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Abstract 
In data envelopment analysis (DEA), input and output values are subject to change for several 
reasons. Such variations differ in their input/output items and their decision-making units 
(DMUs). Hence, DEA efficiency scores need to be examined by considering these factors. In this 
paper, we propose new resampling models based on these variations for gauging the confidence 
intervals of DEA scores. The first model utilizes past-present data for estimating data variations 
imposing chronological order weights which are supplied by Lucas series (a variant of Fibonacci 
series). The second model deals with future prospects. This model aims at forecasting the future 
efficiency score and its confidence interval for each DMU. We applied our models to a dataset 
composed of Japanese municipal hospitals. 
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1. Introduction 
DEA is a non-parametric methodology for performance evaluation and benchmarking. Since the publication of 
the seminal paper by Charnes, Cooper and Rhodes [1], DEA has witnessed numerous developments, some of 
which are motivated by theoretical considerations and others motivated by practical considerations. The focus of 
this paper is on practical considerations related to data variations. The first practical issue is the lack of a statis-
tical foundation for DEA which was laid down by Banker [2] who proved that DEA models could be viewed as 
maximum likelihood estimation models under specific conditions and then Banker and Natarajan [3] proved that 
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DEA provides a consistent estimator of arbitrary monotone and concave production functions when the (one- 
sided) deviations from such a production function are degraded as stochastic variations in technical inefficiency. 
Afterwards the treatment of data variations has taken a variety of forms in DEA. In fact, several authors investi-
gated the sensitivity of DEA scores to data variations in inputs and/or outputs using sensitivity analysis and su-
per-efficiency analysis. For example, Charnes and Neralić [4] and Neralić [5] used conventional linear pro-
gramming-based sensitivity analysis under additive and multiplicative changes in inputs and/or outputs to inves-
tigate the conditions under which the efficiency status of an efficient DMU is preserved (i.e., basis remains un-
changed), whereas Zhu [6] performed sensitivity analysis using various super-efficiency DEA models in which a 
test DMU is not included in the reference set. This sensitivity analysis approach simultaneously considers input 
and output data perturbations in all DMUs, namely, the change of the test DMU and the remaining DMUs. On 
the other hand, several authors investigated the sensitivity of DEA scores to the estimated efficiency frontier. 
For example, Simar and Wilson [7] [8] used a bootstrapping method to approximate the sampling distributions 
of DEA scores and to compute confidence intervals (CIs) for such scores. Barnum et al. [9] provided an alterna-
tive methodology based on Panel Data Analysis (PDA) for computing CIs of DEA scores; in sum, they com-
plemented Simar and Wilson’s bootstrapping by using panel data along with generalized least squares models to 
correct CIs for any violations of the standard statistical assumptions (i.e., DEA scores are independent and iden-
tically distributed, and normally distributed) such as the presence of contemporaneous correlation, serial correla-
tion and heteroskedasticity. Note, however, that [7] and [8] do not take account of data variations in inputs and 
outputs. Note also that although [9] takes account of data variations in inputs and outputs by considering panel 
data and computing DEA scores separately for each cross section of the data, the reliability of the approach de-
pends on the amount of data available for estimating the generalized least squares models. 

In this paper, we follow the principles stated in Cook, Tone and Zhu [10] and believe that DEA performance 
measures are relative, not absolute, and frontiers-dependent. DEA scores undergo a change depending on the 
choice of inputs, outputs, DMUs and DEA models by which DMUs are evaluated. In this paper, we compute ef-
ficiency scores or equivalently solve the frontier problem using the non-oriented slacks-based super-efficiency 
model. Our approach deals with variations in both the estimated efficiency frontier and the input and output data 
directly by resampling from historical data over two different time frames (i.e., past-present and past-present- 
future); thus, the production possibility set for the entire DMUs differs with every sample1. In addition, our ap-
proach works for both small and large sets of data and does not make any parametric assumptions. Hence, our 
approach presents another alternative for computing confidence intervals of DEA scores. 

This paper unfolds as follows. Section 2 presents a generic methodological framework to estimate the confi-
dence intervals of DEA scores under a past-present time frame and extends it to the past-present-future time 
frame. Section 3 presents a healthcare application to illustrate the proposed resampling framework. Finally, sec-
tion 5 concludes the paper. 

2. Proposed Methodology 
In this section, we propose a generic methodological framework to estimate the confidence intervals of DEA 
scores under a past-present time frame. This framework is generic in that its implementation requires a number 
of decisions to be made as will be discussed hereafter. Then, we extend the use of this framework to the past- 
present-future time frame. 

