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Abstract 
Human saccade is a dynamic process of information pursuit. There are many methods using either 
global context or local context cues to model human saccadic scan-paths. In contrast to them, this 
paper introduces a model for gaze movement control using both global and local cues. To test the 
performance of this model, an experiment is done to collect human eye movement data by using 
an SMI iVIEW X Hi-Speed eye tracker with a sampling rate of 1250 Hz. The experiment used a 
two-by-four mixed design with the location of the targets and the four initial positions. We com-
pare the saccadic scan-paths generated by the proposed model against human eye movement data 
on a face benchmark dataset. Experimental results demonstrate that the simulated scan-paths by 
the proposed model are similar to human saccades in term of the fixation order, Hausdorff dis-
tance, and prediction accuracy for both static fixation locations and dynamic scan-paths. 
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1. Introduction 
Searching the localization of targets is still a challenge problem in the fields of computer vision. However, hu-
mans perform this task in a more intuitive and efficient manner by selecting only a few regions to focus on, 
while observers never form a complete and detailed representation of their surroundings [1]. Due to the high ef-
ficiency of this biological approach, more and more researchers are devoting increasingly great effort to probing 
the nature of attention [2]. 

Usually two kinds of top-down cues are used to predict human gaze location in dynamic scenes [3] and gaze 
movement control when searching target: cues about bottom-up features such as shape, color, shape, scale [4]-[7] 
and cues about the top-down visual context that contains the target as well as other relevant objects’ spatial rela-
tionships and their environmental features [8]-[10]. 

In classical search tasks, target features are important source of guidance [11]-[15]. Although a natural object, 
such as an animal (cat or dog), does not have single defining feature, its statistically reliable properties (round 
head, straight body, legs and others) can be selected by visual attention. There has been little research using vis-
ual context in object search. Global context was used by Torralba to predict the region where the target is more 
detected by [16]. Object detectors are used by Ehinger and Paletta [17] [18] to search the targets in that pre-
dicted region detected by [16] for accurate localization. An extended object template containing local context is 
used by Kruppa and Santana to detect extended targets and infer the location of the targets via the ratio between 
the size of the target and the size of the extend template in [19]. Most of above methods are just only based on 
either global context or local context cues. However, Miao et al. proposed a serial of neural coding networks in 
[20]-[23] using both of them. 

In this study, the main purpose of our work is to simulate human saccadic scan-paths by the proposed model 
in [23]. To test the performance of the proposed model, we collect human eye movement data by using an SMI 
iVIEW X Hi-Speed eye tracker on a face dataset with a sampling rate of 1250 Hz. We compare the saccadic 
scan-paths generated by the proposed model against actual human eye movement data from the face dataset 
[28]. 

The paper is organized as follows: the model of the gaze movement control in target searching proposed in 
[23] is introduced briefly in Section 2. In Section 3, we compare our saccadic scan-paths with previous methods 
and scan-paths from eye tracking data. Our conclusions are presented in Section 5. 

2. Review of the Gaze Movement Control Model in Target Searching 
This paper applies the target searching model in [23] to simulate the eye-motion traces. The feature used in the 
model is a kind of binary codes called Local Binary Pattern (LBP) [32], which has been proved through our 
work superior to orientation features used in the same system [33] [34] with respect to search performance. LBP 
is a simple and fast encoding scheme to map a 3 × 3 image patch to a local feature pattern in terms of an 8-bit 
code. This encoding scheme has no parameters to do such mapping, just outputting 0/1 for each bit through 
comparing the central pixel’s value and that of each one of eight surrounding pixels. There are encoding and 
decoding parameters in the model [23], such as P, which determines how many context coding neurons are acti-
vated through competition. Through our experiments, we find the best value of 70% for this parameter. So in 
this paper, we use the best model with LBP feature and P = 70% to simulate eye-motion traces. 

