

Some Sum Formulas of (s,t)-Jacobsthal and (s,t)-Jacobsthal Lucas Matrix Sequences

Şükran Uygun

Department of Mathematics, Science and Art Faculty, Gaziantep University, Gaziantep, Turkey Email: suygun@gantep.edu.tr

Received 20 November 2015; accepted 22 January 2016; published 25 January 2016

Copyright © 2016 by author and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

Open Access

Abstract

In this study, we first give the definitions of (s,t)-Jacobsthal and (s,t)-Jacobsthal Lucas sequence. By using these formulas we define (s,t)-Jacobsthal and (s,t)-Jacobsthal Lucas matrix sequences. After that we establish some sum formulas for these matrix sequences.

Keywords

Jacobsthal Numbers, Jacobsthal Lucas Numbers, Matrix Sequences

1. Introduction

There are so many studies in the literature that are concern about special number sequences such as Fibonacci, Lucas, Pell, Jacobsthal, and Padovan in [1] [2]. They are widely used in many research areas as Engineering, Architecture, Nature and Art in [3]-[6]. For example, microcontrollers (and other computers) use conditional instructions to change the flow of execution of a program. In addition to branch instructions, some microcontrollers use skip instructions which conditionally bypass the next instruction. This winds up being useful for one case out of the four possibilities on 2 bits, 3 cases on 3 bits, 5 cases on 4 bits, 21 on 6 bits, 43 on 7 fits, 85 on 8 fits, ..., which are exactly the Jacosthal numbers [7]. Jacobsthal and Jacobsthal Lucas numbers are given by the recurrence relations $j_n = j_{n-1} + 2j_{n-2}$, $j_0 = 0$, $j_1 = 1$ and $c_n = c_{n-1} + 2c_{n-2}$, $c_0 = 2$, $c_1 = 1$ for $n \ge 2$, respectively in [7]-[9]. Generalization of number sequences is studied in many articles. For example the generalization of Jacobsthal sequences is defined in [10]. We can see any properties of these numbers in [7]-[9] [11] [12]. Some properties of these sequences were deduced directly from elementary matrix algebra in [13] [14]. By using matrix algebra H. Civciv and R. Turkmen defined (s,t) Fibonacci and (s,t) Lucas matrix sequences in [15] [16]. Similarly K. Uslu and Ş. Uygun defined (s,t) Jacosthal and (s,t) Jacosthal Lucas matrix sequences and by using them found some properties of Jacobsthal numbers in [17].

Definition 1. The (s,t)-Jacobsthal sequence $\left\{\hat{j}_n\left(s,t\right)\right\}_{n\in\mathbb{N}}$ and (s,t)-Jacobsthal Lucas sequence $\left\{\hat{c}_n\left(s,t\right)\right\}_{n\in\mathbb{N}}$

are defined by the recurrence relations

$$\hat{j}_{n+1}(s,t) = s\hat{j}_n(s,t) + 2t\hat{j}_{n-1}(s,t), \quad \hat{j}_0(s,t) = 0, \quad \hat{j}_1(s,t) = 1$$
(1)

$$\hat{c}_{n+1}(s,t) = s\hat{c}_n(s,t) + 2t\hat{c}_{n-1}(s,t), \quad \hat{c}_0(s,t) = 2, \hat{c}_1(s,t) = s \tag{2}$$

respectively, where $n \ge 1$, s > 0, $t \ne 0$ and $s^2 + 8t > 0$ [10].

Some basic properties of these sequences are given in the following:

$$\hat{c}_n(s,t) = s\hat{j}_n(s,t) + 4t\hat{j}_{n-1}(s,t),$$

$$\hat{j}_n = \frac{r_1^n - r_2^n}{r_1 - r_2}, \quad \hat{c}_n = r_1^n + r_2^n,$$

$$r_1 = \frac{s + \sqrt{s^2 + 8t}}{2}, \quad r_2 = \frac{s - \sqrt{s^2 + 8t}}{2},$$

$$r_1^2 = sr_1 + 2t, \quad r_2^2 = sr_2 + 2t, \quad r_1 \cdot r_2 = -2t, \quad r_1 + r_2 = s.$$

In the following definition, (s,t)-Jacosthal $\{J_n(s,t)\}_{n\in\mathbb{N}}$ and (s,t)-Jacosthal Lucas $\{C_n(s,t)\}_{n\in\mathbb{N}}$ quences are defined by carrying to matrix theory (s,t)-Jacosthal and (s,t)-Jacosthal Lucas sequences.

