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Abstract 
In this article, we concerned with the development of a method for solving two point boundary 
value problems of ordinary differential equations. To develop method, we consider derivative of 
solution of a problem as an intermediate problem (IP). The analytical solution of the problem and 
IP were locally approximated by a nonlinear function with fixed step length. Some numerical ex-
periments have been carried out to show the performance and effectiveness of the proposed me-
thod. Also we obtained numerical value of derivative of solution as a byproduct of proposed me-
thod. A clear conclusion can be drawn from the results that method converges with limited stabil-
ity. 

 
Keywords 
Approximations, Boundary Value Problems, Fixed Step Size, Mixed Boundary Conditions,  
Maximum Absolute Error, Nonlinear Function, Stability 
 
Subject Areas: Numerical Mathematics, Ordinary Differential Equation 

 
 

1. Introduction 
The two point boundary value problems with mixed boundary conditions have great importance in sciences and 
engineering. One of the important phenomena heat conduction through a solid with heat generation that occurs 
in natural science can be modeled mathematically in form of ordinary/partial differential equations subject to 
mixed boundary conditions. As is well known, it is impossible/difficult to obtain analytical solution for such 
problem in general because of the nonlinearity nature of the problem that changes the problem to a nonlinear 
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two point boundary value problem with mixed boundary conditions. For such problem numerical methods are 
almost the only choice for getting solution. 

Consider second order boundary value problems in ordinary differential equation of the form 
( ) ( ) ( ) [ ] ( ) ( ) ( )2 , , , , and , , , , .y x f x y y x a b y x y x f x y y′ ′ ′= ∈ ⊂ ∈               (1) 

subject to boundary conditions 

( ) ( )
( ) ( )

and ,

or and .

y a y b

y a y b

α β

α β

′ ′= =

′ ′= =
                            (2) 

where ( ) ( ), and ,α β α β′ ′  are real constants. 
Generally, the existence and uniqueness conditions for the solution of two point boundary value problems can 

be different and difficult. Thus we use the specific assumption on ( ), ,f x y y′  to guarantee the existence and 
uniqueness for the solution of problem (1), those described in [1] [2]. We consider the presentation in this article 
as simple as possible. We shall not consider restrictions on source function ( ), ,f x y y′  for existence and uni-
queness of the solution of the problem (1) those available in literature [3]. Thus the existence and uniqueness of 
the solution for the problem (1) is assumed. Further we assume that solution of the problem (1) depends conti-
nuously on the given boundary conditions. 

Numerical solution of problem (1), using finite difference method is an approximation to the value of solution 
of problem (1) at discrete points and depends on a step size, the distance between two successive discrete points. 
We use this idea to develop the proposed numerical method for the solution of the problem (1). The proposed 
method has the advantage of simplicity. The method is simple in sense that development of the method depends 
on the Taylor, Mac Lauren and exponential series expansion and seems to converge quadratically. But also we 
discuss the convergence of the approximate solution to the solution of the problem (1) in the limit of the step 
size go to zero. To the best of my knowledge, no similar method for the solution of problem (1) has been dis-
cussed in literature so for. 

We present in Section 2, the development and derivation of the numerical method for solving problem (1). 
Local truncation error and convergence is discussed in Section 3. The possibility of stability and computational 
performance of the method on model problems is discussed respectively in Sections 4 and 5. Conclusion and out 
view for future research are discussed in final Section 6. 

2. Derivation of Method 
We define the equal step size mesh points of the interval [a, b] as, 

, 0,1, 2, , .ix a ih i N= + =                                  (3) 

where 0x a= , Nx b=  and h being step size and defined as 
( )b a

h
N
−

=  . 

Let iy , an approximate value of the theoretical solution ( )y x  of problem (1) at the mesh point ix x=  and 
if  an approximate value of source function ( ), ,i i if x y y′  at the mesh point ix x= . Further we assume that 

problem (1) posses unique solution in [a, b]. 
Suppose we have numerically solved the problem (1) up to the mesh point ix  and obtained numerical value 

iy , as an approximate value of ( )y x , the solution of the problem (1) at mesh point at ix x= . Let us assume 
local hypothesis [4] that ( )i iy x y= . We are interested in obtaining 1iy + , an approximate value of ( )y x  at 

1ix x += . 
Further let we have 1iy +′  an approximate value of IP, i.e. ( )y x′ , derivative of solution of the problem (1) at 

the mesh point at 1ix x +=  and assume that ( )1 1i iy x y+ +′= . We are interested in obtaining iy′ , an approximate 
value of ( )y x′  at the mesh point ix x= . 