2.1. Past-Present Based Framework 
The first framework is designed for when past-present information on say m inputs and s outputs of a set of n  
DMUs is available; that is, ( ) ( ){ }, ,, , ; 1, , , 1, , , 1 , , , 1, ,t t t t

i j r jX Y x y i m r s j n t T= = = = =    , where period T  

denote the present and periods 1 though 1T −  represent the past. The proposed framework could be summa-
rized as follows: 

Initialization Step 
Choose an appropriate DEA model for computing the efficiency scores of DMUs; 
Use the chosen DEA model to estimate the DEA scores of DMUs based on the present information; that is,

 

 

1Throughout this paper, we assume that the dataset is free from outliers and homogenous in the kind of DMUs (e.g., hospitals, banks or 
universities in the same category). For outlier detection, see Yang et al. [11] and references therein. 
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( ),T TX Y . Let ; 1, ,T
j j nδ =   denote such scores-in the iterative step, we gauge the confidence interval of  

; 1, ,T
j j nδ =   using replicas of historical data ( ), , 1, ,t tX Y t T=  ; 
Choose an appropriate scheme, say w, to weigh the available information on the past and the present; 
Choose a confidence level 1 α− ; 
Choose the number of replicas or samples to draw from the past, say B, along with any properties they should 

satisfy before being considered appropriate to use for generating the sampling distributions of ; 1, ,T
j j nδ =   

and computing their confidence intervals; 
Set an indicator variable, say _property status , that reflects whether the B replicas satisfy the required 

properties or not to false. 
 
Iterative Step 

 
 
The generic nature of this framework requires a number of decisions to be made for its implementation for a 

particular application. Hereafter, we shall discuss how one might make such decisions. 

2.1.1. Choice of a DEA Model 
In principle one might choose from a relatively wide range of DEA models; however, given the nature of this 
exercise we recommend the use of the non-oriented super slacks-based measure model (Tone [12] and Ouen-
niche et al. [13]) under the relevant returns-to-scale (RTS) setup (e.g., constant, variable, increasing, decreasing) 
as suggested by the RTS analysis of the dataset one is dealing with. This model is an extension of the SBM 
(slacks-based measure) model of Tone [14]—see also [15]. Although one could use other models (e.g., radial or 
oriented), our recommendation is based on the following reasons. First, as a non-radial model, the SBM model is 
appropriate for taking account of input and output slacks which affect efficiency scores directly, whereas the ra-
dial models are mainly concerned with the proportional changes in inputs or outputs. Thus, SBM scores are 
more sensitive to data variations than the radial ones. Second, the non-oriented SBM model can deal with in-
put-surpluses and output-shortfalls within the same scheme. Finally, as most DEA scores are bounded by unity 
(≤1, or ≥1), difficulties in comparing efficient DMUs maybe encountered; therefore, we recommend using the 
super-efficiency version of the non-oriented SBM as it removes such unity bounds. 

2.1.2. Choice of a Weighting Scheme for Past-Present Information 
Many different weighting schema could be used to weigh information on the past and the present; that is, 
( ), ; 1, , , 1, , , 1, ,t

i jx i m j n t T= = =    and ( ), ; 1, , , 1, , , 1, ,t
r jy r s j n t T= = =   . The choice of the weight-

ing scheme should reflect the decision makers’ perspective and knowledge of the application area on how the 
past should influence the present. In this paper, we set the weight tw  of a period t so that the weights are in-
creasing in t; in sum, we assume that more recent periods carry information that is more relevant to estimate ef-
ficiency scores in the present time. Thus, the following Lucas number series ( )1, , Tl l

, a variant of Fibonacci 
series, is a candidate where 2 1 1 2; 1, , 2, 1, 2t t tl l l t T l l+ += + = − = = . Let L denote the sum of the series:  

1
T

ttL l
=

= ∑ . We define weight tw  as tl L  for 1, ,t T=  . For example, when 5T = , we have 1 0.0526w = ,  
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2 0.1053w = , 3 0.1579w = , 4 0.2631w = , and 5 0.4211w = . Thus, the influence of the past periods fades away 
gradually as we approach the present. 

2.1.3. Choice of the Replication Process and the Number of Replicas 
In this paper, we regard historical data ( ) ( ){ }, ,, , ; 1, , , 1, , , 1, , , , 1, ,t t t t

i j r jX Y x y i m r s j n t T= = = = =     as  

discrete events with probability tw  and cumulative probability 1 ; 1, ,t
t kkW w t T

=
= =∑  . We propose a repli-  

cation process based on bootstrapping. First proposed by Efron [16], nowadays bootstrapping refers to a collec-
tion of methods that randomly resample with replacement from the original sample. Thus, in bootstrapping, the 
population is to the sample what the sample is to the bootstrapped sample. Bootstrapping could be either para-
metric or non-parametric. Parametric bootstrapping is concerned with fitting a parametric model, which in our 
case would be a theoretical distribution, to the data and sampling from such fitted distribution. This is a viable 
approach for large datasets where the distribution of each input and each output could be reasonably approxi-
mated by a specific theoretical distribution. However, when no theoretical distribution could serve as a good ap-
proximation to the empirical one or when the dataset is small, non-parametric bootstrapping is the way to pro-
ceed. Non-parametric bootstrapping does not make any assumptions except that the sample distribution is a good 
approximation to the population distribution, or equivalently the sample is representative of the population. 
Consequently, datasets with different features require different resampling methods that take account of such 
features and thus generate representative replicas.  