Definition 2. The (s,t)-Jacobsthal matrix sequence $\{J_n(s,t)\}_{n\in\mathbb{N}}$ and (s,t)-Jacobsthal Lucas matrix sequence $\{C_n(s,t)\}_{n=N}$ are defined by the recurrence relations

$$J_{n+1}(s,t) = sJ_n(s,t) + 2tJ_{n-1}(s,t), J_0 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, J_1 = \begin{bmatrix} s & 2 \\ t & 0 \end{bmatrix}$$
 (3)

$$C_{n+1}(s,t) = sC_n(s,t) + 2tC_{n-1}(s,t), C_0 = \begin{bmatrix} s & 4 \\ 2t & -s \end{bmatrix}, C_1 = \begin{bmatrix} s^2 + 4t & 2s \\ st & 4t \end{bmatrix}$$
(4)

respectively, where $n \ge 1$, s > 0, $t \ne 0$ and $s^2 + 8t > 0$.

Throughout this paper, for convenience we will use the symbol \hat{j}_n instead of $\hat{j}_n(s,t)$ and the symbol \hat{c}_n instead of $\hat{c}_n(s,t)$. Similarly we will use the symbol J_n instead of $J_n(s,t)$ and C_n instead of $C_n(s,t)$. **Proposition 3.** Let us consider s > 0, $t \ne 0$ and $s^2 + 8t > 0$. The following properties are hold:

1)
$$J_{n} = \begin{bmatrix} \hat{j}_{n+1} & 2\hat{j}_{n} \\ t\hat{j}_{n} & 2t\hat{j}_{n-1} \end{bmatrix}$$
 and $C_{n} = \begin{bmatrix} \hat{c}_{n+1} & 2\hat{c}_{n} \\ t\hat{c}_{n} & 2t\hat{c}_{n-1} \end{bmatrix}$.

$$J_{n+m} = J_{n}J_{m},$$

$$J_{n} = J_{n}^{n},$$
2) For $m, n \in \mathbb{Z}^{+}$, $J_{m}C_{n+1} = C_{n+1}J_{m},$

$$C_{n} = sJ_{n} + 4tJ_{n-1},$$

$$C_{n+1} = C_{1}J_{n}.$$
3) For $n \in \mathbb{Z}^{+}$, $J_{n} = \left(\frac{J_{1} - r_{2}J_{0}}{r_{1} - r_{2}}\right)r_{1}^{n} - \left(\frac{J_{1} - r_{1}J_{0}}{r_{1} - r_{2}}\right)r_{2}^{n}.$
4) For $n \in \mathbb{Z}^{+}$, $C_{n+1} = \left(\frac{C_{2} - C_{1}r_{2}}{r_{1} - r_{2}}\right)r_{1}^{n} - \left(\frac{C_{2} - C_{1}r_{1}}{r_{1} - r_{2}}\right)r_{2}^{n}.$

For their proofs you can look at the Ref. [17].

2. The Generating Functions of Jacobsthal and Jacobsthal-Lucas Matrix **Sequences**

Theorem 4. For $n \in \mathbb{Z}^+$, $x \in \mathbb{R}$, we have the generating function of Jacobsthal matrix sequence in the following:

$$\sum_{k=1}^{n} J_k x^{-k} = -\frac{1}{x^n \left(x^2 - sx - 2t\right)} \left[x J_{n+1} + 2t J_n \right] + \frac{1}{\left(x^2 - sx - 2t\right)} \left[x J_1 + \left(x^2 - sx\right) J_0 \right]. \tag{5}$$

Proof. By using the expansion of geometric series and proposition 3, we can write

