for a generalized IFS. In this article, graph directed iterated function system for a finite
number of generalized data sets is considered and it is shown that the projection of the attractors

on R? isthe graph of the CHFIFs interpolating the corresponding data sets.
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1. Introduction

The concept of fractal interpolation function (FIF) based on an iterated function system (IFS) as a fixed point of
Hutchinson’s operator is introduced by Barnsley [1] [2]. The attractor of the IFS is the graph of a fractal
function interpolating certain data set. These FIFs are generally self-affine in nature. The idea has been extended
to a generalized data set in R® such that the projection of the graph of the corresponding FIF onto R? pro-
vides a non self-affine interpolation function namely Hidden variable FIFs for a given data set

{(xn, yn):n =01, N} [3]. Chand and Kapoor [4], introduced the concept of Coalescence Hidden Variable
FIFs which are both self-affine and non self-affine for generalized IFS. The extra degree of freedom is useful to
adjust the shape and fractal dimension of the interpolation functions. For Coalescence Hidden Variable Fractal
Interpolation Surfaces one can see [5] [6]. In [7], Barnsley et al. proved existence of a differentiable FIF. The
continuous but nowhere differentiable fractal function namely « -fractal interpolation function ¢ is intro-
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duced by Navascues as perturbation of a continuous function f on a compact interval | of R [8]. Interested
reader can see for the theory and application of « -fractal interpolation function ¢ which has been exten-
sively explored by Navascues [9]-[12].

In [13], Deniz et al. considered graph-directed iterated function system (GDIFS) for finite number of data sets
and proved the existence of fractal functions interpolating corresponding data sets with graphs as the attractors
of the GDIFS.

In the present work, generalized GDIFS for generalized interpolation data sets in R® is considered. Corre-
sponding to the data sets, it is shown that there exist CHFIFs whose graphs are the projections of the attractors
of the GDIFS on RZ.

2. Preliminaries
2.1. Iterated Function System

Let X< R" and (X,d,) beacomplete metric space. Also assume,

H(X)={S < X;S #,S iscompactin X'} with the Hausdorff metric d,, (A B) defined as

dy, (A B)=max{d, (A B),d,(B,A)}, where d, (A B)=max,_min,gd,(AB) for any two sets A, B in
H(X). The completeness of the metric space (.X',d,) imply that (#,d, ) is complete. For i=12,---,N,
let w,: X —> X be continuous maps. Then {/’\,’;wi :i=12,---,N} is called an iterated function system (IFS).
If the maps w;’s are contractions, the set valued Hutchinson operator W :H(X)— H(X) defined by
W(B):Uilwi(B), where W (B):={w (b):beB} is also contraction. The Banach fixed point theorem
N

ensures that there exists a unique set G e H(X) such that G=W (G)=J, _w (G). The set G is called the
attractor associated with the IFS {;w; :i=1,2,---, N}.

2.2. Fractal Interpolation Function

Let a set of interpolation points {(xi,yi)e IxR:i=0,1---,N} be given, where A:x,<x <:-<X, IS a

partition of the closed interval |=[x,,x,] and vy, €[g,,9,]<R, i=0,1--,N. Set I, =[x_,%] for
i=12,---,N and K=1 x[gl,gz] .Let Li:1 > 1,i=12,---,N, be contraction homeomorphisms such that
Li(xo):Xi—1' Li(XN):Xi' 1)

ILi(c)-L(c,)| <d|e,—c,|forall ¢, and c, in I,

for some 0<d <1.Furthermore, let H,:K >R, i=12,---,N be given continuous functions such that
Hi (%, o) = Yixs Hi (X0, Y0 ) = Vi @)
[Hi (% &) = Hi (4 &) <[l - & 3)

for all xel and for all & and &, in [g,,9,], for some o e(-1,1), i=12,---,N. Define mappings
W K->, xR, i=12--,N by

W, (%, y)=(L(x),H;(xy)) forall (x,y) e K.
Then,
{K;W, (x,y):i=12-- N}
constitutes an IFS. Barnsley [1] proved that the IFS K;W, :i=1,2,..., N defined above has a unique attractor
G where G is the graph of a continuous function {f:1 — R} which obeys f(x )=y, for i=0,1,---,N.