For a non-correlated and homoskedastic dataset, one could for example use smooth bootstrapping or Bayesian 
bootstrapping, where smooth bootstrapping generates replicas by adding small amounts of zero-centered random 
noise (usually normally distributed) to resampled observations, whereas Bayesian bootstrapping generates rep-
licas by reweighting the initial data set according to a randomly generated weighting scheme. In this paper, we 
recommend the use of a variant of Bayesian bootstrapping whereby the weighting scheme consists of the Lucas 
number series-based weights tw  presented above, because it is more appropriate when one is resampling over a 
past-present time frame and more recent information is considered more valuable. For a non-correlated and ho-
moskedastic dataset, our Data Generation Process (DGP) may be summarized as follows. First, a random num-
ber ρ  is drawn from the uniform distribution over the interval [0,1], then whichever cross section data 
( ),t tX Y  so that 1t tW Wρ− < ≤  is resampled, where 0 0W = . This process is repeated as many times as neces-
sary to produce the required number of valid replicas or samples. 

On the other hand, for a correlated and/or heteroskedastic dataset, one could use one of the block bootstrap-
ping methods, where replicas are generated by splitting the dataset into non-overlapping blocks (simple block 
bootstrap) or into overlapping blocks of the same or different lengths (moving block bootstrap), sampling such 
blocks with replacement and then aligning them in the order they were drawn. The main idea of all block boot-
strap procedures consists of dividing the data into blocks of consecutive observations of length  , say  

( ) ( ) ( )1 1 1 1, , , , , ,t t t t t tX Y X Y X Y+ + + − + − 
 

 

 , and sampling the blocks randomly with replacement from all possible  

Blocks—for an overview of bootstrapping methods, the reader is referred to [17]. The block bootstrap procedure 
with blocks of non-random length can be summarized as follows: 

Input: Block length ∈   so that T  .  
Step 1: Draw randomly and independently block labels, say 1 2 1, , , Rb b b + , from the set of labels, say L, 

where [ ]R T= 
, ( ){ }1, 1, 2 1, , 1 1L R= + + − +     if non-overlapping blocks are considered, and  

{ }1, 2, , 1L T= − + 
 if overlapping blocks are considered. 

Step 2: Lay the blocks ( ) ( ) ( )1 1 1 1, , , , , , ; 1, , 1k k k k k kb b b b b bX Y X Y X Y k R+ + + − + −  = + 
 

  , end-to-end in the or-  

der sampled together and discard the last T R− +   observations to form a bootstrap series  
( ) ( ) ( )1 1 2 2ˆ ˆ ˆ ˆ ˆ ˆ, , , , , ,T TX Y X Y X Y . 

Output: Bootstrap sample ( ) ( ) ( )1 1 2 2ˆ ˆ ˆ ˆ ˆ ˆ, , , , , ,T TX Y X Y X Y . 

As to the choice of the number of replicas B, there is no universal rule except that the larger the value of B the 
more stable the results. However, one should take into consideration the computational requirements; therefore, 
in practice, one would keep increasing the value of B until the simulation converges; that is, the results from a 
run do not change when adding more iterations. 
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2.1.4. Choice of the Properties the Replicas Should Satisfy 
As replicas are required to be representative of the dataset under consideration, one would have to perform a 
preliminary analysis of the data to find out about its features; namely, whether it is correlated or not and whether 
it is heteroskedastic or not using statistical tests such as the ones used in [9]. For a correlated and/or heteroske-
dastic dataset, the same relevant statistical tests would have to be used to find out whether the replicas are rep-
resentative or not. When replicas are not representative, one would have to reject them and resample again. 
However, for a non-correlated and homoskedastic dataset, one could use hypothesis tests or confidence intervals 
based on Fisher’s z transformation to compare correlation patterns in past and present data. For example, for the 
present time period data, one could compute the correlation coefficient between all pairs of inputs, outputs, and 
input-output over all DMUs. Then, compute their ζ% confidence intervals; e.g., 95%, using Fisher’s z transfor-
mation [18]. If the corresponding correlation of a resampled data is out of range of this interval, we discard this 
resample data. Thus, inappropriate samples with unbalanced inputs and outputs relative to the inputs and outputs 
of the last period are excluded from resampling. The above noted 95% confidence interval is not compulsory. 
The narrower the interval, the closer the resample will be to the last period data. 

2.2. Past-Present-Future Time Based Framework 
In the previous subsection, we utilized historical data ( ), , 1, ,t tX Y t T=   to gauge the confidence interval of 
the last period’s scores. In this section, we forecast the “future”; namely, ( )1 1,T TX Y+ +  by using “past-present” 
data ( ), , 1, ,t tX Y t T=   and forecast the efficiency scores of the future DMUs along with their confidence in-
tervals. In order to avoid repetition, hereafter we shall discuss how the past-present time based framework could 
be extended to the past-present-future context. First, we have to forecast the future; to be more specific, given 
the observed historical data ( ), ,, , 1, ,t t

i j r jx y t T=   for a certain input ( )1, ,i i m= 
 and output ( )1, ,r r s= 

 
of a DMU ( )1, ,j j n= 

, we wish to forecast ( )1 1
, ,,T T

i j r jx y+ + . There are several forecasting engines available for 
this purpose. Once these forecasts are obtained, we then estimate the super-efficiency score of the “future” 
DMU ( )1 1,T TX Y+ +  using the non-oriented super slacks-based measure model. Finally, given the past-present- 
future inter-temporal data set ( ), , 1, , 1t tX Y t T= + , we apply the resampling scheme proposed in the previous 
section and obtain confidence intervals. 

