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Abstract 
In the present study SDSM downscaling model was used as a tool for downscaling weather data 
statistically in upper Godavari river basin. Two Global Climate Models (GCMs), CGCM3 and HadCM3, 
have been used to project future maximum temperature (Tmax), minimum temperature (Tmin) 
and precipitation. The predictor variables are extracted from: 1) the National Centre for Environ-
mental Prediction (NCEP) reanalysis dataset for the period 1961-2003, 2) the simulations from 
the third-generation Hadlycentre Coupled Climate Model (HadCM3) and Coupled Global Climate 
Model (CGCM3) variability and changes in Tmax, Tmin and precipitation under scenarios A1B and 
A2 of CGCM3 model and A2 and B2 of HadCM3 model have been presented for future periods: 
2020s, 2050s and 2080s. The scatter-plots and cross-correlations are used for verifying the relia-
bility of the simulation. Maximum temperature increases in future for almost all the scenarios for 
both GCMs. Also downscaled future precipitation shows increasing trends for all scenarios. 
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1. Introduction 
The change in frequency, timing, and amount of precipitation will affect river flow and occurrence of floods and 
droughts. The third assessment report of the Intergovernmental Panel on Climate Change [1] reported the gener-
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al impact of climate change on water resources and indicated an intensification of the global hydrological cycle 
affecting both ground and surface water supplies. GCMs are the most advanced tools that are available for the 
simulation of future climate [2]. These models are capable of predicting climate, hundreds of years into future 
considering the GHG concentrations in the atmosphere. GCMs as the most credible tools designed to simulate 
time series of climate variables, considering the concentrations of GHGs [3]. However, understanding the influ-
ence of climate change on the hydrological cycle on a global scale is inadequate for water resource planners at 
basin level due to their coarse (grid) resolution and the local heterogeneity of terrain and climate [1] [4]. A sig-
nificant amount of effort has been expended in assessing the potential impact of climate change on basin water 
resources [5]-[8]. 

Wilby et al. [9] have studied downscaling techniques and stated that using downscaling techniques, GCM 
outputs can be changed into surface variables in the scale of the basin under study. Tisseuil et al. [10] have 
stated that downscaling bridges the large scale atmospheric conditions with local scale climatic data. There are 
different methods for creating local climate scenarios from GCM climate scenarios. Downscaling techniques are 
broadly classified into two categories as dynamic downscaling and statistical downscaling. In dynamic down-
scaling a Regional Climatic Model (RCM) is nested in a GCM. The RCM is an atmospheric physics based mod-
el to which boundary conditions are provided with the output of a GCM. The major drawback of dynamic 
downscaling is its complexity and high computation cost [2]. The other problem with dynamic downscaling is 
the propagation of systematic bias from GCM to RCM [11]. Statistical downscaling methods construct statistical 
relationships between the large scale GCM outputs (predictors) and the catchment scale climate variables (pre-
dictands). The basic advantage of statistical downscaling is that it is computationally less demanding compared 
to dynamic downscaling. 

According to Wilby and Wigly [12], statistical downscaling is based on few assumptions. These assumptions 
are that the predictor-predictand relationships are valid under future climatic conditions, and predictor variables 
and their changes are well characterized by GCMs. In general, statistical downscaling techniques are classified 
into three main categories as weather classification, regression models and weather generators. Weather classi-
fication methods classify large scale atmospheric variables of GCMs into finite number of states and relate them 
to basin scale climate variables. Regression methods build up linear or nonlinear functions between predictors 
and predictands. Weather generators produce a synthetic series of climate data, while preserving statistical 
attributes of the observations of climate variables [13]. 

In downscaling there are various sources of uncertainty like GCM uncertainty, which is due to incomplete 
knowledge about the underlying geophysical processes of global change, coarse grid resolutions and unresolved 
processes lead to limitations in the accuracy of the models. Scenario uncertainty results from unpredictability in 
the forecast of future socioeconomic and human behavior resulting in future greenhouse gas (GHG) emission 
scenarios. Downscaled outputs of a single GCM with a single climate change scenario represent a single trajec-
tory among a number of realizations derived using various scenarios with GCMs. Such a single trajectory alone 
cannot represent a future hydrologic scenario, and will not be useful in assessing hydrologic impacts due to cli-
mate change [3]. 

