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Abstract

In this study, we first give the definitions of (s,t)-Jacobsthal and (s,t)-Jacobsthal Lucas sequence. By
using these formulas we define (s,t)-Jacobsthal and (s,f)-Jacobsthal Lucas matrix sequences. After
that we establish some sum formulas for these matrix sequences.
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1. Introduction

There are so many studies in the literature that are concern about special number sequences such as Fibonacci,
Lucas, Pell, Jacobsthal, and Padovan in [1] [2]. They are widely used in many research areas as Engineering,
Architecture, Nature and Art in [3]-[6]. For example, microcontrollers (and other computers) use conditional
instructions to change the flow of execution of a program. In addition to branch instructions, some micro-
controllers use skip instructions which conditionally bypass the next instruction. This winds up being useful for
one case out of the four possibilities on 2 bits, 3 cases on 3 bits, 5 cases on 4 bits, 21 on 6 bits, 43 on 7 fits, 85
on 8 fits, ‘-, which are exactly the Jacosthal numbers [7]. Jacobsthal and Jacobsthal Lucas numbers are given by
the recurrence relations j,=j.,+2j,,, jb=0, j=1and c,=c,,+2C, ,,C,=2,¢ =1 for n>2, res-
pectively in [7]-[9]. Generalization of number sequences is studied in many articles. For example the gener-
alization of Jacobsthal sequences is defined in [10]. We can see any properties of these numbers in [7]-[9] [11]
[12]. Some properties of these sequences were deduced directly from elementary matrix algebra in [13] [14]. By
using matrix algebra H. Civciv and R. Turkmen defined (s,t) Fibonacci and (s,t) Lucas matrix sequences
in [15] [16]. Similarly K. Uslu and S. Uygun defined (s,t) Jacosthal and (s,t) Jacosthal Lucas matrix se-
quences and by using them found some properties of Jacobsthal numbers in [17].

Definition 1. The (s,t)-Jacobsthal sequence {]n (s,t)}neN and (s,t)-Jacobsthal Lucas sequence {én (s,t)}

neN
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are defined by the recurrence relations
s (8:8) =, (5.0)+ 26,4 (5), To(5:8)=0,(s:1)=1 )
Cri(sit)=sC (s,t)+2t€ ;(s,t), € (st)=2¢E(s,t)=s )

respectively, where n>1, s>0,t#0 and s*+8t>0 [10].
Some basic properties of these sequences are given in the following:

&, (s,t) =5, (s,t) +4tj, 4 (s,t),

n n
2 :rl =

A n n
n ' Cn:rl +r2’
n-n
S++/s? +8t s—+/s? +8t
n= 2 » = 2 )

2=sh+2t, 7 =sr,+2t, -r,==2t, [ +I, =S.

In the following definition, (s,t)-Jacosthal {J,(s,t)}  and (s;t)-Jacosthal Lucas {C,(s,t)} _ matrix se-
quences are defined by carrying to matrix theory (s,t)- -Jacosthal and (s,t)-Jacosthal Lucas sequences.

Definition 2. The (s,t)-Jacobsthal matrix sequence {Jn (s t)}neN and (s,t)-Jacobsthal Lucas matrix sequence
{C.(s,t)}  are defined by the recurrence relations

10 s 2
am@n=w4wwﬂ%dw%%=ﬁ JJFL J ©

s 4 s +4t 2s
C,.(st)=sC (st)+2tC _(s1),C, = ,C, = 4
N R M CE M @
respectively, where n>1, s>0,t=0 and s*+8t>0. A R
Throughout this paper, for convenience we will use the symbol j, instead of j, (s,t) and the symbol ¢,
instead of ¢, (s,t). Similarly we will use the symbol J, instead of J (s,t) and C, instead of C_(s,t).
Proposmon 3. Letus consider s>0,t#0 and s? +8t >0. The foIIowmg propertles are hold:

i i ¢ 2¢
1) J, = 12*1 23” and C =| " " |
t, 2,4 tc, 2t

‘]n+m:Jn‘]m1
J, =13/,
2)For mneZ", J,C,,=C,.Jm
C,=sJ,+41, ,,
C..=CJ..
3)For neZ", ‘]n:£J1_r2J°Jrln—(Jl_rlJojrzn-
h-n n-nrn
4)For neZ’, Cnﬂ:(ﬂ)qﬂ_{cz_cﬂ]g'
L= h—-n

For their proofs you can look at the Ref. [17].

