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Abstract 
Since the discovery of oil and gas in Nigeria in 1956, much gas has been flared because the opera-
tors pay little or no concern to its utilization, and as such, trillions of dollars have been lost. In this 
paper, a model is proposed using Time Series Regression Model (TSRM) and Time Series Neural 
Network (TSNN) to model the production, utilization and flaring of natural gas in Nigeria with the 
ultimate aim of observing the trend of each activity. The results show that TSNN has better predic-
tive and forecasting capabilities compared to TSRN. It is also observed that the higher the hidden 
neurons, the lower the error generated by the TSNN. 
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1. Introduction 
Natural gas was first discovered in Nigeria in 1956, at Afam, Rivers State, in association with oil during the 
drilling of Oloibiri well (now in Bayelsa State), which was the first commercial oil discovery in the country. 
However, Nigeria’s natural gas development is still at its infancy, but with very high potential for growth. Vari-
ous literatures cite that Nigeria is more endowed with natural gas reserves than oil. Nigeria has been considered 
an oil rich nation in Africa as shown in Figure A1 nevertheless currently, the country is Africa’s largest natural 
gas holder with a proven reserve of 186.99 tcf and the 7th as shown in Figure A2 and has been described as a 
gas province with oil pockets. Unfortunately, the Multinational Oil Company at the time of discovery—Shell BP, 
paid little or no attention to the utilization of this resource since it was not their primary drilling objective. At 
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this early stage of development, there was no legislation governing the utilization of natural gas in the country, 
while, at the same time, there was little or no market for the commodity. A recent study conducted by the World 
Bank revealed that developing countries account for more than 85% of gas flaring and venting worldwide, with 
Nigeria being the largest [1]. The first utilization of gas could be traced to 1963 when Shell BP sold and sup-
plied the resource obtained from fields in Aba and Ughelli to industries around the areas. Later, the company 
started supplying the commodity to the then Electricity Corporation of Nigeria (ECN), later named National 
Electricity Power Authority (NEPA), and now known as Power Holding Corporation of Nigeria (PHCN) at its 
Afam plant in Rivers State. The commodity was also supplied to the River State Utility Board in Port Harcourt, 
capital of Rivers State. 

Gas flaring refers to the burning of natural gas that is associated with crude oil when it is pumped up from the 
ground. This is a means of disposal either because there is no market for the gas or the operator does not elect 
(or cannot use) the gas for a non-wasteful purpose. On the other hand, venting is the release of natural gas that 
cannot be processed for sale or use because of technical or economic reasons. Gas flaring in Nigeria dated back 
to the onset of oil production in Oloibiri in 1958 with the flaring of about 4.5 million scf/day of associated gas. 
An average of 1000 scf of associated gas is produced for every barrel of oil produced. The amount of associated 
gas flared increased in proportion to the volume of oil produced and rose progressively to about 2.6 billion 
scf/day in 1996 when crude oil production averaged 2.4 million barrels per day. The volume of associated gas 
flared has only decreased slightly to 2.3 billion scf/day in subsequent years despite various regulations and 
measures put in place to discourage the flaring of gas associated with oil production. 

Natural gas flares cause various degrees of pollution such as variations in the chemistry, meteorological, bio-
logical, and chemical parameters of the air and atmosphere, as well as soil conditions in the immediate environ-
ment of the flare. Local farmers have complained about retardation of growth and productivity of farm crops 
around gas flares, as well as scarcity of animals around the gas flare environment. 

The problem is that in Nigeria, not much has been done in predicting and forecasting the production, utiliza-
tion and flaring of the natural gas. In this paper, we seek to use a combination of two statistical models—Time 
Series Regression and Artificial Neural Network in solving this problem. 

