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Abstract 
We present the problem of the time-dependent Harmonic oscillator with time-dependent mass 
and frequency in phase space and by using a canonical transformation and delta functional inte-
gration we could find the propagator related to the system. New examples of time-dependent fre-
quencies are presented. 
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1. Introduction 
Recently, a great deal of attention has been paid to the subject of time dependent Hamiltonians. The importance 
of this problem in various areas of physics, quantum optics [1], cosmology [2], nanotechnology [3] and plasma 
physics [4] is the main reason for these intensive studies. The harmonic oscillator with time-dependent mass and 
frequency is a common problem in this area, and it is very important system, because we can find it in many 
physical areas. Abdalla and Colograve [5]-[7] studied this problem with a time dependent mass and constant 
frequency in order to describe the electromagnetic field intensities in a Fabry-Poerot cavity by applying a time 
dependent canonical transformation. The problem also has been treated using the time-dependent dynamical in-
variant by Lewis and Riesenfeld [8]. Kandekar and Lawand [9] have considered the case of exponentially vary-
ing mass with variable frequency by means of path integral method. The same problem with a constant fre-
quency has been treated by path integral by many authors for example: Sabir and Rajagopalan [10] treated the 
cases of the strongly pulsating mass and a model of growing mass, the power-low suppressed harmonic oscilla-
tor [11] is also solved. In [12] the problem with an arbitrary time dependent mass and frequency is treated using 
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space-time transformations. The same problem has been solved in [13]. Cheng [14] evaluated the propagator of 
a forced time dependent harmonic oscillator. 

Looking through the literature one can find that an explicit expression for the propagator could not be ob-
tained for all time varying mass-functions or frequencies because the procedure involves the solutions of non- 
linear differential equations. This is the reason why the literature is not reached by many exactly evaluated sys-
tems, which has many applications in physics [1]-[4] [15] [16]. Only few cases of varying mass and frequency 
have been solved, as mentioned above the strongly pulsating mass [7], the exponentially time-dependent mass 
[17], the power-low mass [11] and some examples are given in [18]-[20]. 

In this paper we will present a way to find the propagators of the time dependent harmonic oscillators in phase 
space using canonical transformations and delta functional integration [21]. As an application of that we will 
follow by a class of time dependent harmonic oscillators with time-dependent frequencies we think and see that 
they have exact propagators. 

2. The Harmonic Oscillator and the Propagator 
Let us present the following time dependent Hamiltonian [17]  

( ) ( ) ( ) ( )2 2 21 1, ,
2 2

H p q t p m t t q
m t

ω= +                             (1) 

The propagator corresponds to this system can be written in the phase space as  

( )
( ) ( ) ( )( )d , ,

, , ; , , e
2π

t
t

i t pq H p q tD q t D p t
K p q t p q t

′′
′ −∫      ′′ ′′ ′′ ′ ′ ′ = ∫







                     (2) 

This propagator is not exactly evaluated for any arbitrary time dependent mass or frequency, because that will 
lead to non-linear differential equations. To deal with this system we will absorb the quadratic term of q, by 
taking the following transformation  

( )p P f t q= +                                       (3) 

where ( )f t  is an arbitrary function. The propagator (2) under this transformation will have the following form  

( )
( ) ( )( ) ( )

2 2
2, , ; , , e , , ; , ,
i f t q f t q

K p q t p q t K P q t P q t
′′ ′′ ′ ′−

′′ ′′ ′′ ′ ′ ′ ′′ ′′ ′′ ′ ′ ′= 
                     (4) 

where ( ), , ; , ,K P q t P q t′′ ′′ ′′ ′ ′ ′  is the propagator that has the following expression  

( )
( ) ( ) ( )( )d , , d

, , ; , , = e
2π

t
t

i t Pq H P q t tD q t D P t
K P q t P q t

′′
′ −∫      ′′ ′′ ′′ ′ ′ ′ ∫










                    (5) 

and the new Hamiltonian ( ), ,H P q t  is  

( ) ( )
( )
( ) ( ) ( ) ( ) ( ) ( )( )

