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Abstract 
In this article, we report the finite difference method for numerically solving the Goursat Problem, 
using uniform Cartesian grids on the square region. We have considered both linear and nonlinear 
Goursat problems of partial differential equations for the numerical solution, to ensure the accu-
racy of the developed method. The results obtained for these numerical examples validate the ef-
ficiency, expected order and accuracy of the method. 
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1. Introduction 
In the present article, we wish to develop a finite difference method for numerically solving Goursat problem 
[1], 

( )
2

, , , ,x y
u f x y u u u

x y
∂

=
∂ ∂

 

Subject to boundary conditions 

( ) ( ) ( ) ( ) ( ) ( ),0 and 0, , 0 0 .u x x u y yσ γ σ γ= = =                        (1) 
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There are several methods in the literature for numerical solution of this problem such as Runge-Kutta [1], li-
near and non-linear trapezoidal [2]-[4] and finite difference method [5] and references there in. 

The existence and uniqueness of the solution of the problem (1) is assumed. We have not considered any spe-
cific assumption on the source function f to ensure existence and uniqueness of the solution [6]. 

In this article, we develop an algorithm to solve numerically problem (1). The development of the present 
method is based on an idea discussed and developed [7] for source function ( ), ,f x y u  which is given as, 

( )2
, ,

,62
1, 1 1, 1 1, 1 1, 1 ,4 e .

xxi j yyi j

i j

h f f

f

i j i j i j i j i ju u u u h f

 + 
  
 

+ + + − − + − −− − + =                       (2) 

A novel exponential finite difference method and precisely satisfies the initial conditions. Also this method is 
an explicit method and can be solved directly at each mesh point. 

The present work is organized as follows. In Section 2, we present novel exponential finite difference ap-
proximation for the Goursat problem. A novel finite difference method is presented so that the resulting differ-
ence equation need satisfies the initial conditions exactly. A derivation of the present method discussed in Sec-
tion 3 and finally, the application of the developed method presented together with illustrative numerical results 
has been produced to show the efficiency of the method in Section 4. A discussion and conclusion on the per-
formance of the method are presented in Section 5. 

2. The Finite Difference Method 
In this section we present proposed finite difference method to numerically solve problem (1). We superimpose 
on the region of interest a mesh by lines , , 0,1, 2, , ,m mx mh y mh m N= = =   with mesh size 1h N=  in x and 
y directions respectively. For convenience of notation the following symbolism is used. We denote the nodal 
point ( ),i jx y  as ( ),i j  and value of the source function f evaluated at the mesh point ( ),i jx y  by ,i jf  and 
similarly we can define other notations in this article. Suppose we have to determine a number 1, 1i ju + + , which is 
a numerical approximation of the theoretical value of ( ),i ju x h y h+ + , a solution of the problem (1) at the 
mesh point ( ), .i jx h y h+ +  We propose our difference method to numerically solve problem (1) as,  
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+ + + − − + − −− − + =                       (3) 

Following the notations in [8], we will define the terms in (3) as, 

( ), , , ,, , , ,i j i j i j xi j yi jf f x y u u u=                                 (4) 

Thus using (4), we can define term 
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 etc. The value of the partial derivative of the solution u 

is not known to us. Thus an approximation to these may be obtained using following difference approximations. 
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Further we set 

1, , 1, , 1 , , 1
, ,2 2

2 2
, .i j i j i j i j i j i j

xxi j yyi j

f f f f f f
f f

h h
+ − + −− + − +

= =                       (6) 

Substituting (6) in (3), the difference equation can be written as, 
1, 1, , 1 , 1 ,

,

4

62
1, 1 1, 1 1, 1 1, 1 ,4 e .
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In computation of (7) we need the initial values. To compute these initial values we shall define an algorithm 
similar to that reported in [5] as 
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2
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hu u u u f f f f− − − − − − − −= + − + + + +                   (8) 

where we have set 

( ), , , ,, , , ,i j i j i j xi j yi jf f x y u u u=                                (9) 

Similarly we can define 1, 1 1, , 1, ,i j i j i jf f f+ + + +  etc. in (9). Also the values of xu  and yu  not known, so we 
approximate these values using following difference formulas. 
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The difference method (7) requires the function value at all the initial mesh points. Thus evaluation started at 
the initial mesh points using (8). In method (8), we evaluate four functions while in computation of (7), we eva-
luate five functions. Thus in computation of 1, 1i ju + +  we re-evaluate three functions and evaluate two new func-
tions. Thus this method requires the storage of the three function values at all the mesh points of the square do-
main. In numerical experiments we can say that the method (7) gives satisfactory and competitive results for the 
examples considered in this article. 

3. Derivation of the Method 

In the following expressions, we define 
x

fH
u
∂

=
∂

 and 
y

fG
u
∂

=
∂

. From approximation (10) 
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Thus from definition (9), we have 
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          (11) 

Thus ,i jf  provides at least an O(h) approximation for the ,i jf . Similarly we can prove that 

( ) ( )2
1, 1, , , , , .

2i j i j xxi j i j yi j i j
hf f u H u G O h+ += − + +                        (12) 

( ) ( )2
, 1 , 1 , , , , .

2i j i j xxi j i j yi j i j
hf f u H u G O h+ += + + +                        (13) 

( ) ( )2
1, 1 1, 1 , , , , .