$$\begin{split} &\sum_{k=1}^{n} \frac{J_{k}}{x^{k}} = \sum_{k=1}^{\infty} \frac{1}{x^{k}} \left[\left(\frac{J_{1} - r_{2}J_{0}}{r_{1} - r_{2}} \right) r_{1}^{k} - \left(\frac{J_{1} - r_{1}J_{0}}{r_{1} - r_{2}} \right) r_{2}^{k} \right] \\ &= \left(\frac{J_{1} - r_{2}J_{0}}{r_{1} - r_{2}} \right) \sum_{k=1}^{n} \left(\frac{r_{1}}{x} \right)^{k} - \left(\frac{J_{1} - r_{1}J_{0}}{r_{1} - r_{2}} \right) \sum_{k=1}^{n} \left(\frac{r_{2}}{x} \right)^{n+1} \\ &= \left(\frac{J_{1} - r_{2}J_{0}}{r_{1} - r_{2}} \right) \left(\frac{1 - \left(\frac{r_{1}}{x} \right)^{n+1}}{1 - \left(\frac{r_{1}}{x} \right)} \right) - \left(\frac{J_{1} - r_{1}J_{0}}{r_{1} - r_{2}} \right) \left(\frac{1 - \left(\frac{r_{2}}{x} \right)^{n+1}}{1 - \left(\frac{r_{2}}{x} \right)} \right) \\ &= \frac{1}{x^{n}} \left[\left(\frac{J_{1} - r_{2}J_{0}}{r_{1} - r_{2}} \right) \left(\frac{x^{n+1} - r_{1}^{n+1}}{x - r_{1}} \right) - \left(\frac{J_{1} - r_{1}J_{0}}{r_{1} - r_{2}} \right) \left(\frac{x^{n+1} - r_{2}^{n+1}}{x - r_{2}} \right) \right] \\ &= \frac{1}{x^{n} \left(x^{2} - sx - 2t \right)} \left[\left(\frac{J_{1} - r_{2}J_{0}}{r_{1} - r_{2}} \right) \left(x^{n+1} - r_{1}^{n+1} \right) \left(x - r_{2} \right) \right. \\ &- \left(\frac{J_{1} - r_{1}J_{0}}{r_{1} - r_{2}} \right) \left(x^{n+1} - r_{2}^{n+1} \right) \left(x - r_{1} \right) \right] \\ &= \frac{1}{x^{n} \left(x^{2} - sx - 2t \right)} \left\{ r_{1} \cdot r_{2} \left[\left(\frac{J_{1} - r_{2}J_{0}}{r_{1} - r_{2}} \right) r_{1}^{n+1} - \left(\frac{J_{1} - J_{1}J_{0}}{r_{1} - r_{2}} \right) r_{2}^{n+1} \right] \right. \\ &+ \frac{1}{x^{n} \left(x^{2} - sx - 2t \right)} \left\{ r_{1} \cdot r_{2} \left[\left(\frac{J_{1} - r_{2}J_{0}}{r_{1} - r_{2}} \right) r_{1}^{n} - \left(\frac{J_{1} - J_{0}r_{1}}{r_{1} - r_{2}} \right) r_{2}^{n} \right] \right. \\ &+ \frac{x^{n+1} \left(r_{1} - r_{2} \right) J_{1} + x^{n+2} \left(r_{1} - r_{2} \right) J_{0} + \left(-r_{1}^{2} + r_{2}^{2} \right) x^{n} J_{0}}{x^{n} \left(r_{1} - r_{2} \right) \left(x^{2} - sx - 2t \right)} \right[xJ_{1} + \left(x^{2} - s \right) J_{0} \right] \\ &= - \frac{1}{x^{n} \left(x^{2} - sx - 2t \right)} \left[xJ_{1} + \left(x^{2} - sx - 2t \right) \left[xJ_{1} + \left(x^{2} - s \right) J_{0} \right] \right] \\ &= - \frac{1}{x^{n} \left(x^{2} - sx - 2t \right)} \left[xJ_{1} + \left(x^{2} - sx - 2t \right) \left[xJ_{1} + \left(x^{2} - sx - 2t \right) \left[xJ_{1} + \left(x^{2} - s \right) J_{0} \right] \right] \\ &= - \frac{1}{x^{n} \left(x^{2} - sx - 2t \right)} \left[xJ_{1} + \left(x^{2} - sx - 2t \right) \left[xJ_{1} + \left(x^{2} - sx - 2t \right) \right] \right] \\ &= - \frac{1}{x^{n} \left(x^{2} - sx - 2t \right)} \left[xJ_{1} + \left(x^{2} - sx - 2t \right) \left[xJ_{1} + \left(x^{2} - sx - 2t \right) \right] \left[xJ_{1} + \left(x^{2} - sx -$$

Corollary 5. Let $x \in R$, $x > \frac{s + \sqrt{s^2 + 8t}}{2}$. Then for (s,t)-Jacobsthal sequence we have

$$\sum_{k=1}^{\infty} \hat{j}_{k+1} x^{-k} = \frac{x^2 + sx - s}{\left(x^2 - sx - 2t\right)}.$$

and

$$\sum_{k=1}^{\infty} \hat{j}_k x^{-k} = \frac{x}{\left(x^2 - sx - 2t\right)}.$$

Corollary 6. Let $x \in R, x > \frac{s + \sqrt{s^2 + 8t}}{2}$. Then we have

$$\sum_{k=1}^{\infty} J_k x^{-k} = \frac{1}{\left(x^2 - sx - 2t\right)} \left[xJ_1 + \left(x^2 - s\right)J_0 \right].$$

Corollary 7. Let $n \in \mathbb{Z}^+$, $x \in \mathbb{R}$. Then we have we have the generating function of Jacobsthal-Lucas matrix sequence in the following:

$$\sum_{k=1}^{n} C_{k+1} x^{-k} = -\frac{1}{x^{n} \left(x^{2} - sx - 2t\right)} \left[x C_{n+2} + 2t C_{n+1}\right] + \frac{1}{\left(x^{2} - sx - 2t\right)} \left[x C_{2} + \left(x^{2} - s\right) C_{1}\right]. \tag{6}$$

Proof. It can be seen easily by using theorem 4 and the property of $C_{n+1} = C_1 J_n$.

