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Abstract 
Markowitz Portfolio theory under-estimates the risk associated with the return of a portfolio in 
case of high dimensional data. El Karoui mathematically proved this in [1] and suggested im- 
proved estimators for unbiased estimation of this risk under specific model assumptions. Norm 
constrained portfolios have recently been studied to keep the effective dimension low. In this pa-
per we consider three sets of high dimensional data, the stock market prices for three countries, 
namely US, UK and India. We compare the Markowitz efficient frontier to those obtained by unbi-
asedness corrections and imposing norm-constraints in these real data scenarios. We also study 
the out-of-sample performance of the different procedures. We find that the 2-norm constrained 
portfolio has best overall performance. 
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1. Introduction 
The need for solutions to optimization problems in a high dimensional setting is increasing in the finance indus-
try with huge amount of data being generated every day. Many empirical studies indicate that minimum variance 
portfolios in general lead to a better out-of-sample performance than stock index portfolios [2] [3]. Markowitz 
Portfolio theory, the most popular method for portfolio optimization, develops a serious drawback namely risk 
underestimation. When implementing portfolio optimization according to [4], one needs to estimate the expected 
asset returns as well as the corresponding variances and covariances. El Karoui studied the Markowitz problem 
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as a solution to quadratic problems in [1] and [5] to establish a relationship between the two types of solution viz. 
one computed using population data and another estimated from sample data. This relationship is important and 
particularly relevant for high dimensional data where one suspects that the difference between the two may be 
considerable. 

There is a broad literature which addresses the question of how to reduce estimation risk in portfolio optimi-
zation. De Miguel et al. compare portfolio strategies which differ in the treatment of estimation risk in [6] and 
confirm that the considered strategies perform better than the traditional plug-in implementation of Markowitz 
optimization. Constrained minimum-variance portfolios have been frequently advocated in the literature (see 
[7]-[10]). 

The main aim of this paper is to compare the efficient frontier for real data based on corrected estimators of [5] 
and norm-constrained portfolios. One natural advantage of norm-constrained optimization is that it leads to 
sparse solutions, which many of the portfolio weights are zero. Such a portfolio is preferable in terms of transac-
tion costs. On the other hand, if Gaussian assumptions are valid, then the corrected frontier is indeed the most 
efficient. Another advantage is that one can obtain a confidence interval for the variance at each value of return. 

We carry out our analysis for three scenarios namely the Indian stock market, London Stock market and U.S 
stock market to facilitate a comparative study and to conclude about the uniformity of our results. We use con-
stituent stocks of NSE CNX 100, FTSE 100 and S&P 100 respectively for the three scenarios as our data base 
taking daily data from 1st Jan 2013 to 1st Jan 2014 time span. The daily returns data are publicly available from 
NSE India and yahoo finance. Thus we have at our disposal, 100 stocks for each country with 250 observations 
per stock. In other words, considering p to be the number of assets and n to be the number of observations per 
asset, we arrive at a large p, large n setting which in modern statistical parlance can be considered to be a high 
dimensional setting. 

The rest of the paper is organized as follows. Section 2 is committed to explaining the modern portfolio the-
ory. Section 3 deals with identifying the underestimation factors and the bias inherent in the plug in estimators 
and subsequently eliminating them from the empirical optimized portfolio, to arrive at the final error-free opti-
mized weights. Section 4 deals with norm constrained models. In section 5, we present the empirical results of 
comparing the efficient frontiers obtained from Markowitz portfolio to error-free efficient frontier and norm 
constrained portfolio efficient frontiers. We present our conclusions in section 6. 

2. Markowitz Portfolio Theory 
Markowitz portfolio theory [4] is a classic portfolio optimization problem in finance where investors choose to 
invest according to the following framework: one picks the assets in such a way that the portfolio guarantees a 
certain level of expected returns but minimizes the “risk” associated with it. In standard framework this risk is 
measured by the variance of the portfolio whereas the expectation by the mean of the portfolio. The set-up is as 
follows:  
 There is an opportunity to invest in p assets 1 2, , , pA A A . 
 The mean returns are represented by a p-dimensional vector 1 2, , , pµ µ µ µ=  . 
 The covariance matrix of the returns is denoted by Σ . 
 The aim is to create a portfolio with guaranteed mean return kµ  and minimize the risk as measured by the 

variance. 
 The problem is to find the weights or amount allocated to various assets of the portfolio. 