1.1. Gases Associated with Gas Flaring 
When natural gas is flared, a combustion reaction takes place in the form stated below [2]: 

( ) ( )2 2 2 2 2
1C H 3 1 O CO 1 H O Heat
2n n n n n+ + + → + + +  

Presented below, as an example, is the combustion reaction of propane. 
3 8 2 2 2C H 5O 3CO 4H O+ → +  

During a combustion reaction, several intermediate products are formed, and eventually, most are converted 
to CO2 and water. Some quantities of stable intermediate products such as carbon monoxide, hydrogen, and hy-
drocarbons will escape as emissions. 

For a complete reaction, carbon (IV) oxide and water vapour are formed. However, when the reaction is in-
complete, carbon (II) oxide is formed alongside carbon (IV) oxide and water vapour. 

Depending on the location, impurities such as sulphur, nitrogen and hydrogen sulphide are also found with 
natural gas. These gases undergo a combustion reaction to form acid gases such as oxides of nitrogen NOx , 
oxides of sulphur SOx  and hydrogen sulphide H2S. 

Complete combustion requires sufficient combustion air and proper mixing of air and gas. Smoke may result 
from combustion, depending upon gas components and the quantity and distribution of combustion air. Gases 
containing methane, hydrogen, CO, and ammonia usually burn without smoke. Gases containing heavy hydro-
carbons such as paraffins above methane, olefins, and aromatics, cause smoke. 

1.2. Application of Artificial Neural Network in Petroleum Engineering 
Artificial Neural Network (ANN) have been used to address some of the fundamental problems in petroleum 
engineering that conventional predictive models have been unable to solve, especially when engineering data for 
design, interpretations and calculations have been less adequate. Also, with recent advances in pattern recogni-
tion, classification of noisy data, nonlinear feature detection, market forecasting, sickness recognition in human 
blood in medicine, and process modeling, ANN technology is very well suited for solving problems in the pe-
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troleum industry. Several authors have developed ANN models to solve several problems in the petroleum in-
dustry. Juniardi and Irashagi [3] developed ANN model to predict permeability and skin factor of faulted Re-
servoir. Arehart [4] developed a 3-layer back propagation neural network model to determine the grade of a drill 
bit while it is drilling. Ashenayi et al. [5] used a hybrid 3-layer back propagation neural network model to iden-
tify beam pump malfunctioning from down hole pump cards. Erahaghi et al. [6] used a multiple ANN to train 
and recognize patterns (CD, PD, tD, S, dD…) for specific conceptual reservoir model. Kumoluyi [7] discussed the 
general application of neural networks and their potential uses in some areas of petroleum engineering. They 
found that one advantage of feed forward networks in pattern recognition is their ability to recognize patterns 
regardless of position, rotation and scaling. The application of pattern recognition is essential in well log inter-
pretation of multiphase flow and in seismic data processing. Mohagheh et al. [8] used a 3-layered forward back 
propagation neural network model to estimate the heterogeneity of some reservoirs. Briones et al. [9] developed 
a 3-layer radial basis neural network (RBFNN) model to relate gas-oil ratio (GOR) and API gravity to the cor-
responding molar composition (C1, C2, C3, C4, C5, C6, C7 and CO2). Mc Vay et al. [10] used a feed forward back 
propagation neural network model to train the actual refracture treatment design, basic well information, and 
well performance in order to determine the Sand Volume, Fluid Type, Injection Rate and Acid Volume as the 
majoring factors that influence the well deliverability during hydraulic fracturing. Manmath et al. [11] used 
ANN model to predict fluid distribution taking oil, water, and gas production as input data. Wong et al. [12] de-
veloped a back propagation neural network (BPNN) model to estimate formation permeability in the RAVVA oil 
and gas field offshore in India. Garrmouch and Smaoul [13] developed a 3-layered back propagation neural 
network model to estimate formation permeability of tight gas reservoir. Soto et al. [14] used a neural network 
model to predict the permeability and porosity of zone C of the Cantagallo field in Colombia. Shelley et al. [15] 
developed two separate neural network models for well completion analysis and optimization to identify the 
factors that affect production and measure their contributions to the production result. Nikravesh et al. [16] de-
veloped several neural network models for water flood management in fractured reservoir to predict the well-
head pressure and future production in quarterly basis. 