There are three objectives of this study. The first objective is to investigate the adaptability of SDSM in 
downscaling precipitation and temperature for basins. The second objective is to produce average monthly local- 
scale precipitation time series reflective of climate change signals obtained by downscaling from GCM predic-
tors. The third objective is to find out the dry and wet spell length. To overcome the single GCM and single 
scenario uncertainty two GCM (CGCM3 and Had CM3) and A1B, A2 and B2 scenarios have been used. This 
study provides a valuable dataset for climate change impact applications with regard to water resources in study 
region. 

2. Catchment Description 
Godavari rises in the Sahyadri hills near Triambakeswar, about 80 km from the shore of Arabian Sea, at an ele-
vation of 1067 m in the Nasik district of Maharashtra state, India. After flowing for about 1465 km in a general 
south-easterly direction through Maharashtra and Andhra Pradesh, Godavari falls into the Bay of Bengal north 
of Rajahmundry. The basin lies between latitudes 16˚16'0"N and 23˚43'N longitudes 73˚26'E and 83˚07'E. The 
basin extends over an area of 312,813 km2, which is nearly 10% of the total geographical area of the country. It 
is bounded on the north by the Satmala Hills, the Ajanta Range and the Mahadeo Hills, on the east and south by 
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the Eastern Ghats and on the west by the Western Ghats. The study area of the research is the upper Godavari 
basin in Maharashtra state in India. The mean monthly Tmax in the upper Godavari basin varies from 29.64 to 
38.60 and mean annual Tmax is 32.45. The mean monthly Tmin ranges from 14.38 to 25.12 based on decadal 
(1961-2007) observed values (Figure 1). 

3. Data Extraction 
1) Reanalysis data 
The monthly mean atmospheric variables were derived from the National Centre for Environmental Predic-

tion (NCEP/NCAR) reanalysis dataset for the period from January 1961 to December 2003. The data have a ho-
rizontal resolution of 2.5˚ × 2.5˚ and seventeen constant pressure levels in the vertical.  

2) GCM data  
The GCMs selected in this study are CGCM3 (3.75˚ latitude × 3.75˚ longitude) and HadCM3 (2.5˚ latitude × 

3.75˚ longitude). CGCM3 is developed by Canadian Centre for Climate Modelling and Analysis, whereas 
HadCM3 by Hadley Centre for Climate Prediction and Research/Met Office, UK, respectively. The future sce-
narios considered in this study are A1B and A2 for CGCM3 model and A2 and B2 for HadCM3 model, respec-
tively. The predictor variables are available for period 1961-2100 for CGCM3 model, 1961-2099 for HadCM3 
model. The selection of CGCM3 and HadCM3 is made on the basis of literature review and availability of data 
in SDSM compatible format. Further, these two models have been extensively used in statistical downscaling of 
climate variables over Indian Sub-continent [2] [19] [20]. The gridded predictor variables of NCEP/NCAR, 
CGCM3 and HadCM3 for the nearest grid in study area have been directly downloaded from the websites of 
Data Access Integration (DAI) (http://loki.qc.ec.gc.ca/DAI/predictors-e.html) and Canadian Climate Impacts 
Scenarios (CCIS) (http://www.cics.uvic.ca/scenarios/index.cgi) respectively. The predictors are simulated under  

 

 
Figure 1. Basin map of Godavari basin. 
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historical GHG and aerosol concentration experiment (20C3M) as well as Special Report on Emission Scenarios 
(SRES) A2 for future run for CGCM3 model and HadCM3 model respectively. 

3) Observed data obtained from Indian Metrological Department (IMD), Pune India in gridded format has 
been used in this study. 

4. Methodology 
Statistical Down-Scaling Model (SDSM) was developed by Wilby and Dawson [9] has been used to construct 
climate change scenarios for the catchment of Upper Godavari in Maharashtra. SDSM as a statistical tool was 
adopted due to several advantages such as low cost and user friendly over dynamical methods. There are many 
studies which have used SDMS in climate change impact assessments [14]-[16]. Regression method establishes 
a linear or nonlinear regression between predictands and predictors. Therefore, this method is highly depends on 
the empirical statistical relationships. The main advantage of it is simplicity and less computationally demanding 
of running the regression statistical method. However it is limited to the locations where good regression results 
could be found. 