3. An Application in Healthcare 
In this study we utilize a dataset concerning nineteen Japanese municipal hospitals from 2007 to 2009 to illus-
trate how the proposed framework works. There are approximately 1000 municipal hospitals in Japan and there 
is large heterogeneity amongst them. We selected nineteen municipal hospitals with more than 400 beds. There-
fore, this sample may represent larger acute-care hospitals with homogeneous functions. The data were collected 
from the Annual Databook of Local Public Enterprises published by the Ministry of Internal Affairs and Com-
munications. For illustration purposes, we chose for this study two inputs; namely, Doctor ((I)Doc) and Nurse 
((I)Nur), and two outputs; namely, Inpatient ((O)In) and Outpatient ((O)Out). Table 1 exhibits the data, while 
Table 2 shows the main statistics. The data are the yearly averages of the fiscal year data, as we have no daily or 
monthly data, and the Japanese government’s fiscal year begins on April 1 and ends on March 31. As can be 
seen, the data on inputs and outputs fluctuate by year, which suggests the need for analysis of data variation. 
We solved the non-oriented super slacks-based measure model year by year and obtained the super-efficiency 
scores in Table 3 along with their graphical representation in Figure 1. As can be seen, the scores fluctuate by 
year. Once again, this suggests the need for analysis of data variation. If we had daily data, this could be done. 
However, we only have fiscal-year data and hence we need to resample data in order to gauge the confidence 
interval of efficiency scores. Then, we merged the dataset of all years and evaluated the efficiency scores rela-
tive to 57 ( 19 3= × ) DMUs as exhibited in Table 4 and Figure 2. Comparing the averages of these three years, 
we found that the average 0.820 of year 2007 is better than 2008 (0.763) and 2009 (0.732). We also performed 
the non-parametric Wilcoxon rank-sum test and the results indicate that the null hypothesis; that is, 2007 and 
2008 have the same distribution of efficiency scores, is rejected at the significance level 1%; therefore, 2007 
outperforms 2008. Similarly, 2007 outperforms 2009. However, we cannot see significant difference between 
2008 and 2009. 
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Table 1. The data.                                                                                                 

 2007    2008    2009    

DMU (I)Doc (I)Nur (O)In (O)Out (I)Doc (I)Nur (O)In (O)Out (I)Doc (I)Nur (O)In (O)Out 

H1 108 433 606 1239 114 453 617 1244 116 545 603 1295 

H2 125 448 642 1363 133 499 638 1310 136 482 618 1300 

H3 118 567 585 1072 121 600 569 1051 125 616 561 1071 

H4 138 541 699 1210 138 531 704 1194 140 554 679 1182 

H5 138 613 653 1195 142 616 644 1147 137 633 622 1147 

H6 99 569 716 1533 106 592 701 1478 109 613 651 1457 

H7 94 498 540 1065 103 494 551 1067 101 491 540 1067 

H8 106 461 496 1051 118 490 504 1033 133 479 505 1081 

H9 109 450 483 851 119 483 487 877 121 501 486 904 

H10 102 540 581 1268 106 558 565 1278 148 611 586 1321 

H11 92 495 490 1217 101 497 501 1146 102 501 479 1113 

H12 148 721 771 1637 147 710 723 1657 158 737 743 1714 

H13 103 593 679 2011 106 673 642 1883 120 697 634 1872 

H14 101 500 613 1868 110 519 617 1894 116 517 623 2009 

H15 159 793 964 2224 160 801 906 2148 166 817 877 2155 

H16 77 354 410 1047 68 359 391 916 81 378 406 897 

H17 111 663 717 1674 112 645 702 1774 112 663 709 1733 

H18 62 388 480 913 64 385 467 907 63 381 463 872 

H19 98 323 508 1192 95 314 483 1018 95 320 490 1034 

 
Table 2. Main statistics.                                                                                                                                       

 2007    2008    2009    

 (I)Doc (I)Nur (O)In (O)Out (I)Doc (I)Nur (O)In (O)Out (I)Doc (I)Nur (O)In (O)Out 

Min 62 323 410 851 64 314 391 877 63 320 406 872 

Max 159 793 964 2224 160 801 906 2148 166 817 877 2155 

Avg 110 524 612 1349 114 538 601 1317 120 555 593 1328 

StdDev 23.75 120.41 130.51 378.24 24.15 121.43 119.57 380.07 25.58 126.78 113.05 389.49 

3.1. Illustration of the Past-Present Framework 
We applied the proposed procedure to the historical data of nineteen hospitals for the two years 2008-2009 in 
Table 1. We excluded the year 2007 data, because they belong to a different population than 2009 as explained 
in Preliminary results (Panel). Note that historical data may suffer from accidental or exceptional events, for 
example, oil shock, earthquake, financial crisis, environmental system change and so forth. We must exclude 
these from the data. If some data are under age depreciation, we must adjust them properly. In this study, we use 
Lucas weights for past and present data. However, we can use other weighting schema (e.g., exponential) as 
well. 