This function f is called a fractal interpolation function (FIF) or simply fractal function and it is the unique
function satisfying the following fixed point equation
f (x)=H; (L}l(x), f (Li’l(x))) forall xel,,i=12,---,N.

The widely studied FIFs so far are defined by the iterated mappings
L(x)=a x+d;, H(xy)=a y+q(x), i=12--N, 4)
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where the real constants a, and d, are determined by the condition (1) as

a_zw an _Z(XNXi—l_XOXi)
%) 4 (X =%)

and qg;i(x)’s are suitable continuous functions such that the conditions (2) and (3) hold. For each i, «; is a free

parameter with |o;|<1 and is called a vertical scaling factor of the transformation W,. Then the vector
a=(ay,a,, -+, ) is called the scale vector of the IFS. If q;(x) is taken as linear then the corresponding
FIF is known as affine FIF (AFIF).

2.3. Coalescence FIF

To construct a Coalescence Hidden-variable Fractal Interpolation Function, a set of real parameters z, for
i=12---,N are introduced and the generalized interpolation data {(xi,yi,zi)eR3 11=0,1,--, N} is con-
sidered. Then define the maps w, : I xR* — I, x R?,i=1,2,---,N by

w (% y.2) = (L (). F (% v.2))
where L :1 —>1,,i=12,---,N are given in (4) and the functions F, :1 xR? > R? such that
F(%y.2)=(F (% ¥.2),F* (%..2)) = (ay + Bz +Cx+d,, 7,z +ex+ f,) satisfy the join-up conditions
F (%0 Yo 20) = (Vias Zia) and F (X, Yoo 2y ) = (¥i,21)-
Here «,y, are free variables with |o;| <1, |y;|<1 and 4 are constrained variables such that |f3|+y;|<1.
Then the generalized IFS

{I xR%w (x,y,2)i=1, 2,--~,N}

has an attractor G such that G = U:ilwi (G) :UiN:l{Wi (xy.2):1(xy 2)e G}. The attractor G is the graph of a

vector valued function f:1 — R® suchthat f(x)=(y;,z) for i=0,1---,N and
G :{(x, f(x)):xel,f (x):(y(x),z(x))}. If f=(f,f,), then the projection of the attractor G on R’ is
the graph of the function f, which satisfies f,(x )=y, and is of the form

B (L () =R (% f(x). (%) = £y (x)+ BT (x) + ex +d;, x e |

also known as CHFIF corresponding to the data {(xi VY ) elxR:i=0,1,---, N} [4].

2.4. Graph-Directed Iterated Function Systems

Let G=(V,E) be a directed graph where V denote the set of vertices and E is the set of edges. For all
u,veV, let E" denote the set of edges from u to v with elements e",i=12,---, K* where K" denotes
the number of elements of E“. An iterated function system realizing the graph G is given by a collection of
metric spaces (Xv,pv>,V€V with contraction mappings w;" : X' — X" corresponding to the edge ¢" in
the opposite direction of e". An attractor (or invariant list) for such an iterated function system is a list of
nonempty compact sets A" < X" such that forall ueV ,

KU

A =JUw" (A).

veV i=1l

Then, gX“;Wi“V) is the graph directed iterated function system (GDIFS) realizing the graph G [14] [15].
Example 1. An example of GDIFS may be seen in [13] [16].

3. Graph Directed Coalescence FIF

In this section, for a finite number of data sets, generalized graph-directed iterated function system (GDIFS) is
defined so that projection of each attractor on R? is the graph of a CHFIF which interpolates the corre-
sponding data set and calls it as graph-directed coalescence hidden-variable fractal interpolation function
(GDCHEFIF). For simplicity, only two sets of data are considered. Let the two data sets be

D = {(0 ), (%42 ). - (%5, 2 )

)
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D ={(3¢, %8 ). (% ¥7 ). (o via )|
where N,M >2 with

1 1 2 2
X — X Xi =X
L cgand S—2l<1 (5)
Xm — X% Xy — X

122 for i=1,2,---,N

forall i=12.-.-,N and j=12,---,M. By introducing two sets of real parameters z,z;

and j=1,2,---,M, consider the two generalized data sets
D :{(X‘l’yézéﬂxllyllzi)(xﬁ,yﬁ,zh )}

D ={(x6. 8.2 ), (¢, ¥, 27 ), (0 i 20 )}
corresponding to D' and D’ respectively. Also consider the directed graph G =(V,E) with V ={12}
such that
K"+ K?” =N and K* +K*? =M.