Corollary 8. Let $x \in R$, $x > \frac{s + \sqrt{s^2 + 8t}}{2}$. Then for (s,t)-Jacobsthal Lucas matrix sequence we have

$$\sum_{k=1}^{\infty} C_{k+1} x^{-k} = \frac{1}{\left(x^2 - sx - 2t\right)} \left[xC_2 + \left(x^2 - s\right)C_1 \right].$$

Corollary 9. Let $x \in R, x > \frac{s + \sqrt{s^2 + 8t}}{2}$. Then for (s,t)-Jacobsthal Lucas sequence we have

$$\sum_{k=1}^{\infty} \hat{c}_{k+1} x^{-k} = \frac{s^2 x + s x^2 + 4xt - s^2}{x^2 - s x - 2t}$$

and

$$\sum_{k=1}^{\infty} \hat{c}_k x^{-k} = \frac{2x^2 + sx - 2st}{x^2 - sx - 2t}.$$

Theorem 10. For $\left|r_1^k r_2^{r-k} x\right| < 1$, let be r is odd positive integer and $X = \left(\frac{J_1 - J_0 r_2}{r_1 - r_2}\right)$, $Y = \left(\frac{J_1 - J_0 r_1}{r_1 - r_2}\right)$.

Then we have

$$\sum_{i=0}^{\infty} J_i^r x^i = \sum_{i=0}^{\frac{r-1}{2}} \left[(-1)^k \binom{r}{k} X^k Y^k \frac{X^{r-2k} - Y^{r-2k} + (-2t)^k \left(Y^{r-2k} r_1^{r-2k} - X^{r-2k} r_2^{r-2k} \right) x}{1 - \left(-2t \right)^k \hat{c}_{r-2k} x + \left(-2t \right)^r x^2} \right],$$

and for r is even positive integer

$$\sum_{i=0}^{\infty} J_i^r x^i = \sum_{i=0}^{\frac{r}{2}-1} \left[(-1)^k \binom{r}{k} X^k Y^k \frac{X^{r-2k} + Y^{r-2k} - (-2t)^k \left(Y^{r-2k} r_1^{r-2k} + X^{r-2k} r_2^{r-2k} \right) x}{1 - (-2t)^k \hat{c}_{r-2k} x + (-2t)^r x^2} \right] + \binom{r}{r/2} Y^k \frac{X^{r/2} \left(-Y \right)^{r/2}}{1 - (-2t)^{r/2} x}.$$

Proof. By using proposition 3 (iv), the nth element of (s,t)-Jacobsthal matrix sequence can be written in the following:

$$J_n = Xr_1^n - Yr_2^n.$$

From this equality we have

$$\sum_{i=0}^{\infty} \left(X r_1^i - Y r_2^i \right)^r x^i = \sum_{i=0}^{\infty} \left(\sum_{k=0}^r {r \choose k} \left(X r_1^i \right)^k \left(-Y r_2^i \right)^{r-k} \right) x^i$$

$$= \sum_{k=0}^r {r \choose k} (X)^k (-Y)^{r-k} \sum_{i=0}^{\infty} \left(r_1^k r_2^{r-k} x \right)^i$$

$$U(r,x) = \sum_{k=0}^r {r \choose k} (X)^k (-Y)^{r-k} \frac{1}{1 - r_1^k r_2^{r-k} x}.$$

If r is an odd positive integer, then we have

$$\begin{split} U\left(r,x\right) &= \sum_{k=0}^{\frac{r-1}{2}} \binom{r}{k} \binom{\left(X\right)^k \left(-Y\right)^{r-k}}{1-r_1^k r_2^{r-k} x} + \frac{\left(X\right)^{r-k} \left(-Y\right)^k}{1-r_1^{r-k} r_2^k x} \right) \\ &= \sum_{k=0}^{\frac{r-1}{2}} (-1)^k \binom{r}{k} \binom{\frac{X^{r-k} Y^k}{1-r_1^{r-k} r_2^k x} - \frac{X^k Y^{r-k}}{1-r_1^k r_2^{r-k} x}}{1-r_1^k r_2^{r-k} x} \\ &= \sum_{k=0}^{\frac{r-1}{2}} (-1)^k \binom{r}{k} \frac{X^{r-k} Y^k - X^k Y^{r-k} + \left(X^k Y^{r-k} r_1^{r-k} r_2^k - X^{r-k} Y^k r_1^k r_2^{r-k}\right) x}{1-\left(r_1^k r_2^{r-k} + r_1^{r-k} r_2^k\right) x + r_1^r r_2^r x^2} \\ &= \sum_{k=0}^{\frac{r-1}{2}} (-1)^k \binom{r}{k} \frac{X^{r-k} Y^k - X^k Y^{r-k} + \left(-2t\right)^k \left(X^k Y^{r-k} r_1^{r-2k} - X^{r-k} Y^k r_2^{r-2k}\right) x}{1-\left(-2t\right)^k \left(r_2^{r-2k} + r_1^{r-2k}\right) x^r + \left(-2t\right)^r x^2} \\ &= \sum_{k=0}^{\frac{r-1}{2}} (-1)^k X^k Y^k \binom{r}{k} \frac{X^{r-2k} - Y^{r-2k} + \left(-2t\right)^k \left(Y^{r-2k} r_1^{r-2k} - X^{r-2k} r_2^{r-2k}\right) x}{1-\left(-2t\right)^k \hat{c}_{r-2k} x + \left(-2t\right)^r x^2}. \end{split}$$