In SDSM, generation of station scale weather parameters is linearly conditioned by observed large scale pre-
dictors of atmosphere ( 1, 2, ,j n= 

). The downscaled process is either unconditional or conditional. The down- 
scaling for the conditional process like daily PCP depends on an intermediate variable such as occurrence of a 
wet day. The occurrence of wet day (Wi ) on day i is linearly dependent on predictors ijX  (Equation (1)) 

1
n

o j ijjWi X
=

= ∝ + ∝∑                                  (1) 

under the constraint 0 1Wi≤ ≤ . The value of Wi  varies according to prevailing large-scale weather conditions 
(represented by the predictor variables) between 0 and 1. The precipitation will occur if uniform random number 
r Wi≤ . Wi  is not a Boolean (0 or 1) number but is a continuous variable between 0 and 1. For example, on a 
day with high pressure, Wi  might be equal to 0.2. Then, r is used to determine whether a rainy day will actual-
ly occur depending upon whether r ≤ 0.2. The amount of total PCP (Pi) downscaled on day i with return of wet 
day is given by Equation (2) 

1
nk

i o j ij ijP Xβ β
=

= + +∑                                   (2) 

where k is a transformation (fourth root, inverse normal or logarithmic) which is applied, as PCP data is skewed 
in nature. In case of unconditional processes like daily temperature (Tmax and Tmin), a direct linear relationship 
is established between the predictand Ui and selected NCEP/NCAR predictors Xij on individual sites shown in 
Equation (3) 

1
n

i o j ij ijU Xγ γ
=

= + +∑                                   (3) 

where Ui is temperature on day i and ijX  is selected NCEP/NCAR predictors on day i. j∝ , jβ  and jγ  are 
regression coefficients estimated for each month using least-squares regression and i  is model error. It is gen-
erated stochastically using a series of serially independent Gaussian numbers and is added to the deterministic 
components on daily basis. 

The various steps followed in the present study for downscaling and scenario generation are shown in Figure 
2. 

4.1. Quality Control Check, Transformation and Screening of Probable Predictors 
Station-based meteorological data may have errors in terms of missing records or outliers. Quality control check 
function is used to identify such errors prior to model calibration. The missing data may be replaced by a data 
identifier code, i.e., −999. SDSM provides facility to transform data before calibration using different types of 
transformations such as logarithm, power, inverse, lag, binomial, etc. After quality control check and transfor-
mation, screen variable operation is applied to select appropriate sets of observed predictors from the suite of 
NCEP/NCAR reanalysis datasets based on scatter plots, correlation and partial correlation statistics [17]. Table 
1 shows the predictors used in downscaling process. 



V. R. Saraf, D. G. Regulwar 
 

 
35 

 
Figure 2. Flow chart showing steps involved in downscaling and scenario generation (modified after 
Wilby and Dawson, 2007). 

 
Table 1. NCEP predictors used in the screening process. 

No. Predictor description No. Predictor description 

1 p_f: Surface airflow strength 14 r500: 500 hPa relative humidity 

2 p_u: Surface zonal velocity 15 p8_f: 850 hPa airflow strength 

3 p_v: Surface meridional velocity 16 p8_u: 850 hPa zonal velocity 

4 p_z: Surface vorticity 17 p8_v: 850 hPa meridional velocity 

5 p_th: Surface wind direction 18 p8_z: 850 hPa vorticity 

6 p_zh: Surface divergence 19 p8th: 850 hPa wind direction 

7 rhum: Surface relative humidity 20 p8zh: 850 hPa divergence 

8 p5_f: 500 hPa airflow strength 21 r850: 850 hPa relative humidity 

9 p5_u: 500 hPa zonal velocity 22 p500: 500 hPa geopotential height 

10 p5_v: 500 hPa meridional velocity 23 p850: 850 hPa geopotential height 

11 p5_z: 500 hPa vorticity 24 Temp: Mean temperature at 2 m height 

12 p5th: 500 hPa wind direction 25 shum: Surface-specific humidity 
13 p5zh: 500 hPa divergence 26 mslp: Mean sea level pressure 

4.2. Calibration and Validation 
SDSM is calibrated using observed station scale data (Tmax, Tmin and PCP) and screened sets of observed pre-
dictors, i.e., NCEP/NCAR reanalysis datasets. SDSM offers three different types of sub models; 1) monthly, 2) 
seasonal, and 3) annual for the downscaling of predictands (Tmax, Tmin and PCP) from the large scale predic-
tors. The monthly sub model derives 12 different regression equations, one for each month, whereas seasonal 
sub model generates four different regression equations, one for each season. In case of annual sub model, a sin-
gle regression equation is generated for all 12 months having same model parameters. The process involved in 
downscaling may be either unconditional (e.g., Tmax, Tmin) or conditional (e.g., PCP). There are two methods 
for optimizing SDSM; 1) Dual Simplex and 2) Ordinary Least Squares. Both the methods provide comparable 
results but Ordinary Least Squares is much faster and has been used in the present study. Further, monthly sub 
model type is preferred because there are large monthly variations in Tmax, Tmin and PCP at different stations 
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within the study region. In monthly sub model, identical sets of predictors and predictands generate different 
statistical values for each month. 