Note that Σ  is positive semi definite and symmetric. In ideal situation the means, variances and covariance 
are known and the problem is the following quadratic programming problem: 

T T TMin subject to 1 1 andp kw w w w µ µΣ = =                        (1) 

Here 1p is a p-dimensional vector with one in every entry. 
In practice, Σ and µ are unknown. The most common procedure known as plug-in implementation replaces 

them with their sample estimators as follows to obtain the optimal weights. 

( ) ( )TT T1 1ˆ ˆ ˆ ˆ1 1 and 1
1 n n nX X X

n n
µ µ µΣ = − − =

−
                       (2) 

With ( )1, , nX X X= 
 is a p × n matrix of the returns of the assets. It is assumed that the columns of X are 
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independent multivariate Normal vectors 
If  Σ̂  is invertible with optw  is representing the solution of the above quadratic problem then, 

1 1 T 1ˆ ˆ ˆ ˆ ˆˆ ˆandoptw VM U M V V− − −= Σ = Σ                              (3) 

where V̂  a p × 2 matrix is whose first column are all unity and second column are the estimated means. Also 
U is the 2 dimensional vector with first entry being 1 and the second entry being kµ . 

The curve T Σopt optw w  seen as a function of kµ  is called the efficient frontier. 

3. Corrected Frontier Using Gaussian Assumption 
In the Markowitz setting, let us assume that the returns have normal distribution. We shall assume n and p both 
go to infinity and each Xi ~ Np (µ, Σ) independently and identically. The parameters of the distribution are esti-
mated using sample estimators defined in (2). 

We have from Corollary 3.3 of [1], 

( ) ( )
2T 1

T T T 1 2

T 1

ˆ 1
1 1

k
emp emp theo theo P theo theo

k k

U M ep k pw w w w w w n
pn n e M e
n

ο
−

−

−

 
 −  Σ = − Σ − + Σ −     +    

V           (4) 

where T 1ˆ ˆM V V−= Σ  is the population quantity, k being the number of constraints in the quadratic problem we 
are solving which in our case will be equal to 2, empw  represents the weights obtained from the empirical data  
at hand while theow  is its population counterpart. ie  denotes the canonical basis vectors in k . The corollary 
shows that the effects of both covariance and mean estimation are to underestimate the risk and the empirical 
frontier is asymptotically deterministic. The cost of not knowing the covariance matrix and estimating it is captured  

in the factor 1
1

p k
n
− − − 

. In other words using plug in procedures leads to over optimistic conclusions in this 

situation. 

Also when ( )0,1p
n

ρ→ ∈  and ( )1 2p n
n

α ο −= +  and we denote 
( )2T 1

T 11

k
n

k k

U M e
p e M e
n

δ
−

−
=
 + 
 

 the impact of the 

estimation of µ by µ̂  will be risk underestimation by the amount nαδ . Hence rearranging (4) and subtracting 
the bias associated with mean and covariance estimation, from our variances obtained from sample data we get 
the error-free actual quantities of interest. In other words, 

( )2T 1T
T

T 1

ˆ

1 1
1

kemp emp
theo theo

k k

U M ew w pw w
p k pn e M e
n n

−

−

Σ
Σ = +

−   − +   −   

                       (5) 

The estimator theow  for proposed in [1] is a modified version of the optimal solution in equation (3). The 
modification is to replace M by Tˆ

k kM M ke e= − . 
It is also shown in Theorem 5.1 of [1] that the risk is indeed underestimated by the empirical frontier. Spe-

cifically, 

emp theof f≤  

where empf  and theof  are respectively the empirical frontier with Gaussian distributed data and the theoretical 
efficient frontier. 

We use the 95% confidence intervals for the variance of a single Normal variable with unknown mean µ and 
standard deviation σ given by: 

( ) ( )2 2

2 2
1, 2 1,1 2

1 1
,

n n

n s n s

α αχ χ− − −

 − −
  
 
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where 2s  is the sample variance and ( ) 2 21n s σ−  follows a 2χ  distribution with 1n −  degrees of free-
dom, the confidence coefficient being equal to 0.05. 