Following the ideas in [5] [6], we propose an approximation to ( )iy x h+  and ( )iy x′ , the solution IP and 
derivative of solution of problem (1) respectively, as 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

22
0

2
0

e ,

e .

h
i i i i

h
i i i

y x h y x hy x a h y x

y x y x h b hy x h

ϕ

θ

′+ = + +

′ ′= + + +
                      (4) 
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where 0 0,a b  are undetermined coefficients and ( ) ( ),h hϕ θ  are unknown differentiable functions of step 
length h. 

From (4), let us define a function ( )( )2, , , ,iF h x y y y′  such that 
( )( ) ( ) ( ) ( ) ( ) ( ) ( )2 22

0, , , , e 0h
i i i i iF h x y y y y x h y x hy x a h y x ϕ′ ′≡ + − − − =                 (5) 

If we expand ( )hϕ  in MacLauren series i.e. 

( ) ( ) ( ) ( )20 0h h O hϕ ϕ ϕ′= + +                                (6) 

So, we have 
( ) ( ) ( ) ( )2e 1 0 0 .h h O hϕ ϕ ϕ′= + + +                              (7) 

If we expand ( )iy x h+  in Taylor series about mesh point ix x=  in (5) and then using (7) in the expansion, 
we have 

( )( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )2 2 3 22 3
0 0

1 1, , , , 1 0 0 0.
2 6i i i iF h x y y y h y x a h y x a y xϕ ϕ   ′ ′≡ − + + − =   

   
        (8) 

To determine 0a , ( )0ϕ and ( )0ϕ′ , comparing coefficients of 2h , 3h  both side in (8),we have 

( )( )0
11 0
2

a ϕ+ =  

( )
( ) ( )
( ) ( )

( ) ( ) [ ]
3

2
0 2

10 , 0 for any , .
6

i
i i

i

y x
a y x x a b

y x
ϕ′ = ≠ ∈  

For simple expression and calculation, we assume ( )0 0ϕ = , so we get 

0
1 .
2

a =  

( )
( ) ( )
( ) ( )

3

2

10 .
3

i

i

y x

y x
ϕ′ =                                    (9) 

Substituting value from (9) in (6), assuming the negligible contribution of the terms with ( )2O h , we have 

( )
( ) ( )
( ) ( )

3

2
,

3
i

i

y xhh
y x

ϕ =                                   (10) 

Substituting values of 0a  and ( )hϕ  from (9) and (10) in (4), we have 

( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( )

3

22 32 e
2

i

i

y xh

y x
i i i i

hy x h y x hy x y x

 
 
 
 ′+ = + +                      (11) 

Following the similar steps as above, we can determine unknown coefficients in IP, second equation of (4). 
Thus we can write similar expression like (11) for IP as, 

( ) ( ) ( ) ( )

( ) ( )
( ) ( )

3

222 e
i

i

y x hh

y x h
i i iy x y x h hy x h

 + 
 + ′ ′= + − +                      (12) 

Thus, we can write our difference method for computation of solution and IP for problem (1) as, 

( ) ( ) ( )
2

3e
2

i

i

hf
f

i i i i
hy x h y x hy x f

′ 
  
 ′+ = + +  

( ) ( )
1

12
1e

i

i

hf
f

i i iy x y x h hf
+

+

′ 
  
 

+′ ′= + −                             (13) 

where ( ) ( )3
i iy x f ′=  and defined as, 
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d
di

i

f f y ff f
x y x y

 ∂ ∂ ∂′= + + ′∂ ∂ ∂ 
 

A difference method similar to (13), we can derive for other set of boundary conditions i.e. when ( )y a′  and 
( )y b  are prescribed.  
Thus we have developed an exponential single step method of the form 

( )
2

1 , , ,
2 iii i
hy y hy G x y y+ ′ ′= + +  

( )1 1 , , ii iy y hG x y y+′ ′ ′= −                                  (14) 

where G  and 1G  are increment functions. The method (14) appears to me similar to the implicit Euler me-
thod available in [7], for initial value problems in ordinary differential equation. But it is system of nonlinear 
equations in 1iy +  and 1N iy − +′ , 1, 2, ,i N= 

 and generally solved by iterative method. To solve this system of 
nonlinear equations, we have applied Newton Raphson iteration method. In variety of model second order 
boundary value problems reported in section 4,for computational purpose we have used single step finite differ-
ence approximation in place of if ′  i.e. 1i i ihf f f+′= − . 

3. The Local Truncation Error and Convergence 
In this section, we consider the error associated to the proposed method (13). Let ( )y x  be the solution of 
problem (1) four times continuously differentiable in the domain [a, b]. Let the local truncation errors in solution 
and IP, derivative of solution of problem (1) are respectively 1iT +  and iDT . So we define 

( )
( )( )
( )

( ) ( )
23

3 1 4
1 12

1

3
2 , .