If r is an even positive integer, then we have

$$\begin{split} U\left(r,x\right) &= \sum_{k=0}^{\frac{r}{2-1}} \binom{r}{k} \left(\frac{\left(X\right)^k \left(-Y\right)^{r-k}}{1-r_1^k r_2^{r-k} x} + \frac{\left(X\right)^{r-k} \left(-Y\right)^k}{1-r_1^{r-k} r_2^k x}\right) + \binom{r}{r/2} \frac{\left(X\right)^{r/2} \left(-Y\right)^{r/2}}{1-\left(-2t\right)^{r/2} x} \\ &= \sum_{k=0}^{\frac{r-1}{2}} \left(-1\right)^k \binom{r}{k} \left(\frac{X^{r-k} Y^k}{1-r_1^{r-k} r_2^k x} + \frac{X^k Y^{r-k}}{1-r_1^k r_2^{r-k} x}\right) + \binom{r}{r/2} \frac{\left(X\right)^{r/2} \left(-Y\right)^{r/2}}{1-\left(-2t\right)^{r/2} x} \\ &= \sum_{k=0}^{\frac{r-1}{2}} \left(-1\right)^k \binom{r}{k} \left(\frac{X^{r-k} Y^k + X^k Y^{r-k} - \left(X^k Y^{r-k} r_1^{r-k} r_2^k + X^{r-k} Y^k r_1^k r_2^{r-k}\right) x}{1-\left(r_1^k r_2^{r-k} + r_1^{r-k} r_2^k\right) x + r_1^r r_2^r x^2}\right) + \binom{r}{r/2} \frac{\left(X\right)^{r/2} \left(-Y\right)^{r/2}}{1-\left(-2t\right)^{r/2} x} \\ &= \sum_{k=0}^{\frac{r-1}{2}} \left(-1\right)^k \binom{r}{k} \left(\frac{X^{r-k} Y^k + X^k Y^{r-k} - \left(-2t\right)^k \left(X^k Y^{r-k} r_1^{r-2k} + X^{r-k} Y^k r_1^k r_2^{r-2k}\right) x}{1-\left(-2t\right)^k \left(r_2^{r-2k} + r_1^{r-2k}\right) x + t^r x^2}\right) + \binom{r}{r/2} \frac{\left(X\right)^{r/2} \left(-Y\right)^{r/2}}{1-\left(-2t\right)^{r/2} x} \\ &= \sum_{k=0}^{\frac{r-1}{2}} \left(-1\right)^k X^k Y^k \binom{r}{k} \left(\frac{X^{r-2k} + Y^{r-2k} - \left(-2t\right)^k \left(Y^{r-2k} r_1^{r-2k} + X^{r-2k} r_2^{r-2k}\right) x}{1-\left(-2t\right)^{r/2} x}\right) + \binom{r}{r/2} \frac{\left(X\right)^{r/2} \left(-Y\right)^{r/2}}{1-\left(-2t\right)^{r/2} x}. \end{split}$$

3. Partial Sums of Jacobsthal and Jacobsthal-Lucas Matrix Sequences

Theorem 11. The partial sum of (s,t)-Jacobsthal matrix sequence for $s+2t \neq 1$ is given in the following

$$\sum_{k=1}^{n} J_{k} = \begin{bmatrix} \hat{j}_{n+2} - s + 2t\hat{j}_{n+1} - 2t & 2(\hat{j}_{n+1} + 2t\hat{j}_{n} - 1) \\ t(\hat{j}_{n+1} + 2t\hat{j}_{n} - 1) & 2t(\hat{j}_{n} + 2t\hat{j}_{n-1} - 1) \end{bmatrix}.$$

Proof. Let $S_n = \sum_{k=1}^n J_k$. By multiplying J_1 two sides of the equality, we get

$$S_{1}J_{1}=J_{2}+J_{3}+\cdots+J_{n+1}$$

By adding J_1 two sides of the equality, we get

$$S_n J_1 + J_1 = J_1 + J_2 + J_3 + \dots + J_{n+1}$$

$$S_n J_1 - S_n = J_{n+1} - J_1$$

$$S_n (J_1 - J_0) = J_{n+1} - J_1.$$

The inverse of $J_1 - J_0$ is available for $\det(J_1 - J_0) = 1 - s - 2t \neq 0$. Then we get

$$S_n = (J_{n+1} - J_1)(J_1 - J_0)^{-1}$$
.