4. Constraining the Portfolio 
The short sale constrained minimum-variance portfolio, MINCw  is introduced in [7]. This is the solution to 
problem (1) with the additional constraint that the portfolio weights be nonnegative. 

4.1. 1-Norm Constrained Portfolio 
The 1-norm-constrained portfolio, 1NCw , is the solution to the traditional minimum-variance portfolio problem 
(1) subject to the additional constraint that the L1-norm of the portfolio-weight vector be smaller than or equal to 
a certain threshold c; that is, 

1
1

p

i
i

w w c
=

= ≤∑                                  (6) 

1-norm constrained portfolio problem can be summarized as 

T
1

T

1 1,
min
pw w c

w w
= ≤

Σ                                   (7) 

Markowitz risk minimization problem can be recast as a regression problem. 

( ) ( )2T Tvar min
b

w R E w R b = −  
                           (8) 

By using the fact that the sum of total weights is one, we have 

( ) ( )2T
1 1 1 1var min p pb

w R E Y Z Z bω ω − −
 = − − − −  

                     (9) 

where R = Return vector,  pY R=  and j p jZ R R= −  where ( )1, , 1j p= −
. 

Finding the optimal weight w is the same as finding the regression coefficient ( )T*
1 2 1, , , pw ω ω ω −=  . The 

gross-exposure constraint 
1w c≤  can now be expressed as ( )* T *

1
1 1 sayw c w δ≤ − − = . Thus the problem 

(7) is similar to 

( )
*

1

T*

,
min

b w
E Y w Z b

δ≤

 − −  
                              (10) 

where ( )T
1 1, , pZ Z Z −=   but they are not equivalent. The latter depends on choice of Y, while the former  

does not. Efron et al. developed an efficient algorithm in [11] by using the least-angle regression (LARS), called 
the LARS-LASSO algorithm, to efficiently find the whole solution path ( )1NCw c , for all 0c ≥ , to (10). The 
number of non-vanishing weights varies as c ranges from 0 to ∞. It recruits successively more assets and gradu-
ally all assets. The algorithm works iteratively as follows: 

( ) ( )

( )

1
* *

1
1

1
*

1
1

1 where 1, 2, , 1

1

i

p

p

NC i j i
j

p

NC j p
j

w w w w i p

w w w

−

=

−

=

 
= + − × ∈ − 

 
 

= − × 
 

∑

∑

 

                  (11) 

Here our objective is to minimize the out-of-sample portfolio variance. To choose c we use leave-one-out- 
cross validation (see [12]).  

4.2. 2-Norm Constrained Portfolio 
The 2-norm-constrained portfolio, 2NCw , is the solution to the traditional minimum-variance portfolio problem 
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(1) subject to the additional constraint that the L2-norm of the portfolio-weight vector is smaller than or equal to 
a certain threshold c; that is, 

2
2

1

1 2p

i
i

w w c
=

 
= ≤ 
 
∑                                   (12) 

2-norm constrained portfolio problem can be summarized as 

T
2

T

1 1,
min
pw w c

w w
= ≤

Σ                                     (13) 

Similar to the 1-norm constrained portfolio finding the optimal weight w in this case is the same as finding the 
regression coefficient ( )T*

1 2 1, , , pw ω ω ω −=  . 

The gross-exposure constraint 
2w c≤  can now be expressed as ( )( ) ( )

1
2 2* 2 T *

2
1 1 sayw c w δ≤ − − = . 

Thus the problem (13) is similar to 

( )
*

2

T*

,
min

b w
E Y w Z b

δ≤

 − −  
                              (14) 

where ( )T
1 1, , pZ Z Z −=  . But they are not equivalent. The latter depends on the choice of asset Y, while the 

former does not. 
The whole solution pat ( )2NCw c  to (14), for all c ≥ 0, can be efficiently obtained by the regularization algo-

rithm of Ridge regression (see [13]). The number of non-vanishing weights varies as c ranges from 0 to ∞. It re-
cruits successively more assets and gradually all assets. The algorithm works iteratively as follows: 

( ) ( )

( )

1
* *

2
1

1
*

2
1

1 where 1, 2, , 1

1

i

p

p

NC i j i
j

p

NC j p
j

w w w w i p

w w w

−

=

−

=

 
= + − × ∈ − 

 
 

= − × 
 

∑

∑

 

                 (15) 

To choose c we use cross validation, as in the case of 1-norm constrained portfolio. 