2
2 2 21, ,

2 2
f tPH P q t Pq f t m t f t m t t q

m t m t
ω= + + + +

                (6) 

Since ( )f t  is an arbitrary function we will choose it such that the quadratic term in the new Hamiltonian dis-
appears  

( ) ( ) ( ) ( ) ( )2 2 0f t m t f t m t tω+ + =                              (7) 

Then ( ), , ; , ,K P q t P q t′′ ′′ ′′ ′ ′ ′  will be  

( )
( ) ( ) ( )

( )
( )

2
d d

2, , ; , , e
2π

t
t

f ti Pt Pq Pq t
m t m tD q t D P t

K P q t P q t
′′
′

 
 − − 
 

∫      ′′ ′′ ′′ ′ ′ ′ = ∫








                  (8) 

to deal with this propagator we will take the following canonical transformations  
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( )

( )

q g t Q

PP
g t

=

=
                                       (9) 

With the generating function ( ), ,F P q t   

( ) ( )
, , qPF P q t

g t
=                                    (10) 

Then (8) will be (see [22])  

( )
( ) ( )

( ) ( ) ( ) ( )
( )
( )

( )
( )

2

2d d
21, , ; , , e

2π

t
t

g t f ti Pt PQ PQ t
g t m tm t g tD Q t D P t

K P q t P q t
g t g t

′′
′

   − − − +     
∫     ′′ ′′ ′′ ′ ′ ′ =

′′ ′′ ∫










       (11) 

Since ( )g t  is an arbitrary function it will be chosen such that the second term in the Hamiltonian will be zero 
or  

( )
( )

( )
( )

0
g t f t
g t m t

− =


                                   (12) 

In the exponent and by integrating the first term by part, then following by the integration over q we get the fol-
lowing condition  

( )Pδ                                         (13) 

which implies that P  should be a constant. Then the propagator Equation (11) will take the form  

( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( )
( ) ( )

2

2

2
2

d
2

d

2

1, , ; , , e
2π

1 d e
2π

t
t

t
t

i PP Q P Q t
m t g t

i tP Q Q P
m t g t

D P t
K P q t P q t P

g t g t

P
g t g t

δ
′′
′

′′
′

 − ′′ ′′ ′ ′− +
 
 

 
 ′ ′′ ′ ′− −
 
 

∫

∫

  ′′ ′′ ′′ ′ ′ ′ =
′′ ′′

′
=

′′ ′′

∫

∫













           (14) 

Using the formula  
2

2
4πe d e
b

ax bx ax
a

+∞ − +

−∞
=∫                                  (15) 

one can finds that  

( )
( ) ( )

( ) ( )

( )

( ) ( )

2

2 2

1, , ; , , expd d22π
t t

t t

Q QiK P q t P q t t tig t g t
m t g t m t g t

′′ ′′

′ ′

′′ ′−
′′ ′′ ′′ ′ ′ ′ =

′′ ′ ∫ ∫






           (16) 

By inserting this into Equation (4) we will find the expression of the propagator related to Equation (1)  

( )
( ) ( )

( ) ( )

( ) ( )( ) ( )

( ) ( )

2 2
2

2

2 2

1, , ; , , e expd d22π

i f t q f t q

t t

t t

Q QiK P q t P q t t tig t g t
m t g t m t g t

′′ ′′ ′ ′−

′′ ′′

′ ′

′′ ′−
′′ ′′ ′′ ′ ′ ′ =

′′ ′ ∫ ∫








     (17) 

which is the desired result  
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3. The Models 
We would like to present a class of time dependent Harmonic oscillators with constant mass and varied frequen-
cies, and we will follow the way that given above to find the exact propagator of the related system. Let us 
present the following Hamiltonian  

( ) ( )
( )