4.3. Generation of Present and Future Time Series for Tmax, Tmin and PCP  
After calibrating the model, Weather Generator function is applied to generate ensembles of synthetic daily time 
series of Tmax, Tmin and PCP representing present climate from screened sets of NCEP/NCAR predictors. The 
synthetically generated daily time series of Tmax, Tmin and PCP is compared (in terms of statistics) with ob-
served records to know how close it is to the present climate. Finally, Scenario Generator function is used to si-
mulate future time series of Tmax, Tmin and PCP using outputs of GCMs (CGCM3 and HadCM3) on daily 
time-step under different emission scenarios. 

5. Bias Correction 
In this study, bias correction (BC), which is discussed in detail below, is also applied to the downscaled data ob-
tained from the SDSMs using HadCM3 and CGCM predictors, in order to obtain a more realistic and unbiased 
data of future climate. The bias correction approach is used to eliminate the biases from the daily time series of 
downscaled data [18]-[20]. In this method, the biases are obtained by subtracting (in the case of temperature) the 
long-term monthly mean (1971-1990, 20 years) of observed data, from the mean monthly simulated control data 
(downscaled data by SDSM for the period of 1971-1990, 20 years), and dividing (in the case of precipitation) 
the long-term observed monthly mean data with simulated control data. The biases are then adjusted with the 
future downscaled daily time series according to their respective months. Equation (4) and Equation (5) are used 
to de-bias daily temperature and precipitation data. 

( )deb SCEN CONT OBST T T T= − −                                 (4) 

( )deb SCEN OBS CONTP P P P= ×                                 (5) 

where debT  and debP  are the de-biased (corrected) daily time series of temperature and precipitation respec-
tively for future periods. SCEN represents the scenario data downscaled by SDSM for future periods (e.g., 
2011-2099), and CONT represents downscaled data by SDSM for the present period (e.g., 1961-2000). SCENT  
and SCENP  are the daily time series of temperature and precipitation generated by SDSM for future periods re-
spectively. CONTT  and CONTP  are the long term mean monthly values for temperature and precipitation respec-
tively for the control period simulated by SDSM. OBST  and OBSP  represent the long-term mean monthly ob-
served values for temperature and precipitation. The bar on T and P shows the long-term average. The frequency 
and intensity of precipitation are the two main factors affecting precipitation variability [21]. The application of 
this method of study is to correct the precipitation amount and not the frequency, and also to remove any syste-
matic errors belonging to SDSM during downscaling. It is assumed that the frequency is accurately simulated by 
SDSM. 

6. Result and Discussion 
In statistical downscaling, screening of suitable predictors for downscaling predictands is one of the most im-
portant steps. The explanatory power of individual predictor variable varies both spatially and temporally [9]. 
The choice of predictors can be different for different geographical regions depending on the properties of the 
predictor and the predictand to be downscaled [2]. On the basis of the correlation values and scatter plots, the 
selected suitable predictors for downscaling the temperatures and daily precipitation values for this case study 
are listed in Table 2. 

The calibrate model takes up each of the predictand and a set of probable predictors and computes the para-
meters of multiple regression equations by using an optimization algorithm (ordinary least squares). Monthly 
model type is selected in which different model parameters are derived for each month. From the 20 years of 
data representing current climate (1961-1980) have been used for calibrating the regression model whereas 20 
years of data (1981-2000) have been used to validate the model. For downscaling temperature unconditional 
process is selected and for precipitation conditional process is selected. The fourth root transformation is applied 
to the original PCP data to convert it to a normal distribution. 
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Table 2. Selected predictor variables. 