5. Practical Results 
Below we provide an overview of our results of Markowitz efficient frontier, corrected frontier using Gaussian 
assumption, 1-norm and 2-norm constrained efficient frontiers for the 3 countries. 

In Figures 1-3, we present the efficient frontiers using the different methods. The dashed lines represent the 
empirical 95% confidence intervals computed for a fixed expected return. The x-axis is variance and y-axis is  

 

 
Figure 1. Efficient frontier of US data.                                     
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Figure 2. Efficient frontier of UK data.                                          
 

 
Figure 3. Efficient frontier of Indian data.                                       

 
expected returns. We have considered the same set of µ’s and Σ’s, for each individual country to keep the results 
comparable. It can be concluded from the relative positions of the corrected and uncorrected efficient frontiers 
that the risk is indeed underestimated in case of high dimensional data. But comparing to 2-norm and 1-norm 
constrained portfolios as they outperform the corrected frontiers. The constrained portfolios are, in general, less 
efficient than the corrected portfolio, in the sense that they have higher variance for each fixed level of return. 
Of course constrained portfolios have their own advantages due to sparsity that might out-weigh the loss in effi-
ciency. For the 1-norm and 2-norm portfolios, the choice of the asset Y is important. We have chosen Y to be 
the no short sale portfolio in all our computations. For each country, the 2-norm portfolio is most efficient 
among the constrained portfolios and the 1-norm is not monotone. 

The amount of shrinkage or regularization is directly related to the number of stocks included in the optimal 
portfolio. In Figure 4 we present this for the 1-norm constrained portfolio. As expected, this is an increasing 
function of c, the bound on the L1 norm. For almost all values of c, the number of stocks in the portfolio is high-
est for the Indian market and lowest for the US market. Results for the L2norm are similar. 

For out of sample performance we first created portfolios for all the three datasets using the return data for the 
first 230 trading days. These portfolios are then held for one month and rebalanced at the end next month. The 
summary statistics of these portfolios are presented for the three datasets as box-plots in Figures 5-7. 1-norm 
constrained portfolios were created for c = 2 and c = 3 for all the three nations. 2-norm constrained portfolios 
were created for the optimal c chosen by cross validation, as mentioned in Section 4. This value equals 1.2544, 
1.14 and 1.0739 respectively for US, UK and Indian data. 

The out-of-sample performance is very different for the three markets. For the US data, the 2-normcon-  
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Figure 4. Number of stocks with respect to c with Y = “No short sale”.                                     

 

 
Figure 5. Out of sample performance of different portfolios for US data.                                    

 

 
Figure 6. Out of sample performance of different portfolios for UK data.                                  

 

 
Figure 7. Out of sample performance of different portfolios for Indian data.                                 
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strained, corrected and no-short-sale portfolios have close to zero average returns while the other methods yield 
negative average returns. The variances are almost same for all methods except the Markowitz, which has a 
lower variance. For UK data, the 1-norm with c = 3 and corrected portfolios have significantly negative average 
return while others have small positive or zero average returns. The variances are almost all the same. For the 
Indian data, all portfolios except the Markowitz have high positive average returns. In particular, the corrected 
portfolio has very high average returns, but the variance is also quite high. Overall, from the out-of-sample re-
sults, the 2-norm constrained portfolio has higher average and comparable variance to the Markowitz portfolio 
in all the markets. 

6. Conclusion  
In this paper we study the effect of high dimension on the efficient frontier with real data on three markets. In 
particular we study how the recently suggested methods of corrected frontier based on normality assumptions 
and norm-constrained methods perform relative to Markowitz portfolio optimization. We observe that the 
Markowitz solution indeed leads to biased estimates of risk that can be improved with the corrected estimates. 
The norm-constrained methods are comparable and need less model assumptions. Alternative methods of im-
proving the covariance matrix estimation are Bayesian shrinkage approach [8] or random matrix theory and 
principal component analysis [14]. We have ignored the time component of the data and treated the observations 
as i.i.d. A further improvement will be to take into account this aspect and model the high dimensional time se-
ries as in [15]. 
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