To construct a generalized GDIFS associated with the data Dr,(r =1,2) and realize the graph G, consider
the functions w® : R* - R® defined as

Wy’ (X, y,z):(Lrns(x),Fnrs(x, y,z)), n=12.-K" (6)
such that
R e R e R
W (8 24 ) = (v, 2)
. VvlniK11 (Xg' yglzg) =(Xi—1* yi—l’zi—l) for n= K% a1 K4 K2 Z N
VvlniK11 (Xl%/lvyr%/lvzl%/l)=<xi!yivzﬁ)
. Wr?:L(Xé’yélzé):(xﬁ—llyﬁ—llzg—l) for n =1,2,-~,K21
w2 (X ynozy ) = (X va. 22)
. W:iKu (Xg’ yg,z§)=<xf_l, ys—l’zr?—l) for n= K2 41 K24 KZ = M
W2 o (X Vi 2z ) = (%5 Vi 27)

From each of the above conditions, the following can be derived respectively.

i b =
arxy +bt=x
11,1 11,1 11,1 1 _ 1
CnXO—’_OCn y0+ nZO+dn _yn—l _ 11
11,1 1,1 1,1 g\l forn=12-,K ()
CnXN+anyN+ nZN+ n _yn
11,1 11,1 11 1
en XO—i_j/n ZO+ 1:n = Zn—l
i+ 7+ =2
12 2, W2 1
a X +b =X,
12 2 12 1
a” Xy +b° =X
12 2 12 2 12 2 12 1
Can“XO & Yot P ulo dan“ = Yo 11
forn=K* +1,---)N (8)
2 x2 4o 2 +ﬁ12 72 4 di2 =\t
K11 M anuyM -k EM n-k il yn
12 2 12 2 12 _ 1
e X+ o+ f =2
12 2 12 2 12 _ 1
e Xy 7y + =17,
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1 _
d; =

21 _
d; =

22 2 22 2 22 2 22 g2
CanZIXO + a (2 Yo +;8n7K2120 + dn—K21 = Y1

21,1 21 2
an XO +bn = anl
a’'xy +b? =x2
21,1 21,1 21,1 21 2
Cn X0+an y0+ﬂn ZO+dn =yn—l forn_lz‘” KZl (9)
21,1 21,,1 21,1 d21_2 T e
Cn XN +an yN +ﬁn ZN + n _yn
21,1 21,1 21 2
en X0+7n ZO+ fn =Zn—l
X+ 72 + (2 =2
22 2 22 2
a’ aX +h° =X,
22 2 22 2
a’ aXy +07 =X

= 21 “en
22 2 22 2 22 2 dzz 2 forn=K=+1.--,M. (10)
Cn,KZIXM +0!H7K21VM +,Bn7Kz1ZM + K2 Yn
2 2, .2 2 22 2
en7K21Xo +)/an2120 1 a= Zo
2 2 2 2 22 2
e Xty aly + 70 =12,
From the linear system of Equations (7)-(10) the constants a®, b", ¢®, d*, e° and f" for
r,se{l,2}, i=12,--,K* are determined as follows:
1A 11
a.ll — X~ Xt a12 — Xy~ X
X - "oxE =2
N~ %o M~ %o
1,1 1,1 2,1 2,1
bt = XnXna = XX, b2 — Xm%na = Xo X
n 1 1 n 2 2
Xy — X Xy — X5
N~ %o M
1A 1,1 1 11 (1 1 1l 12 (2 2 12 (2 2
S (e (n—¥s) -8Bt (2 - %) O et (i (Voo —¥3)- 57 (20 - %3)
n = 1 1 n— 2 2
Xy — Xo Xy — X
N M~ %o
1,1 R R L O R R B (11 11 2.1 21 12(2 2 2.2 12(,2 2 2.2
XnYn1 = XoYn — Oy (XNyO_XOyN)_ n (XNZO_XOZN) 42 - XmYna = XoYn — (XM Yo =X Ym )_ n (XM Zo _XOZM)
Xy — %o " X5 — X5
11 11 11 12 (2 2
ell_zn_zn—l_yn (ZN_ZO) elz_zn_zn—l_yn (ZM_ZO)
: " " T
1.1 1,0 1111 il 2,1 2,1 12(2 2 2.2
pri_ Xy 2o — XoZp — Ve (XN Z, —szN) f2 _ X Zna — XoZr — Vi (XM z; —xon)
“ T : G %
2 2 2 2
21 _ Xn B Xn—l azz _ Xn _Xn—l
n = ! —X(l) no N
N M~ %o
1,2 1,2 2.2 22
b2t - XK = XXy o XX X
n 1 1 n 2 2
Xy — X Xy — X
N %o M~ %o
22 211 1 21 1 2 2 2,2 2 22 (2 2
CZI_yn_ynfl_an (yN_yO)_ n (ZN_ZO) CZz_yn_yn—l_an (yM_yO)_ﬂn (ZM_ZO)
no 1 1 no 2 2
Xy = Xo Xm — %o
X Yaa = X¥a — @t (X Yo =XV )= B (X zo — a2 ) g2 Vo = XYa —a (XY =Xy ) - B (xazs - x5z )
2=