Application of neural networks in time series forecasting [17]-[20] is based on the ability of neural networks 
to approximate nonlinear functions. The most popular treatment of input data is feeding the neural networks 
with either the data at each observation, or the data from several successive observations. Denote the data at 
instant k as y(k), where y may be a vector, then the above treatment can be described as 

( )1k ky NN y+ =  
or 

( )1 1, , ,k k k k ly NN y y y+ − −=   

respectively, where NN() stands for the neural network forecaster and l is the number of successive observations. 
This treatment considers the time series as a nonlinear time series and tends to generate a nonlinear “auto- 
regression” model to fit the series. So far, there have been few papers describing how to choose inputs for the 
neural network forecaster in order to achieve better forecasting performance. It is our belief that the performance 
of a neural network forecaster is much affected by input data patterns. 

Autocorrelation analysis has been often used in time series forecasting using statistical approaches such as 
ARMA models. This analysis is mainly used in detecting the autocorrelations between successive observations 
of time series, and used in the well-known ARIMA models with Box-Jenkins methods that are very efficient in 
forecasting linear time series [21]. 

Autocorrelation analysis can be used to determine the correct input patterns for nonlinear time series fore- 
casting with a neural network. The scheme contains three phases: detection of input patterns, determination of 
the number of neurons in hidden layer(s), and construction of the neural network forecaster. In the detection 
phase, autocorrelation analysis is used to identify input patterns of time series for training. Determination of the 
number of neurons in hidden layer(s) is done with Baum-Haussler rules [22]. The neural network forecaster is 
then constructed with the determined input patterns and the number of neurons in hidden layer(s). 

2. Materials and Methods 
2.1. Time Series Regression Model (TSRM) 
We recall the linear regression model (LRM) given as: 
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( ), ; 1, 2, ,i j iy f e i n= + =x β                             (1) 

which is made up of the predicted part and the residual part. The residual is the difference between the observed 
and the predicted values which is ascribed to unknown sources. n is the number of observations, yi is the ith ob-
servation, ( )1 2,  , ,j i i kix x x=x   is the predictor variable vector related to yi, ( )0 1, , , pβ β β= β  is the para-
meter vector, and ei is the error associated with ith observation. 

Writing (1) in time series notation, we have 

( ), ; 1, 2, ,t t ty f e t n= + =x β                            (2) 

Explicitly, this is written as 
; 1, 2, ,t t ty x e t nα β= + + =                              (3) 

where yt is the dependent variable, xt is the independent variable (in this case, the “years”), α is the intercept, β is 
the parameter associated with the independent variable, xt, and et is the stochastic term or error associated with 
the model. 

We minimize (3) with respect to α and β, 
2

1

n
tt

e
α
=

∂

∂
∑  and 
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n
tt

e
β
=

∂

∂
∑ , to obtain two normal equations respec- 

tively. Solving the normal equations, we obtain the estimates of the parameters α  and β : 
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The predicted model becomes 
ˆˆˆt ty xα β= +                                       (6) 

and the residual is given as 
ˆt t tê y y= −                                        (7) 

2.2. The Time Series Neural Network (TSNN) Model 
The statistical neural network (SNN) model structurally is composed of two parts: the predictive and the residual, 
as is in classical regression, given as 

( ), iy f X w e= +                                     (8) 

where ( )
1 0

,
H I

h hi i
h i

f X w X g xα β γ
= =

 
= +  

 
∑ ∑ . Thus Equation (6) can be written as  

1 0

H I

h hi i i
h i

y X g x eα β γ
= =

 
= + + 

 
∑ ∑                               (9) 

( )0 1, , , IX x x x=   is the vector of the input variable, g(.) is the transfer (or activation) function and 
( ), ,w α β γ=  are the weights (or parameters) associated with the input vector, hidden neuron and the transfer 

function respectively, while ei is the error associated with the network. We note that when there is no hidden 
neuron, the SNN reduces to the ordinary regression model. 