Table 5 shows the correlation matrix of the observed 2009 year data in Table 1 and Fisher 95% confidence 
intervals are exhibited in Table 6. For example, the correlation coefficient between Doc and Outpatient is  
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Table 3. Super-SBM scores by cross section (year).                                                                    

 2007 2008 2009 

H1 0.883 0.905 0.754 

H2 0.875 0.801 0.779 

H3 0.623 0.615 0.592 

H4 0.700 0.765 0.680 

H5 0.619 0.620 0.604 

H6 1.004 0.942 0.848 

H7 0.719 0.732 0.725 

H8 0.676 0.651 0.631 

H9 0.588 0.583 0.568 

H10 0.758 0.764 0.631 

H11 0.757 0.740 0.698 

H12 0.711 0.741 0.714 

H13 1.034 1.025 0.831 

H14 1.039 1.107 1.145 

H15 0.858 0.857 0.811 

H16 0.831 0.847 0.742 

H17 0.847 0.948 0.937 

H18 1.034 1.050 1.074 

H19 1.071 1.072 1.100 

Avg 0.822 0.830 0.782 

 
Table 4. Super-SBM scores for panel data (all years).                                                                                                                                       

 2007 2008 2009 

H1 0.883 0.833 0.727 

H2 0.875 0.750 0.745 

H3 0.623 0.584 0.571 

H4 0.700 0.712 0.654 

H5 0.619 0.590 0.584 

H6 1.004 0.860 0.783 

H7 0.719 0.696 0.699 

H8 0.676 0.620 0.613 

H9 0.588 0.556 0.551 

H10 0.758 0.726 0.610 

H11 0.757 0.703 0.672 

H12 0.711 0.704 0.688 

H13 1.034 0.871 0.794 

H14 1.024 0.950 1.020 

H15 0.858 0.812 0.779 

H16 0.831 0.798 0.715 

H17 0.847 0.872 0.855 

H18 1.028 0.929 0.922 

H19 1.042 0.920 0.924 

Avg. 0.820 0.763 0.732 



K. Tone, J. Ouenniche 
 

 
128 

Table 5. Correlation matrix.                                                                                                                                       

 Doc Nurse Inpatient Outpatient 

Doc 1 0.7453 0.7372 0.5178 

Nurse 0.7453 1 0.8610 0.7387 

Inpatient 0.7372 0.8610 1 0.8264 

Outpatient 0.5178 0.7387 0.8264 1 

 
Table 6. Fisher 95% confidence lower/upper bounds for correlation matrix.                                                                    

  
Lower bounds 

Doc Nurse Inpatient Outpatient 

 Doc  0.4400 0.4255 0.0832 

Upper Nurse 0.8961  0.6681 0.4281 

bounds Inpatient 0.8926 0.9455  0.5959 

 Outpatient 0.7869 0.8932 0.9311  

 

 
Figure 1. Super-SBM scores by cross section (year).                                                                    
 

 
Figure 2. Super-SBM Scores for panel data (all years).                                                                                                                                       
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0.5178 and its 95% lower/upper bounds are respectively 0.0832 and 0.7869. In addition, we report Fisher 20% 
confidence lower/upper bounds in Table 7. The intervals are considerably narrowed down compared with Fisher 
95% case. 

Table 8 exhibits results obtained by 500 replicas where the column DEA is the last period’s (2009) efficiency 
score and Average indicates the average score over 500 replicas. The column Rank is the ranking of average 
scores. We applied Fisher 95% threshold and found no out-of-range samples. Figure 3 shows the 95% confi-
dence intervals for the last period’s (2009) DEA scores along with Average scores. The average of the 95% con-
fidence interval for all hospitals is 0.10.  

In the Fisher 95% (ζ95) case, we found no discarded samples, whereas in the Fisher 20% (ζ20) case, 1945 
samples were discarded before getting 500 replicas. Table 9 shows the comparisons of scores calculated by both 
thresholds, where we cannot see significant differences. 