2 21 1, ,
2 2

ak t
H p q t p q

b ak t
 

= +   − 



                            (18) 

where ( )k t  is an arbitrary function, a and b are constants. The systems have been chosen such that function 
( )( ) 2

b ak t
−

−  has a definite integration. To find the exact propagator related to this system we will chose the 
function ( )f t  Equation (3) to be  

( ) ( )
( )

ak t
f t

ak t b
−

=
− +



                                   (19) 

Then the propagator related to this system can has the following expression  

( )
( )

( )
( )

( ) ( ) ( ) ( )
( )

2
2 2 d d

22, , ; , , e e
2π

t
t

ak ti Pak t ak ti t Pq Pq tq q
ak t bak t b ak t b D q t D P t

K p q t p q t
′′
′

 − ′′ ′− −  − −′′ ′−    − +′′ ′− + − +   
∫      ′′ ′′ ′′ ′ ′ ′ = ∫



 









        (20) 

Then we will present the following canonical transformations  

( )( )

( )

q ak t b Q

PP
ak t b

= − +

=
− +

                                   (21) 

where P and q are the new momentum and position. This will lead to a new expression of the propagator Equa-
tion (20)  

( )
( )

( )
( )

( )

( )( ) ( )( )
( ) ( ) ( )( )

( )
( )

( )
( )

2 2
2

2

2 2

d
2

2

, , ; , ,

e d e
2π

e

t
t

ak t ak ti q q i q q tP Pak t b ak t b
ak t b ak t b ak t b

ak t ak ti q q
ak t b ak t b

K p q t p q t

P

ak t b ak t b

′′
′

 ′′ ′− −   ′′ ′ ′′ ′−     ′ ′− −′′ ′  − + − +     ′′ ′− + − +   − + 

 ′′ ′− −
′′ ′− ′′ ′− + − +

∫

′′ ′′ ′′ ′ ′ ′

′
=

′′ ′− + − +

=

∫

 





 





( )( ) ( )( )
( )( )

( ) ( )

( )( )

2

22

exp
d2d2π

tt
tt

q q
ak t b ak t bi

tti ak t b ak t b
ak t bak t b





′′′′

′′

 ′′ ′
−  ′′ ′− + − + 

′′ ′− + − +
− +− +

∫∫




      (22) 

From here it is clear why the condition ( )( ) 2
b ak t

−
−  has been chosen to be a definite integration.  

Examples 

• 
( )

0

02 cosh t
ωω

ω
=  

The related function for this frequency is ( ) ( )0tanh bk t t
a

ω= +  

• 
0

00
e 1

e 1

t

t

v
v

ω

ωω ω
−

=
+

 

The related function for this frequency is ( )
0

1
e t

bk t
avω−= +

+
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• 0
0e

tr
tω ω=  

The related function for this frequency is ( )
0

0 0e
0,

tr
t tk t BesselJ
r
ω

 
 

=  
 
 

  

• 0
0

r
t
t

ω ω
 

=  
 

 

This frequency has a more generalized form than that given in [19], where 4r = −  and the related function 

for this frequency is ( )
1

0 01 ,
2 2 1

r rt t bk t tBesselJ
r r a

ω − + 
= + + + 

. This example ( )( ) 2
b ak t

−
−  does not have a 

definite integration for all values of r.  
where r, v and t0 are constants with t0 has the dimension of time. 

4. Summery 
The problem of the time dependent harmonic oscillator has been presented in this work. By using canonical 
transformations we could reach Equation (11) with the condition Equation (2), then using delta functional inte-
gration that gave us the condition Equation (13) of the momentum conservation, which can be generalized to be 

( ) ( )( )P g t F tδ −  if the term ( )F t q  exists in the Hamiltonian Equation (1), which represents the forced har-
monic oscillator. In the last part some examples have been presented with their convenient transformations. The 
same problem with an inverse quadratic potential can be done by the same way given in this paper. 
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