2. The Generating Functions of Jacobsthal and Jacobsthal-Lucas Matrix
Sequences

Theorem 4. For neZ", xeR, we have the generating function of Jacobsthal matrix sequence in the

following:
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y v 1 2 _
Y Ix*= - _Zt)[xJn+l+2tJn]+(X2_SX_Zt)[xJ1+(x sx)Jo] (5)

k=:

JiN
>
>
—_
>
N
w
x

Proof. By using the expansion of geometric series and proposition 3, we can write

nJ 1 |(Jd,-r,d J,-rd
Z_kzz_k 1~ "2Y% rlk_ 1~ 1Yo rzk
k=1 X k=1 X n-r n-r
k
(g (s
rl rl_rZ k=1 \_X
n+l n+l
() a2
:[Jl_rz o) X _ X
G ()
X X
i \]1 _ erO Xn+l _ ri-nJrZI. ~ \]1 _ r1JO Xn+1 _ r2n+1
"I\ -, X— nL-r, X—T,
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x"(xz—sx—Zt)H -, ( ! )( 2)
_(Jl_rlx]oj(xml r2n+1)(x_rl):|
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1 1
. B + 2t [+ ————| xJ, +(X* =5)J
x”(xz—sx—Zt)[ m I+ (xz—sx—Zt)[ ! ( ) O}
|
/o2
Corollary 5. Let xaR,x>w. Then for (s,t)-Jacobsthal sequence we have
2 a x> +sXx—$
XX =
é ot (x* —sx—2t)
and
KNS X
X
;Jk (x —sx—Zt)
[o2
Corollary 6. Let XER,X>¥. Then we have

Zj‘]kx ;)[XJl-F(XZ—S)JO}.

k=1 (x —Ssx—2t
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Corollary 7. Let neZ",xeR. Then we have we have the generating function of Jacobsthal-Lucas matrix
sequence in the following:

: 1 1
Cox¥=—————[xC,,+2C, ]+ ———<| XC, +(x* =s)C, |. 6

é o x"(xz—sx—Zt)[ ? ) (xz—sx—Zt)[ ? ( ) l] ©
Proof. It can be seen easily by using theorem 4 and the property of C ., =C,J,.

|
[o2
Corollary 8. Let xeR, x> % Then for (s,t)-Jacobsthal Lucas matrix sequence we have

d - 1
kZ:;CMx X :m[xcz +(x2 —s)Cl]

[o2
Corollary 9. Let xeR, x> % Then for (s,t)-Jacobsthal Lucas sequence we have

2. SPX+ X2 +4xt—s?
ZCKHX = 2
k=1 X°—sx—2t
and

2. 2x% +sx—2st
Sext ="
Py X" —sx—2t

Theorem 10. For |r1kr2"kx| <1, letbe risodd positive integer and X = [ﬂ] Y = [‘Jl — JOG]_

n-n -,
Then we have
i I :ril (_1)k (rj o X 2k _yr-2k o (—2t)k (Y r—Zkrlr—Zk _X r—2kr2r—2k ) X
i=0 ! i=0 k 1— (—Zt)k 6r72k X + (_2t)r X2 ,

and for r is even positive integer

y i 1|:( 1)k (r] y kYk X r-2k LY r-2k (—Zt)k (Y r-2k I,.1r—2k +X r-2k r2r—Zk ) X:I
i X = -

i=0 i=0 k 1—(—2t)k (A)r_ZkX+(—2t)r x?
r/2
YAt
r/2) 1-(-2t)" x

Proof. By using proposition 3 (iv), the nth element of (s,t)-Jacobsthal matrix sequence can be written in the
following:

Mm«

J, = X" =Yr,.
From this equality we have

=§[Q](x>k (0 S (e )
()= 31 o0 (0 ke

If r is an odd positive integer, then we have
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k r-k
N ) () (X)” ()
Skl -6 % 1-57rx
7 ‘ r Xr kYk XkYr k
=3 (-1
é( ) k (1 rl“‘rzkx 1-rfr) ™ x J

r erkYk _ Xkerk (XkY r—k I'fkrzk _ erkYkrikrzr k)

k=0 k 1— (rlkrzr k +r1r kr2k>x+r1rr2r 2
rzzl\‘( 1)k r\ X r—kYk - X kY r-k (—2t)k (XkY rfkrlr—Zk X' kYk r- Zk)
—k:O k 1— ( Zt) ( r- 2k + rlr—zk)xr +(—2t) X
~ rzzl*‘(_l)k XkYk (rj X r—2k _Yr—2k +(—2t)k (Y rfzkrlr—Zk - X r—ZkI,.zr—Zk)X
k=0 k 1-(=2t) & _px+(=2t) %2

If r is an even positive integer, then we have

o5 AL ST G

1-r*r) ( zt)’/z

r-1
S k(M) XY Xy ()" ()"

= —1 T A2
k;( ) k)\1-r" krkarl—r"rr kx}r(r/Zj 1-(-2t)" x

:FZZE(_l)k Xr_kYk+kar_k_(kark rkrk+xr kYk k r k)X ( r j(x)l’/Z( Y)"/Z
AP O P PR /2] 1 (20
r-1

:ZT:(_l)k . erkYk+XkYr7k—(—2t)k( kYrk r2k+xr kYk k er)X +( r j(x)l’/Z( Y)I'/Z
S R I 2) 1 (2

— r—2k r—2k k r-2k .r-2k r-2k .r-2k r/2 r/2
:i(_l)kxwk@[x FYIE () (YR Xy )X}r[rj(x) ()"

1-(-20) €, o+t r/2) 1 (2" x

3. Partial Sums of Jacobsthal and Jacobsthal-Lucas Matrix Sequences
Theorem 11. The partial sum of (s,t)-Jacobsthal matrix sequence for s+ 2t #1 is given in the following
Zn: jn+2 —S+ 2t]\n+1 -2t 2( jn+1 + 2t]n _1)
J. = R R R R .
G (G2 -1) 2t(], + 26, 1)
Proof. Let S, = Z J.. By multiplying J, two sides of the equality, we get

k=1
S di=3,+J;++J 4
By adding J, two sides of the equality, we get
S di+J =3+, +3;+ 4+
S0, -5, =3,
Sy (J—35)=Jpa—Js.

n+l
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The inverse of J, —J, isavailable for det(J, —J,)=1-s—2t=0. Then we get

1
Sn :(‘]n+l_‘]1)(Jl _‘]0) )
. : L Joo =S 2],.-2 s-1 2
By using following equalities J,Hl—Jl:P”+2 5 S } 31—302[ ¢ J and

tjn+1_t 2tjn
_ 1 1 2
J-J3) = , Wwe get
(3:= %) s+2t—1[t 1—5} J
S - 1 j\nJrZ_S 2]\n+£_2 1 2
"ost2t-1) tj,, -t 24, [t 1-s

1 in+2 + 2tj:n+l -s-2t 2( in+1 + ztjn —1)
Cs+2t-1 t(]ml +21), _1) gt(jn 26, _1) :

|
Corollary 12. The partial sums of (s,t)-Jacobsthal sequence for s+2t =1 are given in the following:
LS jn+2 —S+ 2tjn+1 -2t
Z Jk+1 =
pac s+2t-1
and
Z": - B 426, -1
= sy2t-1
Proof. It is proved by the equality of matrix sequences and from Theorem 11. [