We propose a simple time series neural network model, 

1 0
, 1, 2, ,

H I

t t h hi ti t
h i

y x g x e t nα β γ
= =

 
= + + = 

 
∑ ∑                        (10) 

The terms and symbols are as explained in the SNN model, except that t refers to “time” or “period”. 
The weights are estimated using Taylor’s first order approximation, 
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( ) ( )0

0

0 ,
w w

t
t t t

w w

f x w
y y e

w

−

=

∂
= + +

∂
                              (11) 

where ( )0 0,t ty f x w=  

If 0w wθ = − , and ( ),tf x w
z

w
∂

=
∂

, then we can write Equation (6) as  

*
t t ty z eθ= +                                        (12) 

where * 0 t t ty y y= −  
The least squares estimate of the parameter θ  is 

( ) 1ˆ Z Z Z Yθ −′ ′ ′=                                        (13) 

and the estimated model is 
* ˆŶ Xθ=                                           (14) 

while the network error is given as 
* *ˆ

tê Y Y= −                                           (15) 

In this paper, we used the symmetric saturated linear transfer function, 

( )
1, 1
, 1 1

1, 1

x
f x x x

x

− < −
= − ≤ ≤
 >

                                (16) 

The data used in this study are annual data on natural gas production, utilization and flared in Nigeria from 
1958-2006, obtained from the Annual Abstract of Statistics of the Nigeria Bureau of Statistics (NBS), formerly 
Federal Office of Statistics (FOS)-(1970-1990), Ministry of Petroleum Resources (MPR)-(1991-1994) and 
NAPIMS-(1995-2006). This makes a total of 49 data set. In each case (production, utilization and flared), the 
TSNN model formulation is: 

1-2-1,      1-5-1,      1-10-1. 
All input variables were standardized, that is, converting them to the range (0, 1) before feeding them into the 

network. This is to avoid the application of extremely small weighting factors in the case of large input values. 
Similarly, the output values are “destandardized” to provide meaningful results since all values leaving the 

network are automatically output in a standardized format. This is done by simply reversing the standardization 
algorithm used on the input nodes. 

We used SPSS for the TSRM part of the analysis, while a neural code was written for the analysis of the TSNN 
using MATLAB R2009a, and interesting results were obtained. 

2.3. Model Selection Criteria 
Here we discuss several criteria that have been used to choose between the two models. Several criteria are used 
for this purpose. In particular, we discuss these criteria: (i) R2; (ii) adjusted ( )2 2 R R ; (iii) Akaike information 
criterion (AIC); and (iv) Schwarz Information criterion (SIC). All these criteria aim at minimizing the residual 
sum of squares (SSE). However, except for the first criterion, criteria (ii), (iii), and (iv) impose a penalty for in-
cluding an increasingly large number of predictors. Thus there is a tradeoff between goodness of fit of the model 
and its complexity (as judged by the number of predictors). 

3. Results and Discussions 
Figure 1 is a time plot of the production, utilization and flared natural gas in Nigeria oil and gas industry. The 
time plot of all the variables that are of interest in the study shows that gas utilization and production rate stea-
dily accelerated upward from the base year till the end. More so, flared gas also had an upward trend except that 
it is an oscillatory trend. At times it rises and fall but later maintained the upward trend. The plot shows that  
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Figure 1. Time plot of Nigeria’s natural gas.                                             

 
during the first ten years of production, there was zero gas utilized and a geometrical increase in the produced 
and flared gas. Following this period, a steady increase in the amount of gas utilized while a gradual decline was 
observed for produced and flared gas for about ten years. However, the plot flattens during the last ten years 
showing that the volume flared remained constant whereas there was a corresponding sharp increase in the vo-
lume utilized with production. Some spikes on the plot at points 16, 23 and 38 corresponding to 1974, 1981 and 
1996 represent the highest volume of gas flared. The amount of gas flared was higher than those utilized until 
2004. 

