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Abstract 
 
A vertex subversion strategy of a graph  = ,G V E  is a set of vertices  S V G  whose closed neighbor- 

hood is deleted from . The survival subgraph is denoted by G G S . We call  a cut-strategy of  if S G

G S  is disconnected, or is a clique, or is  . The vertex-neighbor-scattering number of  is defined to be G

    
( )

= max
S V G

VNS G G S


S  , where  is any cut-strategy of , and S G  G G  is the number of the com- 

ponents of G S . It has been proved that the computing problem of this parameter is complete, so we 
discuss the properties of vertex-neighbor-scattering number of trees in this paper. 

NP 
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1. Introduction 
 
In [1] we introduced a new graph parameter called 
“vertex-neighbor-scattering number.” We motivate the 
use of this parameter by viewing a graph as a model of a 
spy network whose vertices represent agents and whose 
edges represent lines of communication. If a spy is 
discovered, the espionage agency can no longer trust any 
of the spies with whom he was in direct communication. 
It has been shown that the parameter can measure the 
“neighbor” stability of graphs [1]. As many graphic 
parameters, the computing problem of this parameter is 

complete [2]. So we discuss the properties of the 
vertex-neighbor-scattering number of trees in this paper. 
Our definitions follow [3]. 

NP 

Let  be a graph and u a vertex in G . 
 and v are  is the 

open neighborhood of u , and 

= ,G V E
 = v V G

The vertex-neighbor-scattering number (VN ) of a 
connected noncomplete graph  is defined as  

S
G

    
( )

= max
S V G

VNS G G S S


 , where  is any cut-  S

strategy of , and G  G S  is the number of the com- 

ponents of G S . We call a  *S V G VNS  set of G 

if    *VNS G G S S *=  . In particular, we define 

the vertex-neighbor-scattering number of a complete 
graph nK  to be 1 . 

A comet  is a graph obtained by identifying one 

end of a path 
,t rC

 2tP   with the center of a star 

 1, 2rS r 

, .t rC
. The center of  is called the center of 

 
1,rS


,  |N u u v u adjacent

     = N u 
u

N u u  is 
the closed neighborhood of . A vertex  in G  is 
said to be  subverted if its closed neighborhood 

u
 N u  

is deleted from . A set of vertices G  GS V
G

 is 
called a vertex subversion strategy of  if each of the 
vertices in  has been subverted from G . By S G S  
we denote the survival subgraph left after each vertex of 

 has been subverted from .  is called a cut- 
strategy of G  if the survival subgraph 
S G S

G S  is dis- 
connected, or is a clique, or is  . 

The following lemmata will be used in the next 
section.  

Theorem 1: [1] Let  be a path with order nP

 3 .n   Then 

  0, if = 3,4
=

1, if 5n

n
VNS P

n


 

  

Theorem 2: [1] Let  1, 2rS r   be a star. Then 

 1, = 2rVNS S r .   

Theorem 3: [1] Let  be a comet, both  and  
are at least  Then 

,t rC t r
2.
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.

 ,

1, if = 2,3
=

, if 4t r

r t
VNS C

r t


 

  

2. Vertex-Neighbor-Scattering Number of 
Trees 

 
Theorem 4: Let  be a tree with order  Then 

  

T

1 3

 5 .n 

 VNS T n 

Proof. 1) For any vertex ,  v V T   2N v  , so 

  2T S n   . On the other hand,  is connected 

and with order , then for its any VN

T

5n  S  set , S

1S   and   2T S n   . Thus we have  

    
( )

2 1 3max
S V T

VNS T T S S n n


        

2) We distinguish two cases to prove .    1VNS T 

Case 1: . Since , there must exist a 

vertex  such that 

nT P

 T

5n 

v V    = 2T v . So  

    
    

( )
max

2 1 1

S V T
VNS T T S S

T v v






 

    
 