The learning and testing algorithm for target search is illustrated in Figure 1 and described in Section 2.1 and 
2.2. Here the visual context means the visual field image and the spatial relationship from the center of the visu-
al field to the center of the target. In order to encode such context, we need to calculate and store the representa-
tion coefficients of the spatial relationship and the visual field images. The model’s learning algorithm and test 
method are introduced in this part. In this experiment, we use head-shoulder image database from the University 
of Bern [24]. 

2.1. Model Training 
The learning algorithm is described by [23] as follows: 

1) Choose a value s from the scale set {sj} for the visual field that will be processed; 
2) Choose an initial view point (xj, yj) as the center of the visual field from an initial point set {(xj, yj)} cover-

ing the surrounding area of the target; 
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(a)                                                  (b) 

            
(c)                                                  (d) 

Figure 1. Illustration of learning and testing algorithm for target search. (a) Five visual fields centered at a gaze point (here 
is the left eye center); (b) Five visual field images (16 × 16 pixels, scales = 5, 4, 3, 2 and 1) sub-sampled from the original 
image (320 × 214 pixels) with intervals = 16, 8, 4, 2, 1 pixel(s); (c) The spatial relationship between one given starting gaze 
point and the target center; (d) Memorizing the visual context or predicting between the target center from current gaze 
points at different scales.                                                                                   

 
3) Receive signals from the current visual field, and output a relative position evaluation for the target with 

view point moving distances (Δx, Δy) ; 
4) If the prediction error err is larger than the limit ERR(s) for the scale s of the current visual field, move the 

visual field center to a new position randomly; go to 3 until err ≤ ERR(s) or the iteration number is larger than a 
limit; 

5) If err > ERR(s), generate a new VF-image encoding neuron (let its response Rk = 1); encode the visual context 
by calculating and memorizing the connecting weights {wij, k} between the new VF-image encoding neuron and 
the feature neurons and the connection weights wk,uv between the new VF-image encoding neuron and the mo-
tion encoding neurons (let their response Ruv = 1) respectively using the Hebbian learning rule ∆wa,b = αRaRb; 

6) Go to 2 until all initial view points are chosen; 
7) Go to 1 until all scales are chosen. 

2.2. Model Prediction 
In the test stage, the entire algorithm for view point control for object locating is given as follows: 

1) Get a pre-given view point (x, y); 
2) Choose a scale s from the set {si} for the current visual field from the maximum to the minimum; 
3) Receive signals from the current visual field, and calculating the response of the feature neurons and the 

context encoding neurons; 
4) Predict a relative position (Δx, Δy) for the real position of the object; 
5) If (Δx, Δy) = (0,0),object located; 
6) If (Δx, Δy) ≠ (0,0), view point moving with (Δx, Δy), go 2 until all scales are chosen. 
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3. Experiments 
3.1. Participants 
Fifteen female and twelve male college students of Beijing University of Technology participated in this study. 
The age range was 23 - 26 and the average was 24 years old. All of the twenty-seven students had normal or 
corrected-to-normal vision. 

3.2. Stimuli 
A set of 30 face pictures are prepared as stimuli. Of this set of 30, 15 are Female-face, 15 are Male-face, and the 
size of each picture is 1024 × 768 pixels. Pictures are presented on a color computer monitor at a resolution of 
1024 by 768 pixels. The monitor size was 41 cm by 33.8 cm, and the participants were sited in a chair about 76 
cm in front of the screen. 

Stimuli consist of a set of 30 face pictures. There are 15 Female-face and 15 Male-face in this set of 30, and 
each picture’s size is 1024 × 768 pixels. One of the 30 face pictures are presented on a color computer monitor 
at a resolution of 1024 by 768 pixels. 

3.3. Design 
A new searching task was used in this study, participants were demanded to search the left and right eyes in a 
face from a pre-given starting point. Thirty pictures of face were used as stimuli, including 15 female and 15 
male faces. The size of each picture was 1024 × 768 pixels. There were four pre-given starting points, named the 
first, second, third and fourth quadrant respectively in a counterclockwise direction, similar with those in a 
coordinated system. Searching from a starting point to a target eye decided the searching distance and direction. 
Figure 1 illustrated the searching targets and the definition of the quadrants. 