Figures A3-A5 show the prediction of natural gas in Nigeria. The graph show that TSNN have a higher pre-
diction than TSRM, while their errors are in the reverse. 

4. Time Plot of the Stationarized Variables 
Correlogram of the data shows that the variables are non-stationarized since their respective lag value is zero 
and autocorrelation values are big (Figure 2). This necessitated the need to check for the unit root test of the re-
spective variables. However, Using Augmented Dickey Fuller Unit root test trend and intercept authenticates the 
proof that the initial data of the variables has a unit root since their respective P-value are greater than 5%. 
Meanwhile at first difference, the three variables seems to be okay as it has been stationarized since both time 
plots seem to have constant means, their respective correlogram have none of its P-value to be zero and smaller 
autocorrelation values. Figure 2 shows the time plot of the stationarized variables 

Furthermore, ADF result below illustrates that the variable can now be used for time series model since their 
respective P-values are less than 5% which shows to be normal. 

Table below shows the descriptive statistics of the variables which vividly indicates that the differencing va-
riable were shown to be positively symmetric as their respective mean values (436.0625, 1339.313 and 
9903.2500) are bigger than their median values (258.5000, 1058.000 and 116.0000), flared and production are 
negatively skewed as their respective skewness value is less than zeros, kurtosis of the three variables are me-
sokurtic since their respective K-value > 3. 

5. Descriptive Statistics of the Stationarized Variables 
 DFLARED DPRODUCTION DUTILIZED 

Mean 436.0625 1339.313 903.2500 
Median 258.5000 1058.000 116.0000 

Maximum 6632.000 9582.000 10609.00 
Minimum −8744.000 −8514.000 −3103.000 
Std. Dev. 2983.107 3490.988 2425.240 
Skewness −0.790995 −0.442423 2.199180 
Kurtosis 4.864417 3.804597 8.575437 

Jarque-Bera 11.95748 2.860656 100.8621 
Probability 0.002532 0.239230 0.000000 

Sum 20931.00 64287.00 43356.00 
Sum Sq. Dev. 4.18E+08 5.73E+08 2.76E+08 
Observations 48 48 48 
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Figure 2. Time plot of the stationarized variables.                                             

 
However, the regression result below indicates that the model is of best perfect fit as the coefficient of deter-

mination = 1 (one). Furthermore, flared and utilized has a positive joint contribution to the production of gas as 
it’s P-value is < zero (significant). 

6. Regression Result 
Dependent Variable: DPRODUCTION  

Method: Least Squares   

Date: 03/19/15  Time: 07:30   

Sample (Adjusted): 1959 2006   

Included Observations: 48 after Adjustments  

DPRODUCTION = C(1) + C(2)*DFLARED + C(3)*DUTILIZED 

 Coefficient Std. Error t-Statistic Prob. 

C(1) −2.63E−13 9.94E−14 −2.641271 0.0113 

C(2) 1.000000 3.14E−17 3.19E+16 0.0000 

C(3) 1.000000 3.86E−17 2.59E+16 0.0000 
     

R-squared 1.000000 Mean dependent var 1339.313 

Adjusted R-squared 1.000000 S.D. dependent var 3490.988 

S.E. of regression 6.31E−13 Sum squared resid 1.79E−23 

F-statistic 7.18E+32 Durbin-Watson stat 1.608095 

Prob (F-statistic) 0.000000    
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Figure 3 is a combo chart which helps us to see the relationship among production, utilized and flared gas 
during the period of investigation. 