12
i

i i i i i i
i

yhDT y x y y x x
y

δ δ
+

+ +
+

 
 ′= − = − < < 
 
 

 

( )
3

6 ,
6i
hDT K M≤ +                                  (15) 

where M  is Lipschitz constant for source function ( ), ,f x y y′  and [ ] ( )4
,max .x a bK y x∈=  

Also, 

( )1 1, 1, 2,3, , ,i i iT y x h y i N+ += + − =   

( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( )

3

22 3

1

24 4
4

1 1 1,

e
2

,
24 18

i

i

y xh

y x
i i i i i

i i i
i

i

hT y x h y x hy x f

fh hhDT y x x
f

δ δ

 
 
 
 

+

+

′= + − − −

′
= + − < <

 

( )
3

1 15 88 .
6i
hT K M+ ≤ +                                 (16) 

Thus local truncation errors are bounded if 1
2 i

if
f
′
< . It can be proved that increment functions G  and 1G  

satisfy Lipschitz condition. Also these functions are continuous in h . Therefore method (13) is convergent. 

4. Stability Analysis 
To discuss stability property of the method (13), we follow the same method as discussed in [8] [9]. Consider 
the Dahlquist test equation for stability, 

( ) ( ) ( ) [ ]2 2 , , and .y x y x x a bλ λ= ∈ ∈  
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subject to boundary conditions ( ) 0y a y=  and ( ) 0y a yλ′ = . Apply the method (13) to this test equation, we 
obtained a finite difference equation, assuming the negligible contribution of the terms with ( )4O h  in the ex-
pression, 

( ) ( ) ( )

( ) ( ) ( )

2 2 2

3
1

2 3

e 1
2 2 3 18

1 , 1,2,3, , .
2 6

i i

h

i i i i i

i i

h h hhy y hy y y hy y

h h
h y E h y i N

λλ λ λλ

λ λ
λ λ

+

 
′ ′  = + + = + + + + +

 
 

 
 = + + + + ≈ =
 
 



 

             (17) 

where the stability function ( )E hλ  is some approximation to e .hλ  let define error equation 

( )1 1 1i i iy x y+ + += −  

and substitute in (17), we have  

( )1i iE hλ+ =                                     (18) 

In some cases the numerical solution may differ considerably from the difference solution.The effect of local 
truncation error is bounded and ( ) iE hλ  , is the propagation of the error from the previous step ix  to 1ix +  in 
computation of ( )y x . 

It will grow if ( ) 1E hλ > . Thus method is absolutely stable if ( ) 1E hλ ≤ , so method (13) is absolutely 
stable if and only if 2.51275 0hλ− ≤ ≤ . Similarly we can calculate propagation of the error from previous step 

1ix +  to ix  in IP, computation of ( )y x′  and is same as in ( )y x . 

5. Numerical Experiment 
The results of numerical experiment will be presented in order to illustrate the performance of the proposed me-
thod. We have shown in tables maximum absolute error computed on the discrete points in the interval of inte-
gration for these experiments in their solution and derivative of solution, for different values of N. Let iy  and 

iy′  are the numbers calculated by (13) respectively which are an approximate value of the theoretical solution 
( )y x  and IP, derivative of solution i.e. ( )y x′  at the point ix x= . Maximum Absolute Error (MAE) is calcu-

lated in both solution and derivative of solution by using formula 

[ ]
( )

,
max , 2,3, , 1 or 1,2, , .
i

y i ix a b
MAE y x y i N i N

∈
= − = + =   

[ ]
( )

,
max , 1,2, , , or 2,3, , 1.
i

y ix a b iMAE y x y i N i N′
∈

′ ′= − = = +   

All computations in the examples consider were performed on MS Window 2007\professional operating sys-
tem in the GNU FORTRAN environment version −99 compiler (2.95 of gcc) running on Intel Duo core 2.20 
GHz PC. Both ( )y x  and ( )y x′  were computed on N nodes and iterations continued until either maximum 
difference between two iterates is less than 1410−  or number of iterations reached 310 . 

Problem 1. 
Let us consider the following boundary value problem 

( ) ( ) ( ) ( ) ( ) ( )2 2π πe sin e ,
2 2

y x y xx xy x y x f x = − + + 
 

 

for { }Ω 0 1x x∈ = ≤ ≤ ,with the boundary conditions ( ) ( )1, π 2, Ω.y x y x x′= = − ∈∂  In this example, the 
exact solution ( ) ( )cos π 2y x x=  is known. We shall compute the MAE in the approximate solution iy  and 
the derivative of solution jy′ , at the mesh point 2,3, , 1i N= +

 and 1,2, ,j N=   for 12 ,pN +=  p = 3, 
4, ···, 9. We presented results in Table 1. 