3.4. Procedure 
For each trial, as shown in Figure 2, a black trail indicator was presented initially in the middle of the white 
screen for 1000 ms to indicate the target of the left or right eye. Then a “+” indicating pre-defined positions was 
presented in a random order. After that the picture of a face appeared in the middle of the screen for 2000 ms 
and participants were asked to search the right target eye or the left target eye as accurately and quickly as possible. 
Participants were told not to look at other part of the picture in the pictures after finding the target. 
 

 
Figure 2. Sketch map of pre-given starting points in the face picture.                     
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4. Experimental Results 
4.1. Preprocess 
The real fixation points are collected on the images with the size of 1024 × 768 pixels. However, the model can 
only deal with the gray images with the size of no more than 320 × 320 pixels. So when evaluating the perfor-
mance of the model, we compress the original 1024 × 768 color images into 320 × 240 gray images. 10 face 
images are used in the learning stage and the other 20 face images are used for evaluation. The algorithms for 
the learning and the prediction stages are described in Section 2. When predicting fixation order and scan-paths, 
the same initial positions were used in the above experiment. Our model will search left eye and right eye sepa-
rately from four different initial points that are similar to the above experiment. Each participant is asked to 
search left and right eyes from four different starting points on a face, and then it would certainly produce 8 eye 
scan-paths. For 27 subjects and 20 face images, 27 × 20 × 8 scan-paths are totally recoded. 

4.2. Evaluation of Fixation Order 
We are aware of only a limited literature on computational models of active visual attention, and in particular 
active visual attention needs further investigation. Lee and Yu’s work in [25] provided a conceptual framework 
but failed to provide a fully implemented solution with experimental results. Renninger et al. in [26] simulated 
scan-paths on novel shapes, but it is not clear how to adapt their method to natural images. However, Itti et al. in 
[27] proposed a scan path generation method from static saliency maps based on winner-takes-all (WTA) and 
inhibition-of-return (IoR) regulations. Tom Foul sham tried to find the evidence from normal and Gaze-Contin- 
gent search tasks in natural scenes in [28] for Itti. Marco Wischnewski proposed a model combining static and 
dynamic proto-objects in a TVA-based model of visual attention to predict where to look next in [29]. Gert 
Kootstra proposed a model to predict Eye Fixations on Complex Visual Stimuli Using Local Symmetry [30]. De 
Croon [31] proposed a novel gaze-control model, named act-detect, which use the information from local image 
samples in order to shift its gaze towards object locations for detecting objects in images. Our system can auto-
matically generate the fixations, and the fixation can move to the target under the control of learned memory and 
experience in four or five steps. We here compare the simulated scan-paths generated by the model of [23] with 
human saccades. We select the initial positions on the four quadrants of the image shown in Figure 3. And the 
experimental results are illustrated in Figure 4. We can find that the simulated scan-paths by our model are sim-
ilar to human saccades. 

4.3. Distance of Scan-paths 
In order to quantitatively compare the stochastic and dynamic scan-paths, we divide scan-paths into pieces of 
length 2. We use the Hausdorff distance to evaluate the scan-paths by the model proposed by Miao et al. with 
scan-paths of all subjects recorded by the eye tracker and evaluate the scan-paths between different subjects. The 
results are shown in Table 1. 

In Table 1, Model-Human means the average of the Hausdorff distances between the scan path generated by 
model and that from each one of 27 subjects on corresponding images. Human-Human means the average of the 
Hausdorff distances between the scan-paths generated by any two of 27 subjects. We can know from Table 1 
that the simulated scan-paths by the model of Miao’s are similar to human saccades by comparing the Hausdorff 
distance of scan-paths between the model and the humans: the average of the Hausdorff distances between  
 

 
Figure 3. Procedure of the task.                                                    
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Figure 4. The left column describes fixations predicted by the model proposed in [23]; 
the right column describes the real Fixations recorded by the SMI iVIEW X Hi-Speed 
eye tracker (Note: Here example face images are processed with mosaics).                 