Tables 1-3 summarizes the results of the model adequacy of the two models. The MSE compares the varia-
tions in the errors generated by the different models. The model with the smallest MSE is considered a better  

 

 
Figure 3. Combo Chart of Production, Utilized and Flared Gas.                                           

 
Table 1. Estimated model adequacy for gas production.                                                          

TSRM TSNN 

MSE R2 2R  AIC SIC HL MSE R2 2R  AIC SIC 

4.029e19 0.878 0.875 4.370e19 4.720e19 

2 2.110e19 0.936 0.935 2.196e19 2.373e19 

5 1.900e19 0.942 0.941 1.977e19 2.136e19 

10 1.805e19 0.945 0.944 1.878e19 2.029e19 

 
Table 2. Estimated model adequacy for gas utilization.                                                           

TSRM TSNN 

MSE R2 2R  AIC SIC HL MSE R2 2R  AIC SIC 

4.148e19 0.670 0.663 4.500e19 4.860e19 

2 2.652e19 0.789 0.784 2.761e19 2.982e19 

5 2.237e19 0.823 0.818 2.328e19 2.515e19 

10 1.034 0.918 0.916 1.076e19 1.162e19 

 
Table 3. Estimated model adequacy for gas flared.                                                               

TSRM TSNN 

MSE R2 2R  AIC SIC HL MSE R2 2R  AIC SIC 

2.998e19 0.672 0.665 3.250e19 3.510e19 

2 1.285e19 0.859 0.856 1.338e19 1.445e19 

5 1.272e19 0.861 0.858 1.324e19 1.431e19 

10 1.032e19 0.887 0.885 1.074e19 1.160e19 
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model. R2 measures the fit of each of the models. Since more than one model is involved, R2 will not be ade-
quate for comparison. 

Thus for model fit, 2R , AIC and SIC is considered. In case of R2 and 2R , the higher the value, the better the 
model. The AIC and SIC, like the MSE, adjures a model to be a better one if it is less than another model under 
comparison. 

The results of the analysis in Tables 1-3 shows that the MSEs of the TSNN are by far smaller than the MSE of 
the TSRM. Hence, from Table 4, all the models of the TSNN are preferred than the TSRM. 

Table 5 and Table 6 summarize the results for model adequacy and selection. The percentages of the 2R  (as 
well as the R2) are higher in all models of the TSNN than in the TRSM. This ascertain the fitness of the TSNN 
over TRSM. 
 
Table 4. Model selection based on MSE.                                                                           

Variable 
Model Selected 

MSE 
Model HN Inequality 

Gas Production 
1-2-1 
1-5-1 
1-10-1 

10 < 5 < 2 

Gas Utilization 
1-2-1 
1-5-1 
1-10-1 

10 < 5 < 2 

Gas Flared 
1-2-1 
1-5-1 
1-10-1 

10 < 5 < 2 

 
Table 5. (a) Model selection based on R2 and 2R ; (b) Model Selection based on AIC and SIC.                           

(a) 

Variable 

Model Selected 

TSRM TSNN TSRM TSNN 

R2 R2 2R  2R  

% % Model % % Model 

Gas Production 87.8 

93.6 1-2-1 
1-5-1 
1-10-1 

87.5 

93.5 1-2-1 
1-5-1 
1-10-1 

94.2 94.1 

94.5 94.4 

Gas Utilization 67.0 

78.9 1-2-1 
1-5-1 
1-10-1 

66.3 

78.3 1-2-1 
1-5-1 
1-10-1 

82.2 81.8 

91.8 91.6 

Gas Flared 67.2 

85.9 1-2-1 
1-5-1 
1-10-1 

66.5 

85.6 1-2-1 
1-5-1 
1-10-1 

86.1 85.8 

88.7 88.5 

(b) 

Variable 
Model Selected 

AIC SIC 

Gas Production 
1-2-1 
1-5-1 
1-10-1 

1-2-1 
1-5-1 
1-10-1 

Gas Utilization 
1-2-1 
1-5-1 
1-10-1 

1-2-1 
1-5-1 
1-10-1 

Gas Flared 
1-2-1 
1-5-1 
1-10-1 

1-2-1 
1-5-1 
1-10-1 
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Table 6. Hidden neuron inequality based on model selection criteria.                                              