Theorem 13. The partial sum of (s,t)-Jacobsthal Lucas matrix sequence for s+2t =1 is given in the follow-
n
ing > Ce,= (aij )
k=1

=T _1( Jooa + 2oy + 2t + 48] — 7 (s+2t) - 2t (35 + 4t))
a, = m( Jois + 20y, + 2t + 417 ], —5° — 4t - 2st)

a, = ﬁ( Jois + 2, + 2t + 48], — 25t —s* — 4t)

B = 2t_1( oo + 20,0 + 20, +48 ], —s—4t).

Proof. By using C,,, =C,J, and Theorem 11 we get

n n
chu = ch‘]k = Ck:flz‘]k

n
k=1 k=1 =

1 s2+4t 2s jn+2 + 2tin+1 -s-2t 2( in+1 + 2tjn _1)
Cs+2t-1] st 4t

t(fo+2t,-1)  2t(3,+24,,-1)|

If the product of matrices is made the desired result is found.
Corollary 14. The partial sums of (s,t)-Jacobsthal Lucas sequence for s+2t=1 are given in the following:

n
2.6

S TS ot-1

( ]n+2 + 2t]n+1 + Zt]n +4t? ]n—l —S- 4t)
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and
Zn:c =;(] + 2], 42, +4t] —s? —4t—2$t)
— k+1 S+ 2t —l n+3 n+2 n+l n .
Proof. It is proved by the equality of matrix sequences and from Theorem 11. [

n
Theorem 15. Let s+2t=1, and s—2t=—1 Thenfor S, => J, =(a;) weget
k=1

1 X - ,
) -4t 4% —s? -2t
% (5+2t—1)(s_2t+1)(12n+3 Jona S )
2 ? ,a
- —4t%, —
a;, (S+2t_l)(s_2t+1)(12n+2 Jon S)

t < 2’.‘
= — 4t _
%t (s+2t—1)(s—2t+1)(12"*2 Jar S)

2t . "
- — 4825, , —1+2t).
3-22 (S+2t—l)(5—2t+1)(12n+1 J2n—1 + )

Proof. By multiplying J, two sides of the equality S,,, we get
Sondy = Jy + g+ + o

By adding J, two sides of the equality, we get

Jan (‘]2 - ‘]o) =Jonz =92

-1

Spn = (‘]2n+2 - Jz)(Jz - Jo)
j2n+3 -’ -2t 2( j2n+2 - 5)
t( ]2n+2 - S) 2t ( jZH+1 _1)

242t-1 2
JZ_JO{S + s

‘J2n+2 - ‘]2 =

st 2t-1

(- ,) = 1 1-2t 2
2700 (s+2t-1)(s-2t+1)| st 1-2t-s’

s - 1 Jonis =57 =2t 2(i2n+2_5) 1-2t 2s
2 (s+2t-1)(s-2t+1) (oo =5)  2t(Tpnn-1) { st 1-2t_32}'
|

Corollary 16. The odd and even elements sums of (s,t)-Jacobsthal sequence for s+2t=#1 and s—2t=-1
are given in the following:

n 2
2 Joca = (s+2t—1)(s—2t +1)(Jz”+3
n

— 4t I, + 40 57 - 21)

N 1
ZJzk =

Fones = 2ty .o + 25,01 —5).
k=1 (5+2t—l)(s-2t+1)<12n+2 Jonio T 2SUsni1 S)

In the following theorem we will show the partial sum of Jacobsthal Lucas matrix sequence of the elements of

power of n.
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Theorem 17. For (s,t)-Jacobsthal matrix sequence the equality is hold.

i=0 k=0

AL

Proof. By using the equality of X = (MJY = (mj we can write J, = Xa" —Y " By using

) a-p o -
S
S vy
Sl gl
-3 dJoor e ety
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