1

X0

1
XN —

7 2
Xm — %o
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2 2 21( 51 1 2 2 22 2 2
21_Zn_zn—1_7/n (ZN_ZO) 22_Zn_znfl_7/n (ZM_ZO)
e, = 1 1 & = 2 2
Xn =% Xm =%
1,2 1,2 21 1.1 1,1 2,2
o XnZna — X2y —Va (XN Zy —XOZN) - Xm Zna Z —}/n (XM Z0 —XOZM )
fn = 1 1 fn N 2
XN — Xo XM =%

The following theorem shows that each map w;® is contraction with respect to metric equivalent to the
Euclidean metric and ensures the existence of attractors of generalized GDIFS.

Theorem 2. Let {R3;W;5,n =12, K“} be the generalized GDIFS defined in (6) realizing the graph and
associated with the data sets D",(r =1,2) which satisfy (5). If |0!an| <1, |ynrs| <1 and g are chosen such
that |,Bn“|+|yn“|<l forall r,se{1,2} and n=12,--,K" . Then there exists a metric & on R® equivalent
to the Euclidean metric such that the GDIFS is hyperbolic with respect to & . In particular, there exist non
empty compact sets G" such that

2 K™
-z (&),
s=1ln=1
Proof. Proof follows in the similar lines of Theorem 2.1.1 of [17] and using the above condition (5). O
Following is the main result regarding existence of coalescence Hidden-variable FIFs for generalized GDIFS.
Theorem 3. Let G",r eV be the attractors of the generalized GDIFS as in Theorem 2. Then G",reV s
the graph of a vector valued continuous function f":1" — R? such that for rev, f' (an) =(y;,z;) for
all n=1,2,---,N". If ' =(f1’, f{) then the projection of the attractors G',reV on R? is the graph of
the continuous function f":1" — R known as CHFIF such that for reVv, ff (x;):<y,§) . That is

G'|.. :{(x, flr(X))ZXE I‘}.
Proof. Consider the vector valued function spaces
}“:{f [XO,XNJ—HRZ continuous such that f(xo) (yo,zo) f( ):(yN, )}

H:{h [ %%, ] > R? continuous such that h(x) = (y3. 23 ).h(x5, ) = (Ve 24 )}

with metrics
dy(f, f,)= sup ||f (x)= £, (x|
XEXoXN
dy (h,hy) = sup [y (x)=h, (X))
ey
respectively, where |.| denotes a norm on R?. Since (F,d,) and (H,d,) are complete metric spaces,

(FxH, d) is also a complete metric space where

d((fhy).(f,hy)) = max{dy (f;, 1), dy (B, )}

Following are the affine maps,
I, :[xé,xﬂa[xﬁfl,xﬁ], I, (x)=a'x+b;" for n=1,2,---,K"
In:[xg,x2 ]—)[XL,XH,
In(x):ai2 11x+b o for n=K"+1--- N

3,606 [= [ X0 ] 3, (x) =@+ b for n=1,2,.., K*

n-1'*n

J, :[xz,xz]a[x{l,xf],
J, ()= a 21x+b2 o for n=K*+1,---,M.