Variable R2 R2 AIC SIC 

Gas Production 2 < 5 < 10 2 < 5 < 10 10 < 5 < 2 10 < 5 < 2 

Gas Utilization 2 < 5 < 10 2 < 5 < 10 10 < 5 < 2 10 < 5 < 2 

Gas Flared 2 < 5 < 10 2 < 5 < 10 10 < 5 < 2 10 < 5 < 2 

Table 7. Comparison of parameter esimates obtained by TSRM, TSNN.                                              

Variable 

Parameter Estimates 

TSRM 
TSNN 

w 

α̂  β̂  α̂  ˆ ˆ,β γ  

Gas Production −6.0000e9 1.0000e9 −2.0879e10 1.7650e9 

Gas Utilization −8.0000e9 6.0000e8 −2.7680e10 1.4135e9 

Gas Flared 2.0000e9 5.0000e8 6.8003e9 3.5149e8 

 
The result of the entire analysis shows that as the hidden neurons increases, the values of the MSE, AIC and 

SIC decreases, while those of 2R  and 2R  increases. 

7. Model Description 
This section describes the model formulation based on the estimates of the parameters; the parameter estimates 
obtained by TSRM and TSNN are presented in Table 7. 

The results of β̂  in TSRM and ˆ ˆ,β γ  in TSNN explains the contribution of the variable to the production, 
utilization and flaring of natural gas. Figures A6-A8 show the forecast of natural gas where the TSNN produce a 
higher forecast than the TSRM. Figure A9 and Figure A10 compare the forecast of the natural gas using both 
the TSRM and TSNN. While both models show that both production and utilization are growing at almost the 
same rate, the rate at which flaring is reducing is higher with TSNN than with TSRM. This shows that using 
TSNN, more is contributed to the production, utilization and flaring of natural gas in Nigeria. 

8. Concluding Remarks 
We have compared the Time Series Regression Model (TSRM) and the Time Series Statistical Neural Network 
(TSNN) to estimate the production, utilization and flaring of natural gas in Nigeria from 1958 to 2006. Both me- 
thods attempt to minimize the error sum of squares between observations and predicted values. Regression re-
quires an explicit function to be defined before the least squares parameter estimates can be computed, while a 
neural network depends more on training data and the learning algorithm. Neural networks have been shown to 
be an efficient methodology to estimate natural gas production, utilization and flaring. Comparing model predic-
tion in both cases show that TSNN performs better than TSRM. 
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Appendix  

 
Figure A1. Africa’s Oil Reserve Ranking as at 2007.                                            

 

 
Figure A2. Top Ten World Natural Gas Proven Reserves as at 2007.                                         

 

 
Figure A3. Prediction and Error of Natural Gas Production in Nigeria (1958 - 2006) using TSRM and 
TSNN. Source: Journal of Oil and Gas.                                                     
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Figure A4. Prediction and Error of Natural Gas Utilization in Nigeria (1958-2006) using 
TSRM and TSNN.                                                              

 

 
Figure A5. Prediction and Error of Natural Gas Flared in Nigeria (1958-2006) using TSRM 
and TSNN.                                                                       

 

 
Figure A6. Forecast of Natural Gas Production in Nigeria (1958-2050) using TSRM and 
TSNN.                                                                        

 

 
Figure A7. Forecast of Natural Gas Utilization in Nigeria (1958-2050) using TSRM and 
TSNN.                                                                           
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Figure A8. Forecast of Natural Gas Flared in Nigeria (1958-2050) using TSRM and TSNN.              

 

 
Figure A9. Forecast of Natural Gas Production, Utilization and Flared in Nigeria (1958- 
2050) using TSRM.                                                            

 

 
Figure A10. Forecast of Natural Gas Production, Utilization and Flared in Nigeria (1958- 
2050) using TSNN.                                                              
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