Selected predictor variables for upper Godavari basin 

Predictor 
Predictand 

Tmax Tmin Precipitation 

ncepp_zas √   

ncepp5_fas √ √  

ncepp5thas √ √  

ncepp8thas √ √  

nceptempas √ √ √ 

ncepp5_zas  √  

ncepp 850as  √  

ncepp5_uas   √ 

ncepp500as  √ √ 

ncepp8_vas   √ 

ncepshumas   √ 

ncepp_thas √   

 
The statistical measures, namely, coefficient of determination (R2), root mean square error(RMSE), mean ab-

solute percentage error (MAPE), mean (μ), standard deviation (SD), standard error of mean (SE μ) and mean 
absolute deviation (MAD) are used to compare observed data with downscaled data during calibration and vali-
dation period. The value of R2 is indicative of strength between observed and downscaled (simulated) values 
whereas RMSE and MAPE are used to determine accuracy of the model. R2 value explains correlation between 
the observed and downscaled values and lies between 0 (poor) to 1 (best). However, μ and SE_μ are exercised to 
test how well the model predicted the mean values, while SD and MAD are used to investigate variability of da-
ta simulated by the model. For this study 20 ensembles were generated using the model and used to examine the 
precipitation and temperature change in Upper Godavari basin. SDSM have the capacity to generate up to 100 
ensembles and can be used to research the uncertainty analysis of climate scenario.  

Table 3 and Table 4 shows comparison between statistical measures of observed and downscaled NCEP/ 
NCAR for mean monthly Tmax, Tmin and PCP during calibration period under both the models. All values of 
statistical measures are much closer to the statistics of observed data for temperature and precipitation.  

Similarly, results of comparison between observed and downscaled mean monthly Tmax, Tmin and PCP in 
terms of statistical measures for validation period are given in Table 5 and Table 6. In case of NCEP/NCAR 
data, the values of R2 and RMSE are found in the range of 0.82 - 0.84 and 1.33 - 1.41 C for Tmax and in the 
range of 0.57 - 0.63 and 1.66 - 1.83 C for Tmin respectively. For PCP values of R2 are in the range 0.73 - 0.75 
and RMSE range is 18.10 - 18.97. 

The higher value of R2 is obtained for Tmax for CGCM3 model as compared to HadCM3 model. Other statis-
tical measures have also shown a good agreement with observed statistics. However, comparatively high values 
of RMSE are obtained for precipitation under both the models. 

In this study, bias correction (BC), which is discussed above, is also applied to the downscaled data obtained 
from the SDSMs using HadCM3 and CGCM3 predictors, in order to obtain a more realistic and unbiased data of 
future climate. Before applying it on the future downscaled data, the mean monthly biases are obtained from the 
period of 1981-1990 and validated for the period of 1991-2000. The corrected downscaled data (Tmax, Tmin, 
and precipitation) is compared with the observed data by calculating R2 and RMSE (Table 7). After successful 
validation, BC is applied to the future downscaled data (Tmax, Tmin, and precipitation) by both GCM.  

6.1. Change in Future Monthly Temperature (Tmax and Tmin) 
The change in mean annual Tmax, Tmin and PCP in upper Godavari river basin under scenarios A1B, A2 of 
CGCM3 model and A2, B2 of HadCM3 model is given in Table 8. The rise in Tmax and Tmin is predicted in 
future under all scenarios of both the models. In case of CGCM3 model for Tmax, there is decrease in first time  



V. R. Saraf, D. G. Regulwar 
 

 
38 

Table 3. Statistical comparison of observed and downscaled mean monthly Tmax and Tmin during calibration (1961-1980). 

Model Variable Data type μ (˚C) SD (˚C) SE-μ (˚C) MAD (˚C) R2 RMSE (˚C) MAPE 

CGCM3 

Tmax 
OBS 36.77 3.22 0.97 2.81    

NCEP 37.93 3.66 1.10 3.23 0.95 1.41 3.09 

Tmin 
OBS 23.50 2.80 0.85 2.16    

NCEP 24.48 2.58 0.78 2.10 0.71 1.52 4.61 

HadCM3 

Tmax 
OBS 36.77 3.22 0.97 2.81    

NCEP 37.96 3.66 1.10 3.25 0.95 1.46 3.17 

Tmin 
OBS 23.50 2.80 0.85 2.16    

NCEP 24.48 2.72 0.82 2.25 0.68 1.59 4.70 

 
Table 4. Statistical comparison of observed and downscaled mean monthly PCP during calibration (1961-1980). 

Model Variable Data type μ SD SE-μ MAD R2 RMSE MAPE 

CGCM3 PCP(mm) 
OBS 38.64 30.27 9.13 27.14    

NCEP 31.94 25.31 7.63 21.68 0.88 10.36 15.79 

HadCM3 PCP(mm) 
OBS 38.64 30.27 9.13 27.14    

NCEP 31.13 25.02 7.55 21.38 0.88 10.64 19.03 

 
Table 5. Statistical comparison of observed and downscaled mean monthly Tmax and Tmin during validation (1981-2000). 