Now define the mapping
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T.FxH—>FxH

T(1,0)(0)=(7(0).8(y))

where for x e [x xl]

¥
(4122 () + 'y} (1,2 (0) + B2 (177 () + 02
7o'z (10 () + €1, (x) + 1) forn=1,2,-,K"
(62 sl (0 + a2 ¥ (11 (%)) + B2z (127 () + 02,
72wz (1M(0) + €2l () + £20)  forn=K"+1..,N

and for XE[X xz]

(21J‘1(x)+a211( X))+ B2 (3:2(x)) + 42,

27 (J +e21J (x)+ f2 l) form=1---,K*
-1

m

(cw () + a2 ¥ (35 (00) + B2 28 (35 (X)) +07
2 w7t (35 (X)) + e dt (X) + f22K21) form=K%+1,---,M.

Now using Equations (7)-(10) it is clear that,
F(6)= R (110094 (1100). 2 (1 () = (58.2)
F(06) =R (122 00y (121 () 28 (121 () = (vho z0)-

Similarly, ﬁ(xg)=(yg,zg), ﬁ(xf,I )=(yf,,,z,2VI ) It proves that T maps F xH into itself. Since for each

n=12--N, I} (x) is continuous and therefore, f is continuous on each subintervals [xl xl] .

For n=1,2,---,K, using (7) it follows that f(xﬁ‘)zf( ) (yﬁ ﬁ) e
For n=KM+1..-,N -1, using (8) it follows that f( ,1]) f( (yn,zi).

)=
For n=K", using (7) and (8) it follows that f( ): ( ) (y,l]zrl]) since In’l(xﬁ):xiq and
Inl(xn)_z(g' -

h

Hence f is continuous on I. Similarly it can be shown that
continuous.

To show that T is a contraction map on F xH , let T(f, f,) :(fl, fz) and T(hl,hz):(ﬁl,ﬁz). Now,

sup [, ()=, (x)
o -t

is continuous on J. Consequently T is

= max {Ja* (05 () -, (17 ()
R
Az (1

(x))-z (|xn»y#@;ufu»—ﬁxu%n»m
vi (1.1 00) =y, (10 (0) + 22, (1.1 () = 22, (1,4(x)),

<ot _PQaXKu{
xd b 158
2, (12 () -2, (1 (9)}

<sMd,(f, f,),
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XE[flu?xlN}{ 500~ %0l
= mac {0 (17 (00)-¥2, (12 (9)
XE[X#M%

B (3 (102 00) -2, (12200)) 7 (2

<6”  max {yﬁl (In’l(x))— ye, (Irjl(x))+ z

n=K41,N
xe[x}],l,xﬂ

2 (1" () =2, (12" (09)f
<8%d,, (h,h,),
ﬂll , ﬂ12
d, (. f,) < max{s™, 6™ max{d, (f, f,),d, (h,h,)}.
Similarly, it follows that
dy (P, By ) < max{6%, 6% fmax{d (., f,),dy, (hy, )}
oo (182, £,
d(T(fl,hl),T(fZ,hZ)):max{df(fl, fz),dH(ﬁl,ﬁz)}gémax{df(fl, f,),dy (h, b))
where &= max{511,512,521,522 <1 and hence T is a contraction mapping. By Banach fixed point theorem, T

possesses a unique fixed point, say (f,,h,).
Now, for n=1,2,---, K™,

1) _ 1 -1 1 11,1 -1 1 11 1 -1 1 11
fO (Xn)_ (Cn+1|n+1(xn)+an+lyf0 (In+1(xn ))+ﬂn+1zfo (In+1(xn ))+ dn+1’

11 1 -1 1 11 -1 1 11 1 51
yn+lzf0(In+1(xn))+en+l|n+l(xn)+fn+1):(yn’zn)'