Case 2: . Then there exist at least one vertex in 

, say , such that . Let  be any vertex 

adjacent to . Then 

nT P

v

T v   3d v 

   
u

2T u  , this means  

       2 | |= 2 1 = 1VNS T T u u     

Combing Case 1 and Case 2, we have   1.VNS T   

Thus the proof is completed.                      
Remark 1: When , the trees with order  

are  or , respectively. So 

= 2,3n n

= 2,3n 3P

   = .nVNS T VNS P

1,3S

 When , there are two diffe- 

rent trees with order  in isomorphism sense, i.e.,  

and . By Theorem 1 and Theorem 2, 

= 4n

n 4P

 4VNS P = 0 , 

  1,3 = 1.VNS S

Remark 2: The lower and upper bound in Theorem 4 
is the best possible, it can be shown by paths and stars, 
respectively. 

Theorem 5: If  is any integer, where , 
then there is a tree  of order  such that 

l
T

1 3l n  
n

  =VNS T l .  

Proof. If , then . By Theorem 3,  is a 

tree of order  satisfying , the conclu- 

sion holds. 

= 4n

4

= 1l 2,2C

 2,2 = 1VNS C

Now we assume  and distinguish two cases. 5n 

Case 1:  or = 1l 3n  . If , by Theorem 1,  

is a tree of order  satisfying ; if 

3n  nP

n   = 1nVNS P

=l n 3 , by Theorem 2, S  is a tree of order  

satisfying 

1, 1n n

 1 = n1,nS  3VNS  , the conclusion holds. 

Case 2: 1 < < 3l n  . Then . By Theorem 3, 4n l 

,n l lC   is a tree satisfying , the con- 

clusion holds.                                 

 ,n l lVNS C   = l

 
Theorem 6: 1) When ,  is the unique tree 

 with order  such that . 

5n 

VNS

1, 1nS 

 TT n = 3n 

2) When ,  is the unique tree  with order 

 such that 

7n  nP T

n  T = n 3VNS  .  

Proof. 1) Let T  be a tree with order  such that n
  =VNS T n 3 . Assume  is an VN set of , S S  T

then . Otherwise, if T 2 , then   3V T S nS   , 

so   3T S n   and     < 3VNS T T S S n   , 

a contradiction. 
Let  v  be an VNS  set of . Then T

   = 1 =T S VNS T n   2  

But    2T T v n  , so  and   = 1d v T S  is 

2n   isolated vertices. Clearly, the star graph, 1, 1nS  , is 

the unique tree in this case. 
2) If  and  is not isomorphic to , then 7n  T nP
 T 3  . We distinguish two cases. 
Case 1:   = 3T . 

Assume  u V T  and   = 3d u , denote 

   = , ,N u x y z .  

Case 1.1: If there are at least two vertices in  N u  

such that their degree are . Then 3    4T u  . Thus 

  3VNS T  . 

Case 1.2: If there is unique vertex, say x , in  N u  

such that   = 3d x . Then . We con- 

sider the following two possibilities. 

  2,d y d z  2

Case 1.2.1: If both  d y  and  are . Then  d z 2

    3, 2T u VNS T   . 

Case 1.2.2: If both  d y  and  are 1 . Assume  d z

     = ,N x u s t . Since , there is at least one 

vertex in 

7n

 ,s t , say , such that . Thus s  d s  2

   3T u  , and   2VNS T  . 

Case 1.3: The degree of ,x y  and  all are at most 

. We discuss three possibilities. 

z

2
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Case 1.3.1: If there is unique vertex, say , such that 

. Since , clearly, 

z

  = 2d z 7n     3

 

T u  and 

  2VNS T  . 

Case 1.3.2: If there are exact two vertices, say , 

such that . Since , we have 

,  y z

   = 2, = 2d y d z 7n 

   3  
Figure 1. The trees of order 6 such that VNS = 1. 

 T y  or   3T z  . So .  VNS T 2
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