Model Variable Data type μ (˚C) SD (˚C) SE-μ (˚C) MAD (˚C) R2 RMSE (˚C) MAPE 

CGCM3 

Tmax 
OBS 36.98 3.33 1.00 2.95    

NCEP 37.96 3.72 1.12 3.26 0.84 1.33 2.91 

Tmin 
OBS 23.58 2.77 0.84 2.14    

NCEP 24.63 2.67 0.80 2.18 0.63 1.66 5.48 

HadCM3 

Tmax 
OBS 36.98 3.33 1.00 2.95    

NCEP 38.06 3.74 1.13 3.29 0.82 1.41 3.08 

Tmin 
OBS 23.58 2.77 0.84 2.14    

NCEP 24.67 2.74 0.83 2.34 0.57 1.83 5.93 

 
Table 6. Statistical comparison of observed and downscaled mean monthly PCP during validation (1981-2000). 

Model Variable Data type μ SD SE-μ MAD R2 RMSE MAPE 

CGCM3 PCP(mm) 
OBS 42.95 36.53 11.02 32.45    

NCEP 31.96 26.33 7.94 23.01 0.75 18.10 31.89 

HadCM3 PCP(mm) 
OBS 42.95 36.53 11.02 32.45    

NCEP 32.01 25.51 7.69 22.28 0.73 18.97 30.24 

 
Table 7. Statistical comparison of observed and downscaled (before and after bias correction) mean monthly Tmax, Tmin, 
and precipitation during base line period (1961-2000). 

  Tmax Tmin Precipitation 

HadCM3_A2 (before bias) 
R2 0.99 0.99 0.98 

RMSE 0.37 0.14 0.54 

HadCM3_A2 (after bias) 
R2 1.00 1.00 0.99 

RMSE 0.14 0.15 0.39 

HadCM3_B2 (before bias) 
R2 0.98 0.99 0.99 

RMSE 0.42 0.18 0.47 
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Continued 

HadCM3_B2 (after bias) 
R2 0.99 0.99 0.99 

RMSE 0.11 0.12 0.38 

CGCM3_A2 (before bias) 
R2 0.79 0.83 0.49 

RMSE 1.40 1.62 2.97 

CGCM3_A2 (after bias) 
R2 0.99 0.99 0.99 

RMSE 0.13 0.15 0.19 

CGCM3_A1B (before bias) 
R2 0.78 0.83 0.42 

RMSE 1.47 1.64 3.75 

CGCM3_A1B (after bias) 
R2 0.99 0.99 0.96 

RMSE 0.27 0.32 0.94 

 
Table 8. Future change in mean annual Tmax, Tmin and PCP under different scenario with respect to base line 1961-2000. 

Model Scenario Future period Tmax Tmin PCP 

HadCM3 

A2 

2020s 0.06 0.68 0.45 

2050s 0.03 0.51 1.12 

2080s 0.08 0.30 2.26 

B2 

2020s 0.03 0.53 0.56 

2050s 0.01 0.28 0.98 

2080s 0.01 0.15 1.35 

CGCM3 

A1B 

2020s 0.47 0.44 1.07 

2050s 0.54 0.85 2.27 

2080s 0.60 1.06 4.05 

A2 

2020s 0.02 0.48 1.59 

2050s 0.10 0.94 3.56 

2080s 0.25 1.47 6.82 

 
period (2020s) of 0.02˚C and increase in second and third time period (2050s and 2080s) of 0.10 and 0.29 under 
A2 scenario and increase of 0.47˚C, 0.54˚C and 0.60˚C under A1B scenario for future periods of 2020s, 2050s 
and 2080s respectively. For Tmin under both scenario (A2 and A1B) shows increase of 0.48, 0.94, 1.47 and 0.44, 
0.85, 1.06 in 2020s, 2050s and 2080s respectively. Similarly for HadCM3 model, increase in Tmax under A2 
scenario is 0.06, 0.03 and 0.08 for all three time period respectively but there is decrease of 0.68, 0.51, 0.30 re-
spectively for Tmin in all three periods and under B2 scenario Tmax decreases in first time period and increases 
in second and third time period is 0.03, 0.01, 0.01 and Tmin shows increase of 0.53, 0.28, 0.15 respectively for 
future periods. 