By using following equalities $J_{n+1} - J_1 = \begin{bmatrix} \hat{j}_{n+2} - s & 2\hat{j}_{n+1} - 2 \\ t\hat{j}_{n+1} - t & 2t\hat{j}_n \end{bmatrix}$, $J_1 - J_0 = \begin{bmatrix} s - 1 & 2 \\ t & -1 \end{bmatrix}$ and

$$(J_1 - J_0)^{-1} = \frac{1}{s + 2t - 1} \begin{bmatrix} 1 & 2 \\ t & 1 - s \end{bmatrix}$$
, we get

$$\begin{split} S_n &= \frac{1}{s+2t-1} \begin{bmatrix} \hat{j}_{n+2} - s & 2\hat{j}_{n+1} - 2 \\ tj_{n+1} - t & 2t\hat{j}_n \end{bmatrix} \begin{bmatrix} 1 & 2 \\ t & 1-s \end{bmatrix} \\ &= \frac{1}{s+2t-1} \begin{bmatrix} \hat{j}_{n+2} + 2t\hat{j}_{n+1} - s - 2t & 2\left(\hat{j}_{n+1} + 2t\hat{j}_n - 1\right) \\ t\left(\hat{j}_{n+1} + 2t\hat{j}_n - 1\right) & 2t\left(\hat{j}_n + 2t\hat{j}_{n-1} - 1\right) \end{bmatrix}. \end{split}$$

Corollary 12. The partial sums of (s,t)-Jacobsthal sequence for $s+2t \neq 1$ are given in the following:

$$\sum_{k=1}^{n} \hat{j}_{k+1} = \frac{\hat{j}_{n+2} - s + 2t\hat{j}_{n+1} - 2t}{s + 2t - 1}$$

and

$$\sum_{k=1}^{n} \hat{j}_k = \frac{\hat{j}_{n+1} + 2t\hat{j}_n - 1}{s + 2t - 1}.$$

Proof. It is proved by the equality of matrix sequences and from Theorem 11.

Theorem 13. The partial sum of (s,t)-Jacobsthal Lucas matrix sequence for $s+2t\neq 1$ is given in the follow-

ing
$$\sum_{k=1}^{n} C_{k+1} = (a_{ij}).$$

$$\begin{split} a_{11} &= \frac{1}{s+2t-1} \Big(\, \hat{j}_{n+4} + 2t \hat{j}_{n+3} + 2t \hat{j}_{n+2} + 4t^2 \, \hat{j}_{n+1} - s^2 \, \big(s+2t \big) - 2t \, \big(3s+4t \big) \Big) \\ a_{12} &= \frac{2}{s+2t-1} \Big(\, \hat{j}_{n+3} + 2t \hat{j}_{n+2} + 2t \hat{j}_{n+1} + 4t^2 \, \hat{j}_n - s^2 - 4t - 2st \big) \\ a_{21} &= \frac{t}{s+2t-1} \Big(\, \hat{j}_{n+3} + 2t \hat{j}_{n+2} + 2t \hat{j}_{n+1} + 4t^2 \, \hat{j}_n - 2st - s^2 - 4t \Big) \\ a_{22} &= \frac{2t}{s+2t-1} \Big(\, \hat{j}_{n+2} + 2t \hat{j}_{n+1} + 2t \hat{j}_n + 4t^2 \, \hat{j}_{n-1} - s - 4t \Big). \end{split}$$

Proof. By using $C_{k+1} = C_1 J_k$ and Theorem 11 we get

$$\begin{split} \sum_{k=1}^{n} C_{k+1} &= \sum_{k=1}^{n} C_{1} J_{k} = C_{1} \sum_{k=1}^{n} J_{k} \\ &= \frac{1}{s+2t-1} \begin{bmatrix} s^{2} + 4t & 2s \\ st & 4t \end{bmatrix} \begin{bmatrix} \hat{j}_{n+2} + 2t \hat{j}_{n+1} - s - 2t & 2\left(\hat{j}_{n+1} + 2t \hat{j}_{n} - 1\right) \\ t\left(\hat{j}_{n+1} + 2t \hat{j}_{n} - 1\right) & 2t\left(\hat{j}_{n} + 2t \hat{j}_{n-1} - 1\right) \end{bmatrix}. \end{split}$$

If the product of matrices is made the desired result is found.