=N
s S FE N
S
N
—~
x
~—
~—
N
IS
—_
S
N
—~
x
~
~—

12
n

7 } <1. Therefore

}<1 and &% =max

1 11 1
where 6 = max a, 7n n:K“ﬂ,._.,N{

n=12,- K% {

21

where 6 = max a?, ¥ a?|, 7

}<1 and 6% =max ., { }<1. Then

For n=K"+1-,N-1,
fO (Xﬁ ) = (Cil—Kn |”_+11 (Xﬁ )+ arljrl—Ku yri, (In—il (Xi )) + ﬂnlil—Kn Zﬁo (|"_+11 (Xﬁ )) + drljrl—Ku’
72 (1 ()77 () 12 ) = (2
This shows that f, is the function which interpolates the data {(X,l, ye, Zﬁ): n=0,1,-, N} . Similarly, it can
be shown that g, is the function which interpolates the data {(Xf yZ, z,f):n =0,1---,M } For xe [xé XH

and Xe[xg,xfn],

fy (1, (X)) = (cﬁlx +aptyy (X)+ Bz (X)+dit iz (x)+eix+ fn“) forn=12,---, K"

fo (1 (X))

(cﬁ2x+ aye (X)+ Bz (X)+d7 7tz (X)+e°x+ fnlz) forn=12,-, K"
and

hy (Jn (x)) = (cﬁlx +alty (X)+ B (X)+d2 itz (X)+eltx+ fn21) forn=12,---, K%

hy (3, (x)) = (c§2x+a§2yﬁo (X)+ B2z (X)+d2, 7222 (x)+elx+ fnzz) forn=12,---, K%
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If Fand H are the graphs of f, and h, respectively, then

k1t

=0 (U (1)
= Ui (F) U (),

The uniqueness of the attractor implies that F =G' and H =G?. That is G’ :{(x, fy(x)):xe I} and
G? :{(x,ho(x)):x € J} . Denoting  f, =(f11, le) and h, =(f12, fzz), result follows. O
Example 4. Consider the data sets as

D' = {(0,5),(L4).(21),(31).(4.4).(5.5)}
D= ((01),(12).(23).(32),(41)

realizing the graph with K™ =3, K? =2, K# =1, K# =3 asin Figure 1. Take the first set of generalized
data
D'={(0,5,5),(1.4,4),(2,11),(31,1),(4,4,4),(5,5,5)}
and
D?={(0,11),(1,2,2),(2.3,3),(3.2.2),(4,.11)}

corresponding to D' and D respectively. Here y =z, for both the generalized data sets. Choose
ay =1/3, B =13, y =13 forall r,se{l,2} and n=12,.-,K".Then Figure 2 is the attractors of the
corresponding generalized GDIFS.

Keeping the free variables and constrained variables same, Figure 3 is the attractors of the generalized
GDIFS associated with the second set of generalized data

el

2

Figure 1. Directed graph for Example 4.
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Figure 2. Attractors for the first set of generalized data.
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Figure 3. Attractors for the second set of generalized data.
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Figure 4. Attractors for the third set of generalized data.
Table 1. The generalized GDIFS with the free variables and constraints variables.
a all all all alz alz am aZZ aZZ aZZ
1 2 3 1 2 1 1 2 3
0.8 0.7 0.8 0.7 0.8 0.99 0.99 0.99 0.99
ﬁ ﬂll ﬂ“ ﬂll ﬁlZ ﬁlZ ﬁz1 ﬂzz ﬂzz ﬁZZ
1 2 3 1 2 1 1 2 3
-0.3 -0.4 -0.2 -0.3 -0.4 0.99 0.99 0.99 0.99
7 711 711 }/11 712 712 }/21 722 722 }/ZZ
1 2 3 1 2 1 1 2 3
0.5 0.3 0.6 0.5 0.3 0.005 0.005 0.005 0.005

D' ={(0,5,3),(1.4,2),(2,1,5),(312),(4,4,1),(5,5.4)}
D? ={(0,1,2),(12,5),(2.31),(3,2.3),(411)}.
Take the third set of generalized data
D' ={(0,5,3),(1.4,2),(2,1,5),(312),(4,4,1),(5,5.4)}
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and

D?={(0,1,2),(1,5,5),(2,3.1),(3,2,3),(4,4,1)}

corresponding to D' and D? respectively. For the generalized GDIFS with the free variables and constraints
variables given in following Table 1, the attractors are given in Figure 4.

References

(1]

(2]
(3]

(4]
(5]

(6]
(7]
(8]
(9]
[10]
[11]
[12]

[13]
[14]

[15]
[16]

[17]

Barnsley, M.F. (1986) Fractal Functions and Interpolation. Constructive Approximation, 2, 303-329.
http://dx.doi.org/10.1007/BF01893434

Barnsley, M.F. (1988) Fractals Everywhere. Academic Press, San Diego.