Note that one resample produces one efficiency score for each DMU. We compared 500 and 5000 replicas 
and obtained the 95% confidence interval as exhibited in Table 10. As can be seen, the difference is negligibly 
small. 500 replicas may be acceptable in this case. However, the number of replicas depends on the numbers of  

 
Table 7. Fisher 20% confidence lower/upper bounds for correlation matrix.                                                                    

  
 Lower bounds  

Doc Nurse Inpatient Outpatient 

 Doc - 0.71578 0.70695 0.46998 

Upper Nurse 0.77214 - 0.8437 0.70854 

bounds Inpatient 0.76482 0.87652 - 0.80525 

 Outpatient 0.56266 0.76614 0.84547 - 

 
Table 8. DEA score and confidence interval with 500 replicas.                                                                    

 97.50% DEA (2009) Average 2.50% Rank (Avg) 

H1 0.9228 0.754 0.8047 0.724 8 

H2 0.8279 0.7787 0.7865 0.7415 9 

H3 0.6285 0.5918 0.5999 0.573 18 

H4 0.7574 0.6802 0.709 0.6694 14 

H5 0.6375 0.6042 0.6088 0.5792 17 

H6 0.9384 0.8475 0.8758 0.8159 6 

H7 0.762 0.725 0.7284 0.6998 11 

H8 0.6902 0.6311 0.6365 0.6002 16 

H9 0.603 0.5681 0.5732 0.5452 19 

H10 0.7963 0.6308 0.6818 0.6032 15 

H11 0.7433 0.6985 0.7116 0.6808 13 

H12 0.7684 0.714 0.7237 0.6849 12 

H13 1.0465 0.831 0.8978 0.8081 5 

H14 1.1564 1.1448 1.1329 1.1037 1 

H15 0.8692 0.8107 0.8277 0.7886 7 

H16 0.8792 0.7418 0.7782 0.714 10 

H17 1.0142 0.9368 0.9542 0.9076 4 

H18 1.0837 1.0745 1.0708 1.0497 3 

H19 1.1194 1.0996 1.0897 1.0618 2 
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Table 9. Comparisons of Fisher’s 20% (ζ20) and 95% (ζ95) thresholds.                                                                    

        ζ20 - ζ95 ζ20 - ζ95 
ζ20 97.50% DEA 2.50% ζ95 97.50% DEA 2.50% 97.50% 2.50% 
H1 0.9061 0.754 0.724 H1 0.9228 0.754 0.724 −0.017 0.000 
H2 0.8247 0.7787 0.7419 H2 0.8279 0.7787 0.7415 −0.003 0.000 
H3 0.6279 0.5918 0.5757 H3 0.6285 0.5918 0.573 −0.001 0.003 
H4 0.7476 0.6802 0.6684 H4 0.7574 0.6802 0.6694 −0.010 −0.001 

H5 0.6375 0.6042 0.5832 H5 0.6375 0.6042 0.5792 0.000 0.004 

H6 0.9382 0.8475 0.8168 H6 0.9384 0.8475 0.8159 0.000 0.001 

H7 0.7611 0.725 0.6989 H7 0.762 0.725 0.6998 −0.001 −0.001 

H8 0.6905 0.6311 0.6011 H8 0.6902 0.6311 0.6002 0.000 0.001 

H9 0.6023 0.5681 0.5467 H9 0.603 0.5681 0.5452 −0.001 0.001 

H10 0.7903 0.6308 0.6044 H10 0.7963 0.6308 0.6032 −0.006 0.001 
H11 0.7469 0.6985 0.6808 H11 0.7433 0.6985 0.6808 0.004 0.000 
H12 0.767 0.714 0.6828 H12 0.7684 0.714 0.6849 −0.001 −0.002 
H13 1.0445 0.831 0.8081 H13 1.0465 0.831 0.8081 −0.002 0.000 
H14 1.1568 1.1448 1.1041 H14 1.1564 1.1448 1.1037 0.000 0.000 
H15 0.867 0.8107 0.7886 H15 0.8692 0.8107 0.7886 −0.002 0.000 
H16 0.8747 0.7418 0.7222 H16 0.8792 0.7418 0.714 −0.004 0.008 
H17 1.0121 0.9368 0.9058 H17 1.0142 0.9368 0.9076 −0.002 −0.002 
H18 1.0837 1.0745 1.0491 H18 1.0837 1.0745 1.0497 0.000 −0.001 
H19 1.1195 1.0996 1.063 H19 1.1194 1.0996 1.0618 0.000 0.001 

 
Table 10. Comparisons of 5000 and 500 replicas (Fisher 95%).                                                                    

500 Replica 5000 Replica  Difference 

500 97.50% DEA 2.50% 5000 97.50% DEA 2.50%  97.50% 2.50% 

H1 0.9228 0.754 0.724 H1 0.9184 0.754 0.7227  0.0044 0.0013 

H2 0.8279 0.7787 0.7415 H2 0.8266 0.7787 0.7412  0.0013 0.0003 

H3 0.6285 0.5918 0.573 H3 0.6291 0.5918 0.5719  −0.0006 0.0011 

H4 0.7574 0.6802 0.6694 H4 0.7581 0.6802 0.6679  −0.0007 0.0015 
H5 0.6375 0.6042 0.5792 H5 0.6379 0.6042 0.5801  −0.0004 −0.0009 
H6 0.9384 0.8475 0.8159 H6 0.9423 0.8475 0.8164  −0.0039 −0.0005 
H7 0.762 0.725 0.6998 H7 0.7615 0.725 0.6985  0.0005 0.0013 
H8 0.6902 0.6311 0.6002 H8 0.6907 0.6311 0.5998  −0.0005 0.0004 
H9 0.603 0.5681 0.5452 H9 0.603 0.5681 0.5456  0 −0.0004 