Corollary 14. The partial sums of (s,t)-Jacobsthal Lucas sequence for $s+2t \neq 1$ are given in the following:

$$\sum_{k=1}^{n} c_k = \frac{1}{s+2t-1} \left(\hat{j}_{n+2} + 2t \hat{j}_{n+1} + 2t \hat{j}_n + 4t^2 \hat{j}_{n-1} - s - 4t \right)$$

and

$$\sum_{k=1}^{n} c_{k+1} = \frac{1}{s+2t-1} \left(\hat{j}_{n+3} + 2t \hat{j}_{n+2} + 2t \hat{j}_{n+1} + 4t^2 \hat{j}_n - s^2 - 4t - 2st \right).$$

Proof. It is proved by the equality of matrix sequences and from Theorem 11.

Theorem 15. Let $s+2t \neq 1$, and $s-2t \neq -1$. Then for $S_{2n} = \sum_{i=1}^{n} J_{2k} = (a_{ij})$ we get

$$\begin{split} a_{11} &= \frac{1}{\left(s+2t-1\right)\left(s-2t+1\right)} \left(\hat{j}_{2n+3} - 4t^2 \hat{j}_{2n+1} + 4t^2 - s^2 - 2t\right) \\ a_{12} &= \frac{2}{\left(s+2t-1\right)\left(s-2t+1\right)} \left(\hat{j}_{2n+2} - 4t^2 \hat{j}_{2n} - s\right) \\ a_{21} &= \frac{t}{\left(s+2t-1\right)\left(s-2t+1\right)} \left(\hat{j}_{2n+2} - 4t^2 \hat{j}_{2n} - s\right) \\ a_{22} &= \frac{2t}{\left(s+2t-1\right)\left(s-2t+1\right)} \left(\hat{j}_{2n+1} - 4t^2 \hat{j}_{2n-1} - 1 + 2t\right). \end{split}$$

Proof. By multiplying J_2 two sides of the equality S_{2n} , we get

$$S_{2n}J_2 = J_4 + J_6 + \dots + J_{2n+2}$$

By adding I_2 two sides of the equality, we get

$$\begin{split} &J_{2n}\left(J_2-J_0\right)=J_{2n+2}-J_2\\ &S_{2n}=\left(J_{2n+2}-J_2\right)\left(J_2-J_0\right)^{-1}\\ &J_{2n+2}-J_2=\begin{bmatrix} \hat{J}_{2n+3}-s^2-2t & 2\left(\hat{J}_{2n+2}-s\right)\\ &t\left(\hat{J}_{2n+2}-s\right) & 2t\left(\hat{J}_{2n+1}-1\right) \end{bmatrix}\\ &J_2-J_0=\begin{bmatrix} s^2+2t-1 & 2s\\ &st & 2t-1 \end{bmatrix}\\ &\left(J_2-J_0\right)^{-1}=\frac{1}{\left(s+2t-1\right)\left(s-2t+1\right)}\begin{bmatrix} 1-2t & 2s\\ &st & 1-2t-s^2 \end{bmatrix}\\ &S_{2n}=\frac{1}{\left(s+2t-1\right)\left(s-2t+1\right)}\begin{bmatrix} \hat{J}_{2n+3}-s^2-2t & 2\left(\hat{J}_{2n+2}-s\right)\\ &t\left(\hat{J}_{2n+2}-s\right) & 2t\left(\hat{J}_{2n+1}-1\right) \end{bmatrix}\cdot\begin{bmatrix} 1-2t & 2s\\ &st & 1-2t-s^2 \end{bmatrix}. \end{split}$$

Corollary 16. The odd and even elements sums of (s,t)-Jacobsthal sequence for $s+2t \neq 1$ and $s-2t \neq -1$ are given in the following:

$$\sum_{k=1}^{n} \hat{j}_{2k+1} = \frac{1}{\left(s+2t-1\right)\left(s-2t+1\right)} \left(\hat{j}_{2n+3} - 4t^{2} \hat{j}_{2n+1} + 4t^{2} - s^{2} - 2t\right)$$

$$\sum_{k=1}^{n} \hat{j}_{2k} = \frac{1}{\left(s+2t-1\right)\left(s-2t+1\right)} \left(\hat{j}_{2n+2} - 2t \hat{j}_{2n+2} + 2st \hat{j}_{2n+1} - s\right).$$

In the following theorem we will show the partial sum of Jacobsthal Lucas matrix sequence of the elements of power of n.