Problem 2. 
Let us consider the following boundary value problem 

( ) ( ) ( ) ( )2 sinh ,y x y g xβ β= +  
for { }Ω 0 1x x∈ = ≤ ≤ ,with the boundary conditions ( ) ( )1, 0, Ω.y x y x x′= = ∈∂  In this example, the exact  
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solution ( ) ( )
( )

cosh
cosh

x
y x

β
β

=  is known. We shall compute the MAE in the approximate solution iy  and the de- 

rivative of solution jy′ ,at the mesh point 1, 2,3, ,i N= 
 and 2,3, , 1j N= +  for 12 , 3, 4, ,9pN p+= =   

and 12 , 5,6, ,11.pN p+= =   We presented results in Table 2 and Table 3 for 2β =  and 5β =  respectively. 
Problem 3. 
Let us consider the following boundary value problem 

( ) ( ) ( ) ( )2 cos ,y x x y f xβ= +  

for { }Ω 0 1x x∈ = ≤ ≤ ,with the boundary conditions ( ) ( )0, 0, Ω.y x y x x′= = ∈∂  In this example, the exact  

solution ( )
31

6
xy x β −

=  is known. We shall compute the MAE in the approximate solution iy  and the deriv-

ative of solution jy′ , at the mesh point 1, 2,3, ,i N= 
 and 2,3, , 1j N= +  for 12 , 3, 4, ,9.pN p+= =   

We presented results in Table 4 for 10.β =  
 

Table 1. Maximum absolute error in ( ) ( )cos π 2y x x=  and ( )y x′  for problem 1.                                     

MAE 
N 

16 32 64 128 256 512 1024 

y  0.37967297(−2) 0.59528940(−3) 0.63126907(−4) 0.10699034(−4) 0.64298511(−5) 0.20265579(−5) 0.97602606(−6) 

y′  0.75638252(−2) 0.18921032(−2) 0.47309601(−3) 0.11825059(−3) 0.29586055(−4) 0.73965139(−5) 0.18725352(−5) 

 

Table 2. Maximum absolute error in ( ) ( )
( )

cosh
cosh

x
y x

β
β

=  and ( )y x′  for 2β =  in problem 2.                          

MAE 
N 

16 32 64 128 256 512 1024 

y  0.16642511(−2) 0.40349363(−3) 0.99420547(−4) 0.24586916(−4) 0.63478947(−5) 0.16391277(−5) 0.74505806(−6) 

y′  0.51084757(−2) 0.12534857(−2) 0.31054020(−3) 0.77366829(−4) 0.18835068(−4) 0.52452087(−5) 0.11920929(−5) 

 

Table 3. Maximum absolute error in ( ) ( )
( )

cosh
cosh

x
y x

β
β

=  and ( )y x′  for 5β =  in problem 2.                           

MAE 
N 

64 128 256 512 1024 2048 4096 

y  0.12481017(−2) 0.30486844(−3) 0.75593591(−4) 0.18656254(−4) 0.50235540(−5) 0.17676502(−5) 0.47683716(−6) 

y′  0.64787865(−2) 0.15945435(−2) 0.39577484(−3) 0.97751717(−4) 0.24318695(−4) 0.95367432(−5) 0.38146973(−5) 

 

Table 4. Maximum absolute error in ( )
31

6
xy x β −

=  and ( )y x′  for 10β =  in problem 3.                            

MAE 
N 

16 32 64 128 256 512 1024 

y  0.68840981(−2) 0.84745884(−3) 0.11754036(−3) 0.68902969(−4) 0.27537346(−4) 0.98943710(−5) 0.29802322(−5) 

y′  0.19531250(−1) 0.48828125(−2) 0.12207031(−2) 0.30517578(−3) 0.76293945(−4) 0.19073486(−4) 0.47683716(−5) 
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6. Conclusion 
In this article, we have described a single step difference method of second order and applied to set of different  

model problems with equal step length in range of 1 1,
4096 16

h  ∈   
. The proposed method has advantages and  

disadvantages when compared individually. The method based on exponential approximations, has good con-
vergence in the computational domain. On the other hand very accurate iteration must be applied to solve nonli-
near methods. As is evident from the results, method converges when we have applied Newton-Raphson method 
to solve system of nonlinear equations and gives ( )2O h  accuracy. It is not clear how local assumption affect 
the overall solution of the problem. Investigation in this direction will be done in the future. Though stability 
discussed and heavily depends on approximation to exponential function and local assumption as well. In addi-
tion, the development of this method will lead to possibility to approximate higher order derivatives in term of 
power of its lower order derivatives, to increase the order and accuracy of the method. Work in this specific di-
rection is in progress. However our future works will also deal with similar extension of the present method to 
solve higher order boundary value problems. 
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