Barnsley, M.F., Elton, J., Hardin, D. and Massopust, P. (1989) Hidden Variable Fractal Interpolation Functions. SIAM
Journal on Mathematical Analysis, 20, 1218-1242. http://dx.doi.org/10.1137/0520080

Chand, A.K.B. and Kapoor, G.P. (2007) Smoothness Analysis of Coalescence Hidden Variable Fractal Interpolation
Functions. International Journal of Nonlinear Sciences, 3, 15-26.

Kapoor, G.P. and Prasad, S.A. (2009) Smoothness of Coalescence Hidden-Variable Fractal Interpolation Surfaces. In-
ternational Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 19, 2321-2333.
http://dx.doi.org/10.1142/S0218127409024098

Kapoor, G.P. and Prasad, S.A. (2010) Stability of Coalescence Hidden Variable Fractal Interpolation Surfaces. Inter-
national Journal of Nonlinear Sciences, 9, 265-275.

Barnsley, M.F. (1989) The Calculus of Fractal Interpolation Functions. Journal of Approximation Theory, 57, 14-34.
http://dx.doi.org/10.1016/0021-9045(89)90080-4

Navascués, M.A. (2005) Fractal Polynomial Interpolation. Zeitschrift fiir Analysis und ihre Anwendungen, 25, 401-418.
http://dx.doi.org/10.4171/ZAAJ1248

Navascués, M.A. (2005) Fractal Trigonometric Approximation. Electronic Transactions on Numerical Analysis, 20,
64-74.

Navascués, M.A. (2010) Reconstruction of Sampled Signals with Fractal Functions. Acta Applicandae Mathematicae,
110, 1199-1210. http://dx.doi.org/10.1007/s10440-009-9501-x

Navascués, M.A. (2011) Fractal Haar System. Nonlinear Analysis, 74, 4152-4165.
http://dx.doi.org/10.1016/j.na.2011.03.048

Navascués, M.A., Chand, A.K.B., Veddu, V.P. and Sebastian, M.V. (2014) Fractal Interpolation Functions: A Short
Survey. Applied Mathematics, 5, 1834-1841. http://dx.doi.org/10.4236/am.2014.512176

Deniz, A. and Ozdemir, Y. (2015) Graph-Directed Fractal Interpolation Functions.

Edgar, G. (2008) Measure, Topology and Fractal Geometry. Springer, New York.
http://dx.doi.org/10.1007/978-0-387-74749-1

Mauldin, R.D. and William, S.C. (1988) Hausdorff Dimension in Graph Directed Constructions. Transactions of the
American Mathematical Society, 309, 811-829. http://dx.doi.org/10.1090/S0002-9947-1988-0961615-4

Demir, B., Deniz, A., Kocak, S. and Ureyen, A.E. (2010) Tube Formulas for Graph-Directed Fractals. Fractals, 18,
349-361. http://dx.doi.org/10.1142/S0218348X10004919

Chand, A.K.B. (2004) A Study on Coalescence and Spline Fractal Interpolation Funtions. Ph.D. Dissertation, Depart-
ment of Mathematics, Indian Institute of Technology, Kanpur.



http://dx.doi.org/10.1007/BF01893434
http://dx.doi.org/10.1137/0520080
http://dx.doi.org/10.1142/S0218127409024098
http://dx.doi.org/10.1016/0021-9045(89)90080-4
http://dx.doi.org/10.4171/ZAA/1248
http://dx.doi.org/10.1007/s10440-009-9501-x
http://dx.doi.org/10.1016/j.na.2011.03.048
http://dx.doi.org/10.4236/am.2014.512176
http://dx.doi.org/10.1007/978-0-387-74749-1
http://dx.doi.org/10.1090/S0002-9947-1988-0961615-4
http://dx.doi.org/10.1142/S0218348X10004919

	Graph-Directed Coalescence Hidden Variable Fractal Interpolation Functions
	Abstract
	Keywords
	1. Introduction
	2. Preliminaries
	2.1. Iterated Function System 
	2.2. Fractal Interpolation Function 
	2.3. Coalescence FIF 
	2.4. Graph-Directed Iterated Function Systems 

	3. Graph Directed Coalescence FIF 
	References