H10 0.7963 0.6308 0.6032 H10 0.7942 0.6308 0.6055  0.0021 −0.0023 

H11 0.7433 0.6985 0.6808 H11 0.7447 0.6985 0.6808  −0.0014 0 

H12 0.7684 0.714 0.6849 H12 0.7684 0.714 0.6828  0 0.0021 

H13 1.0465 0.831 0.8081 H13 1.046 0.831 0.8081  0.0005 0 

H14 1.1564 1.1448 1.1037 H14 1.1565 1.1448 1.1026  −1E−04 0.0011 

H15 0.8692 0.8107 0.7886 H15 0.8726 0.8107 0.7886  −0.0034 0 

H16 0.8792 0.7418 0.714 H16 0.8785 0.7418 0.7198  0.0007 −0.0058 

H17 1.0142 0.9368 0.9076 H17 1.0141 0.9368 0.9051  1E−04 0.0025 
H18 1.0837 1.0745 1.0497 H18 1.0837 1.0745 1.0459  0 0.0038 
H19 1.1194 1.0996 1.0618 H19 1.1193 1.0996 1.0618  1E−04 0 

        Max 0.0044 0.0038 
        Min −0.0039 −0.0058 
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Figure 3. 95% confidence interval.                                                                       

 
inputs, outputs and DMUs. Hence, we need to check the variations of scores by increasing the number of repli-
cas. 

As to the comparisons of individual hospitals, looking at Hospitals 1 and 2 in Table 8 and Figure 3, we are 
puzzled which hospital exhibits better performance. Actually, the 2009 score and the Average score are reversed 
(H1-2009 = 0.754, H1-Average = 0.8047, H2-2009 = 0.7789, H2-Average = 0.7865) and confidence intervals 
are overlapped. We applied the Wilcoxon rank-sum test and found that Hospital 1 outperforms Hospital 2 at the 
significant level 1%. In this way, we can compare individual hospitals in efficiency measurements. 

Finally, we would like to draw the reader’s attention to the fact that, in some applications, one might set 
weights to inputs and outputs. Actually, if costs for inputs and incomes from outputs are available, we can 
evaluate the comparative cost performance of DMUs. In the absence of such information, instead, we can set 
weights to inputs and outputs. For example, the weights to Doc and Nurse are assumed to be 5 to 1 (on average), 
and those of Outpatient to Inpatient are 1 to 10 (on average). We can solve this problem via the Weighted-SBM 
model, which will enhance the reliability and applicability of our approach. 

3.2. Illustration of the Past-Present-Future Framework 
Hereafter, we shall present numerical results for the past-resent-future framework. In this case we regard 2007- 
2008 as the past-present and 2009 as the future. In our application, we used three simple prediction models to 
forecast the future; namely, a linear trend analysis model, a weighted average model with Lucas weights, and a 
hybrid model that consists of averaging their predictions. 

Table 11 reports the forecasts for 2009 obtained by the linear trend analysis model. Table 12 shows the fore-
cast DEA score and confidence interval along with the actual super-SBM score for 2009. Figure 4 exhibits 
97.5% percent, 2.5% percent, forecast score and actual score. It is observed that, of the nineteen hospitals, the 
actual 2009 scores of sixteen are included in the 95% confidence interval. The average of Forecast-Actual over 
the nineteen hospitals was 0.063 (6.3%). 

Table 13 reports 2009 forecasts by the weighted average model with Lucas weights and Table 14 shows the 
actuals and the forecasts of 2009 scores along with confidence intervals. In this case, only four hospitals are in-
cluded in the 95% confidence interval. The average of Forecast-Actual over the nineteen hospitals was 0.056 
(5.6%). Although we did not report the results by the Average of Trend and Lucas case, the results are similar to 
the Lucas case. We compare the number of fails for the three forecast models that actual score is out of 97.5% 
and 2.5% interval. We have results as exhibited in Table 15. “Trend” gives the best performance among the 
three in this example. 

4. Conclusion 
DEA, originated by Charnes and Cooper (Charnes et al. [1]), is a non-parametric mathematical programming 
methodology that deals directly with input/output data. Using the data, DEA can evaluate the relative efficiency  
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Table 11. 2009 forecasts: linear trend model.                                                                                                                                       

DMU (I)Doc (I)Nurse (O)Inpatient (O)Outpatient 

H1 120 473 628 1249 

H2 141 550 634 1257 

H3 124 633 553 1030 

H4 138 521 709 1178 

H5 146 619 635 1099 

H6 113 615 686 1423 

H7 112 490 562 1069 

H8 130 519 512 1015 

H9 129 516 491 903 

H10 110 576 549 1288 

H11 110 499 512 1075 

H12 146 699 675 1677 

H13 109 753 605 1755 

H14 119 538 621 1920 

H15 161 809 848 2072 

H16 59 364 372 785 

H17 113 627 687 1874 

H18 66 382 454 901 

H19 92 305 458 844 

 
Table 12. Forecast DEA score, actual (2009) score and confidence interval: forecast by linear trend model.                                                                    