2i j i j xxi j i j yi j i j
hf f u H u G O h+ + + += − + +                       (14) 

Thus from (11) - (14), we have 

( )2
1, 1 1, , 1 , 1, 1 1, , 1 , .i j i j i j i j i j i j i j i jf f f f f f f f O h+ + + + + + + ++ + + = + + + +                 (15) 

Thus from (15), we define the discretization (8) for the initial values to solve numerically problem (1). Simi-
larly from approximation (5), we have 

( )2
, , .i j i jf f O h= +                                   (16) 

( )2
1, 1, .i j i jf f O h± ±= +                                  (17) 

( )2
, 1 , 1 .i j i jf f O h± ±= +                                  (18) 

Thus from (16) - (18), we have 

( )2
1, , 1 1, , 1 , 1, , 1 1, , 1 ,4 4 .i j i j i j i j i j i j i j i j i j i jf f f f f f f f f f O h+ + − − + + − −+ + + − = + + + − +          (19) 

Thus from (19), we define the discretization (7) for the problem (1). Thus method (7) is at least ( )2O h  ac-
curate. Though methods (7) and (8) are explicit methods which compute approximate value of ( ),i ju x h u h+ +  
but if problem is nonlinear then it may be implicit method. Thus if differential Equation (1) is nonlinear, (7) and 
(8) can be solved by the Newton-Raphson iterative method. 

4. Numerical Experiment 
To illustrate our method and demonstrate its computational efficiency, we will consider the examples discussed 
in [1] [2], in which the errors taken to be the root mean square RMU, maximum absolute error MAU and maxi-
mum relative error RAU i.e. 
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We have used the Newton-Raphson iteration method to compute the values (7) and (8) in all above examples. 
All computations in the experiment were performed on MS Window 2007 professional operating system in the 
GNU FORTRAN environment version-99 compiler (2.95 of gcc) running on Intel Duo core 2.20 GHz. PC. The 
solutions are computed on ( )21N −  nodes, in computation of initial values and value of solution at advance 
mesh points, iterations continued until either maximum difference between two iterates is less than 910−  or 
number of iterations reached 310 . 

Problem 1. 
Consider a nonlinear problem discussed in [1] which, when solving consists of 

x y
xy

u u
u

u
=  

in the region [ ] [ ]1,2 1,2×  with the boundary conditions ( ) ( ) ( )1,1 sin 1 e xu x += , ( ) ( ) ( )11, sin e yu y y += , for 
which the analytical solution is found to be ( ) ( ) ( ), sin e y xu x y y += . We have computed the solution and pre-
sented MAU, RAU and RMU for the developed method for different values of N in Table 1. 

Problem 2. 
Consider a non linear problem discussed in [2] which, when solving consists of 

x y
xy

u u
u u

u
= +  

in the region [ ] [ ]0,1 0,1×  with the boundary conditions ( ) 2
,0 exu x = , ( ) ( )0, cosu y y= , for which the ana-

lytical solution is found to be ( ) ( ) ( ), e cosx x yu x y y+= . We have computed the solution and presented MAU, 
RAU and RMU for the developed method for different values of N in Table 2. 

Problem 3. 
Consider a linear problem discussed in [1] which, when solving consists of 

3.0
x y

xy

u u u
u

+ +
=  

in the region [ ] [ ]0,1 0,1×  with the boundary conditions ( ),0 exu x = , ( )0, e yu y = , for which the analytical 
solution is found to be ( ), ex yu x y += . We have computed the solution and presented MAU, RAU and RMU for 
the developed method for different values of N in Table 3. 
 

Table 1. Maximum absolute and relative error, root mean square error in ( ) ( ) ( ), sin e y xu x y y += .   

N 
Error 

MAU RAU RMU 

4 0.84312596(−5) 0.23413723(−6) 0.47533363(−5) 

8 0.70326987(−5) 0.91173128(−7) 0.39888882(−5) 

 
Table 2. Maximum absolute and relative error, root mean square error in ( ) ( ) ( ), e cosx x yu x y y+= .   

Error 
N 

4 8 16 32 64 

MAU 0.57418332(−1) 0.25210236(−2) 0.19413770(−3) 0.56662439(−5) 0.54690790(−5) 

RAU 0.10430584(−3) 0.47750591(−3) 0.15391412(−4) 0.15785952(−5) 0.96294229(−6) 

RMU 0.20805337(−1) 0.48529863(−3) 0.18880772(−4) 0.81907029(−6) 0.96616520(−6) 
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Table 3. Maximum absolute and relative error, root mean square error in ( ), ex yu x y += .             

Error 
N 

4 8 16 32 64 

MAU 0.56023598(−2) 0.86784363(−3) 0.12207031(−3) 0.21457672(−4) 0.57220459(−5) 

RAU exact exact exact exact 0.10807225(−5) 

RMU 0.35539242(−2) 0.36674476(−3) 0.41264524(−4) 0.52586661(−5) 0.17699658(−5) 

5. Conclusions 
In general, each numerical method has its own merit and demerit in its application. The present method is there-
fore good for use under the initial conditions. The demerit of this method is in computation of initial values 
which highly affect the all subsequent computational results. The present method which is at least second order 
accurate seems competitive with other finite difference methods. Method is computationally efficient which can 
be observed in numerical results obtained in our experiments. It is observed from the results that method has 
higher accuracy i.e. small discretization error. 

In the present article a different approach, we have presented at least second order finite accurate difference 
method for the numerical solution of the nonlinear Goursat problem. The development of this method will lead 
to a possibility to further raise the order and accuracy of the method. Work in this direction is in progress and 
soon it will appear. 
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