Figure 3 show projected Tmax and Tmin under A1B and A2 scenario of CGCM3 model with respect to base 
period (1961-2000) for all three future periods. For Tmax significant decrease of 0.13 - 0.93, 0.11 - 1.42, 0.81 - 
2.09 is predicted for August and September also significant increase in Tmax is predicted in winter season of 
0.09 - 1.82, 0.32 - 1.92, 0.52 - 2.31 respectively for three time period under A2 and A1B scenario. The highest 
increase in Tmax is anticipated in the month of December under A1B scenarios in 2080s. On the contrary, high-
est decrease can be seen in the month of September (2.09) under A2 scenario in 2080s. In case of Tmin, increase 
is observed throughout year under scenarios A1B and A2. It is observed that increase in Tmin is prominent in 
winter season. Highest increase occur in month of November (4.06) under A2 scenario in 2080s. The predicted 
increase in monthly Tmin is in the range of 0.11 - 1.64, 0.22 - 3.04, 0.20 - 4.06 under A2 scenario and 0.02 - 
1.40, 0.03 - 2.26, 0.05, 2.88 under A1B scenario in 2020s, 2050s and 2080s respectively. 

Projected mean monthly Tmax and Tmin for future periods under A2 and B2 scenarios of HadCM3 model is 
shown in Figure 4. The overall rise in mean monthly Tmax is predicted from June to August and from Novem-
ber to January whereas decline in months of February to May and September-October under scenarios A2 and  
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Figure 3. Mean monthly change in projected Tmax and Tmin under A1B and A2 scenarios of CGCM3 model. 

 

 
Figure 4. Mean monthly change in projected Tmax and Tmin under A2 and B2 scenarios of HadCM3 model. 
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B2 in 2020s, 2050s and 2080s. The increase in Tmax is in the range of 0.23 - 1.33, 0.30 - 1.86, 0.34 - 2.74 under 
A2 scenario and 0.15 - 1.56, 0.27 - 2.67, 0.13 - 3.17 under B2 scenario, respectively. Maximum increase is ob-
served in Tmax months of June and maximum decrease is expected in month of March for third time period un-
der both scenarios. Similarly for Tmin increase observed in the month of February to May and for remaining 
part of the year it shows decrease in Tmin. The increase observed in mean monthly Tmin is 0.64 - 2.81, 0.28 - 
1.51, 0.12 - 0.41 under A2 scenario and 1.15 - 2.74, 0.80 - 1.81, 0.48 - 0.91 under B2 scenario. Decrease in 
mean monthly Tmin is 0.58 - 4.32, 0.31 - 3.21, 0.10 - 1.56 and 0.65 - 4.37, 0.12 - 2.42, 0.18 - 1.26 under A2 and 
B2 scenario respectively. Result shows that maximum decrease in Tmin is expected in the month of November 
and December for all three time periods and highest increase observed in the month of March for first time pe-
riod under A2 and B2 scenario. Predicted mean monthly Tmin shows increase in CGCM3 model and decrease in 
HadCM3 model for all three time period. 

6.2. Change in Future Monthly Precipitation 
The overall results of downscaled precipitation shows increase in mean annual precipitation in Upper Godavari 
basin for the future periods (2020s, 2050s and 2080s) under all scenarios of both the models (Figure 5). Increase 
in the surface temperature may raise rate of evaporation leading to increased precipitation [2]. In this study 
downscaled results shows overall increase in mean annual precipitation of 33%, 53%, 68% and 25%, 41%, 56% 
respectively under A2 and A1B scenario of CGCM3 and 12%, 26%, 41% and 15%, 23%, 30% respectively un-
der A2 and B2 scenario in HadCM3 during 2020s, 2050s, 2080s with respect to base period. Under both the 
models, maximum increase in mean annual precipitation is reported for A2 scenario during 2020s, 2050s and 
2080s. Further pattern of change in future mean monthly precipitation is shown in Figure 5 in which pattern of 
mean monthly precipitation forHadCM3 and CGCM3 model is shown. In HadCM3 model, significant increase 
in precipitation with varying amount is projected in the months of August (3.04 - 7.67 cm), September (2.77 -  

 

 
Figure 5. Mean monthly change in projected precipitation under A1B, A2 and B2 scenario of CGCM3 and HadCM3 model. 
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11.12 cm) and October (1.91 - 9.10 cm) under A2 and B2 scenario in HadCM3. Month of May and June shows 
decrease of 0.10 - 0.29 cm, 1.82 - 5.41 cm respectively underA2 and B2 scenario. Similarly in CGCM3 consi-
derable increase in mean monthly precipitation observed in month of June (0.91 - 26.00 cm), July (3.06 - 14.93 
cm), August (6.63 - 28.76 cm) and September (0.58 - 8.80 cm) under A2 and A1B scenario in 2020s. 2050s and 
2080s. CGCM3 model shows decrease in projected mean monthly precipitation in month of April (0.04 - 0.06 
cm) and May (0.14 - 0.29 cm) under A1 and A1B scenario. The increase is observed in projected precipitation 
during monsoon season (June, July, August and September) under both the models. 