DMU 97.50% Forecast (2009) Actual (2009) 2.50% 

H1 1.0237 0.9338 0.754 0.8245 

H2 1.0027 0.787 0.7787 0.722 

H3 0.6649 0.6148 0.5918 0.5641 

H4 0.8816 0.8581 0.6802 0.7319 

H5 0.6814 0.6421 0.6042 0.5771 

H6 1.0213 0.8768 0.8475 0.8062 

H7 0.8292 0.7586 0.725 0.6945 

H8 0.7641 0.6725 0.6311 0.6066 

H9 0.6983 0.6213 0.5681 0.539 

H10 0.8422 0.7781 0.6308 0.7111 

H11 0.8425 0.7206 0.6985 0.6679 

H12 0.8136 0.7716 0.714 0.7068 

H13 1.0814 1 0.831 0.8276 

H14 1.1575 1.0909 1.1448 1.0281 

H15 0.9467 0.8541 0.8107 0.7902 

H16 1.0376 0.9444 0.7418 0.7258 

H17 1.0387 1.0348 0.9368 0.8982 

H18 1.0899 1.0537 1.0745 0.9692 

H19 1.1354 1.0594 1.0996 1.0113 
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Table 13. 2009 forecasts: Lucas weighted average model.                                                                    

DMU (I)Doc (I)Nurse (O)Inpatient (O)Outpatient 

H1 112 446 613 1242 

H2 130 482 639 1328 

H3 120 589 574 1058 

H4 138 534 702 1199 

H5 141 615 647 1163 

H6 104 584 706 1496 

H7 100 495 547 1066 

H8 114 480 501 1039 

H9 116 472 486 868 

H10 105 552 570 1275 

H11 98 496 497 1170 

H12 147 714 739 1650 

H13 105 646 654 1926 

H14 107 513 616 1885 

H15 160 798 925 2173 

H16 71 357 397 960 

H17 112 651 707 1741 

H18 63 386 471 909 

H19 96 317 491 1076 

 
Table 14. DEA score and confidence interval forecasts: Lucas weighted average model.                                                                    

 97.50% Forecast (2009) Actual (2009) 2.50% 

H1 1.0001 0.8974 0.754 0.8469 

H2 0.9329 0.8527 0.7787 0.797 

H3 0.6448 0.6218 0.5918 0.5987 

H4 0.7855 0.7618 0.6802 0.7303 

H5 0.6584 0.64 0.6042 0.62 

H6 1.0101 0.9604 0.8475 0.9123 

H7 0.7813 0.7347 0.725 0.7006 

H8 0.7201 0.6867 0.6311 0.6596 

H9 0.6578 0.6177 0.5681 0.5894 

H10 0.8109 0.7829 0.6308 0.7441 

H11 0.8101 0.7573 0.6985 0.7171 

H12 0.7623 0.7336 0.714 0.712 

H13 1.059 1.0286 0.831 1 

H14 1.1306 1.0868 1.1448 1.0409 

H15 0.912 0.8665 0.8107 0.8263 

H16 0.9296 0.8488 0.7418 0.7869 

H17 0.9731 0.9427 0.9368 0.8984 

H18 1.0686 1.0443 1.0745 1.0115 

H19 1.1075 1.0769 1.0996 1.0417 
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Table 15. Number of fails.                                                                                          

 Trend Lucas Average of Trend and Lucas 

No. of fails 3 15 15 

 

 
Figure 4. Confidence interval, forecast score and actual 2009 score: forecast by linear trend model.                               
 
of DMUs and propose a plan to improve the inputs/outputs of inefficient DMUs. This function is difficult to 
achieve with similar models in statistics, e.g., stochastic frontier analysis. DEA scores are not absolute but rela-
tive. They depend on the choice of inputs, outputs and DMUs as well as on the choice of model for assessing 
DMUs. DEA scores are subject to change and thus data variations in DEA should be taken into account. This 
subject should be discussed from the perspective of the itemized input/output variations. From this point of view, 
we have proposed two models. The first model utilizes historical data for the data generation process, and hence 
this model resamples data from a discrete distribution. It is expected that, if the historical data are volatile 
widely, confidence intervals will prove to be very wide, even when the Lucas weights are decreasing depending 
on the past-present periods. In such cases, application of the moving-average method is recommended. Rolling 
simulations will be useful for deciding on the choice of the length of the historical span. However, too many past 
year data are not recommended, because environments, such as healthcare service systems, are changing rapidly. 
The second model aims to forecast the future efficiency and its confidence interval. For forecasting, we used 
three models; namely, the linear trend model, the weighted average, and their average. On this subject, Xu and 
Ouenniche [19] [20] will be useful for the selection of forecasting models, and Chang et al. [21] will provide 
useful information on the estimation of the pessimistic and optimistic probabilities of the forecast of future in-
put/output values. 
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