 
Table 1. The average of the Hausdorff distances between the model to each one of 27 subjects and that between each pair of 
subjects.                                                                                                 

Image 
Hausdorff 

Model-Human Human-Human 

1.bmp 25.83 23.38 

2.bmp 26.88 26.06 

3.bmp 20.23 23.49 

4.bmp 29.02 27.77 

5.bmp 28.37 26.84 

6.bmp 27.70 25.90 

7.bmp 27.94 31.44 

8.bmp 28.06 23.50 

9.bmp 33.95 30.39 

10.bmp 32.11 30.76 

11.bmp 25.40 21.67 

12.bmp 28.68 27.41 

13.bmp 32.90 28.01 

14.bmp 30.42 30.18 

15.bmp 29.73 22.97 

16.bmp 30.60 28.50 

17.bmp 30.44 15.46 

18.bmp 31.44 26.21 

19.bmp 34.39 36.96 

20.bmp 29.46 20.29 

Average 29.18 26.36 
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scan-paths generated by the model and each subject on all the corresponding images is 29.18 which is similar to 
the average (26.36) of the Hausdorff distances between the scan-paths generated by every two subjects of the 
total 27 subjects. We also compute the average of the Hausdorff distances in the cases of that the initial position 
is from the second, third and fourth quadrants respectively shown in Table 2. 

In Table 2, Model-Human means the average of the Hausdorff distances between the scan-paths generated by 
the model and each of 27 subjects on all the corresponding images. Human-Human means the average of the 
Hausdorff distances between the scan-paths generated by every two of 27 subjects from the first, the second, the 
third and the fourth quadrants. The average of the Hausdorff distances from all four initial quadrants is 24.09. 
We conclude that the model of Miao’s [23] achieves a good predictive accuracy on both static fixation locations 
and dynamic scan-paths. 

4.4. Evaluation of Search Precision 
We also compute the search precision from four different quadrants to left eye and right eye. The results are 
shown in Table 3. We noted that there is a discrepancy of the average value of the search precision between the 
left eye and right eye. Due to different contextual information which is coded and used by the search model, this 
case may take place. 

5. Discussion and Conclusions 
Miao et al. presented a new architecture for gaze movement control in target searching in [23]. This paper uti-
lizes the model to simulate human saccadic scan-paths in target searching. To test the performance of the pro-
posed model, we collect human eye movement data by using an SMI iVIEW X Hi-Speed eye tracker at a sample 
rate of 1250 Hz. We compare the saccadic scan-paths generated by the proposed model against human eye 
movement data. Experimental results demonstrate that the simulated scan-paths by the proposed model are sim-
ilar to human saccades in terms of the fixation order and the Hausdorff distance of scan-paths. It can be learned 
that the model achieves good prediction accuracy on both static fixation locations and dynamic scan-paths. 

The model is suitable for target searching in strong-context cases. However, it performs less effectively in 
weak-context cases. Thus as future work we hope to propose to use a bottom-up saliency map together with a 
top-down target template to assist context based object searching in weak context cases, in order to achieve good 
prediction accuracy on both static fixation locations and dynamic scan-paths in weak-context cases. 
 
Table 2. The average of the Hausdorff distances.                                                                 

Image 
Hausdorff 

Model-Human Human-Human 

First quadrant 29.18 26.36 

Second quadrant 21.08 22.59 

Third quadrant 18.96 22.10 

Fourth quadrant 33.75 25.30 

All average 25.74 24.09 

 
Table 3. Search precision from four different quadrants to left eye and right eye.                                             

Quadrant 
Target 

Left eye Right eye 

First quadrant 100% 95% 

Second quadrant 100% 100% 

Third quadrant 100% 100% 

Fourth quadrant 85% 100% 

Average 96.25% 98.75% 
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The current simulation is based on the model with the optimal features and parameters tuned from the real 
face data. How much do the variation of features and parameters affect the simulation is a valuable question to 
be investigated? Evaluating the model’s performance on the pictures of people’s face rather than real face is also 
an interesting question. These are what we will study in the future work. 
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