6.3. Change in Dry and Wet Spell Length 
Annual mean length of maximum dry spell length shows increase in first time period and decrease in second and 
third time period under A2 scenario and decrease in all three time period under B2 scenario in HadCM3 model. 
Figure 6 shows graphical comparison of maxdspel and maxwspel length with base line period. Considerable in-
crease in mean monthly maxwspel length observed in month on June (1.85 - 11.9) and month of September (0.5 
- 6.25) under A2 and B2 scenario. Results shows decrease in mean monthly maxdspel length in month of Octo-
ber and November for second and third time period under A2 scenario and for the same month decrease in 
maxwspel under B2 scenario for three time period. 

Figure 7 shows graphical comparison of mean monthly maxdspel and maxwspel length with base line period 
under A2 and A1B scenario in CGCM3 model. Results shows decrease in maxdspel length for all three time pe-
riod under A2 and A1B scenario and maxwspel length decreases in first and second time period and increases in 
third time period. Significant decrease in mean monthly maxdspel length observed in month of May (11.4 - 
13.95), November (12.45 - 19.35). December (7.2 - 15.75) under A2 and A1B scenario in 2020s, 2050s and 
2080s. Similarly significant increase in mean monthly maxwspel observed in month of May (2.45 - 3.05), June 
(6.75 - 12), November (2.9 - 7.15) and December (2.45 - 4.3) under A1 and A1B scenario for all three time period. 

 

 
Maxdspel-Maximum dry spel length in days, Maxwspel-Maximum wet spel length in days 

Figure 6. Mean monthly change in projected dry and wet spel length under A2 and B2 scenario of HadCM3 model. 
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Figure 7. Mean monthly change in projected dry and wet spel length under A2 and B2 scenario of HadCM3 model. 

7. Conclusion 
SDSM (hybrid of MLR and SWG based downscaling technique) is used to downscale and generate long-term 
(2011-2040, 2041-2070 and 2071-2099) future scenarios of climate variables (temperature and precipitation) 
from predictors of CGCM3 and HadCM3 models in the upper Godavari river basin, India. These future scena-
rios are generated under forcing of A2, A1B and B2 emission scenarios. The monthly sub model of SDSM is 
found efficient in downscaling of maximum and minimum temperature and precipitation. SDSM projects in-
crease in mean annual temperature and precipitation for the future periods (2020s, 2050s and 2080s) under both 
the models for all the emission scenarios. The projected increase in maximum temperature is higher in HadCM3 
model as compared to CGCM3 model. In minimum temperature HadCM3 model shows decrease and CGCM3 
model shows increase. Similarly CGCM3 model shows higher increase in precipitation comparative to CGCM3 
model. The projected increment is high for A1B scenario and lowest in B2 scenario as concentration of carbon 
dioxide (CO2) in A1B is 720 ppm and in B2 it is 450 ppm. The concentration of CO2 is maximum in A2 scena-
rio i.e. 850 ppm but in this study highest increment observed in A1B scenario. In precipitation both models un-
der all scenarios show increase in future period. The higher rate of increase is observed in the month of June, 
July and August under A1 and A1B scenario in CGCM3. In HadCM3 model this increase is significant in the 
month of August, September and October under A2 and B2 scenario. In projection of dry spel length, increase is 
high in CGCM3 model as compared to HadCM3 model. In wet spel length both models show different results. 
CGCM3 shows decrease in wet spel length in 2020s and 2050s but increase in 2080s. But in HadCM3 model it 
shows increase in projected wet spel length during all three time period. Both models show different patterns in 
projected future Tmax, Tmin and precipitation under different scenario. The uncertainties in projected tempera-
ture and precipitation are due to uncertainties associated with CGCM3 and HadCM3 models and limitations of 
the SDSM in downscaling. The results obtained from CGCM3 model are expected to be more reliable than 
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HadCM3 because of higher R2 for CGCM3 model during validation period. The results of this study may be 
helpful to development planners, decision makers, and other stakeholders when planning and implementing ap-
propriate basin-wide water management strategies to adapt to climate change for Godavari river basin. 
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