Theorem 17. For (s,t)-Jacobsthal matrix sequence the equality is hold.

$$\sum_{i=0}^{n} {n \choose i} J_i^r x^i = \sum_{k=0}^{r} {r \choose k} X^k \left(-Y\right)^{r-k} \left(1 + \alpha^k \beta^{r-k} x\right)^n$$

Proof. By using the equality of $X = \left(\frac{J_1 - \beta J_0}{\alpha - \beta}\right), Y = \left(\frac{J_1 - \alpha J_0}{\alpha - \beta}\right)$ we can write $J_n = X \alpha^n - Y \beta^n$. By using

it

$$\begin{split} \sum_{i=0}^{n} \binom{n}{i} J_{i}^{r} x^{i} &= \sum_{i=0}^{n} \binom{n}{i} \left(X \alpha^{i} - Y \beta^{i} \right)^{r} x^{i} \\ &= \sum_{i=0}^{n} \binom{n}{i} \sum_{k=0}^{r} \binom{r}{k} \left(X \alpha^{i} \right)^{k} \left(-Y \beta^{i} \right)^{r-k} x^{i} \\ &= \sum_{k=0}^{r} \binom{r}{k} \left(X \right)^{k} \left(-Y \right)^{r-k} \sum_{i=0}^{n} \binom{n}{i} \left(\alpha^{k} \beta^{r-k} x \right)^{i} \\ &= \sum_{k=0}^{r} \binom{r}{k} \left(X \right)^{k} \left(-Y \right)^{r-k} \left(1 + \alpha^{k} \beta^{r-k} x \right)^{n}. \end{split}$$

Acknowledgements

Thank you very much to the editor and the referee for their valuable comments.

References

- Koshy, T. (2001) Fibonacci and Fibonacci Lucas Numbers with Applications. John Wiley and Sons Inc., NY. http://dx.doi.org/10.1002/9781118033067
- [2] Sloane, N.J.A. (2006) The On-Line Encyclopedia of Integer Sequences.
- [3] Stakhov, A.P. (2006) Fibonaccci Matrices: A Generalization of the "Cassini Formula" and a New Coding Theory. *Chaos, Solitons Fractals*, **30**, 56-66. http://dx.doi.org/10.1016/j.chaos.2005.12.054
- [4] Stakhov, A.P. (2005) The Generalized Principle of the Golden Section and Its Applications in Mathematics, Science and Engineering. *Chaos, Solitons & Fractals*, 26, 263-289. http://dx.doi.org/10.1016/j.chaos.2005.01.038
- [5] El Naschie, M.S. (2007) The Fibonacci Code behind Super Strings and P-Branes: An Answer to M. Kaku's Fundamental Question. *Chaos, Solitons & Fractals*, 31, 537-547.
 http://dx.doi.org/10.1016/j.chaos.2006.07.001
- [6] El Naschie, M.S. (2001) Notes on Superstrings and the Infinite Sums of Fibonacci and Lucas Numbers. Chaos, Solitons & Fractals, 12, 1937-1940. http://dx.doi.org/10.1016/S0960-0779(00)00139-9
- [7] Horadam, A.F. (1996) Jacobsthal Representation Numbers. The Fibonacci Quarterly, 34, 40-54.
- [8] Horadam, A.F. (1997) Jacobsthal Representation Polynomials. The Fibonacci Quarterly, 35, 137-148.
- [9] Weisstein, E.W. (2007) Jacobsthal Number. Wolfram Math World. http://mathworld.wolfram.com/JacobsthalNumber.html
- [10] Uygun, Ş. (2015) The (s,t)-Jacobsthal and (s,t)-Jacobsthal Lucas Sequences. *Applied Mathematical Sciences*, **70**, 3467-3476.
- [11] Cerin, Z. (2007) Sums of Squares and Products of Jacobsthal Numbers. *Journal of Integer Sequences*, **10**, Article 07.2.5.
- [12] Cerin, Z. (2007) Formulae for Sums of Jacobsthal Lucas Numbers. International Mathematical Forum, 2, 1969-1984.
- [13] Silvester, J.R. (1979) Fibonacci Properties by Matrix Method. Mathematical Gazette, 63, 188-191. http://dx.doi.org/10.2307/3617892
- [14] Koken, F. and Bozkurt, D. (2008) On the Jacobsthal Numbers by Matrix Methods. *International Journal of Contemporary Mathematical Sciences*, **3**, 605-614.

- [15] Civciv, H. and Turkmen, R. (2008) On the (s,t)-Fibonacci and Fibonacci Matrix Sequences. *Ars Combinatoria*, 87, 161-173.
- [16] Civciv, H. and Turkmen, R. (2008) Notes on the (s,t)-Lucas and Lucas Matrix Sequences. *Ars Combinatoria*, **89**, 271-285.
- [17] Uslu, K. and Uygun, Ş. (2013) The (s,t) Jacobsthal and (s,t) Jacobsthal-Lucas Matrix Sequences. *ARS Combinatoria*, **108**, 13-22.