
Journal of Applied Mathematics and Physics, 2016, 4, 16-20 
Published Online January 2016 in SciRes. http://www.scirp.org/journal/jamp 
http://dx.doi.org/10.4236/jamp.2016.41003  

How to cite this paper: Bose, S.K. and Nguyen, D.T. (2016) Efficient Generalized Inverse for Solving Simultaneous Linear 
Equations. Journal of Applied Mathematics and Physics, 4, 16-20. http://dx.doi.org/10.4236/jamp.2016.41003 

 
 

Efficient Generalized Inverse for Solving  
Simultaneous Linear Equations 
S. Kadiam Bose1, D. T. Nguyen2 
1Structural Technologies Strong Point LLC, Baltimore, MD, USA 
2Department of Civil and Environmental Engineering, Old Dominion University, Norfolk, VA, USA 

 
 
Received 22 November 2015; accepted 5 January 2016; published 12 January 2016 

 
 

 
Abstract 
Solving large scale system of Simultaneous Linear Equations (SLE) has been (and continue to be) a 
major challenging problem for many real-world engineering and science applications. Solving SLE 
with singular coefficient matrices arises from various engineering and sciences applications 
[1]-[6]. In this paper, efficient numerical procedures for finding the generalized (or pseudo) in-
verse of a general (square/rectangle, symmetrical/unsymmetrical, non-singular/singular) matrix 
and solving systems of Simultaneous Linear Equations (SLE) are formulated and explained. The 
developed procedures and its associated computer software (under MATLAB [7] computer envi-
ronment) have been based on “special Cholesky factorization schemes” (for a singular matrix). 
Test matrices from different fields of applications have been chosen, tested and compared with 
other existing algorithms. The results of the numerical tests have indicated that the developed 
procedures are far more efficient than the existing algorithms. 

 
Keywords 
Generalized Inverse Algorithms, Simultaneous Linear Systems, Matrix Inverse, Singular Matrix, 
Pseudo Inverse, Cholesky Factorization 

 
 

1. Introduction 
In scientific computing, most computational time is spent on solving system of Simultaneous Linear Equations 
(SLE) which can be represented in matrix notations as 

Ax b=                                           (1.1) 
where n nA R ×∈  is a singular/non-singular matrix, and b is a given vector in nR . For practical engineering/ 
science applications, matrix A can be either sparse (for most cases), or dense (for some cases). For a non-sin- 
gular coefficient matrix A, direct methods (Cholesky factorization, TLDL  algorithm, LU  decomposition, etc) 
or iterative methods (Conjugate Gradient algorithm, Bi-Conjugate Stabilization, GMRES, etc.) are used to solve 
Equation (1.1). If the coefficient matrix is singular or rectangular, the above mentioned direct and iterative me-
thods cannot be used to solve Equation (1.1) and thus generalized inverse is needed to solve the unknown solu-
tion vector x in Equation (1.1). 

http://www.scirp.org/journal/jamp
http://dx.doi.org/10.4236/jamp.2016.41003
http://dx.doi.org/10.4236/jamp.2016.41003
http://www.scirp.org


S. K. Bose, D. T. Nguyen 
 

 
17 

The generalized (or pseudo) inverse of a matrix is an extension of the ordinary/regular square (non-singular) 
matrix inverse, which can be applied to any matrix (such as singular, rectangular etc.). The generalized inverse 
has numerous important engineering and sciences applications. Over the past decades, generalized inverses of 
matrices and its applications have been investigated by many researchers [1]-[6]. Generalized inverse is also 
known as “Moore-Penrose inverse” or “g-inverse” or “pseudo-inverse” etc. 

In this paper we introduce an efficient (in terms of computational time and computer memory requirement) 
generalized inverse formulation to solve SLE with full or deficient rank of the coefficient matrix. The coefficient 
matrix can be singular/non-singular, symmetric/unsymmetric, or square/rectangular. Due to popular MATLAB 
software, which is widely accepted by researchers and educators worldwide, the developed code from this work 
is written in MATLAB language.  

The rest of this paper is organized as follows. In Section 2, we discuss background of generalized inverse. In 
Section 3, we give a description of the algorithm. This section also describes the efficient generalized inverse 
formulation (which uses modified Cholesky factorization). In Section 4, we present comparison of numerical 
performances of the proposed algorithm with other existing algorithms. Extensive set of coefficient matrices 
(including rectangular, square, symmetrical, non-symmetrical, singular, non-singular matrices) obtained from 
well-established/popular websites [8] [9] were tested and the numerical performance in terms of timings, error 
norm were compared with other algorithms. Finally, conclusions are drawn in Section 5. 

2. Singular Value Decomposition (SVD) and the Generalized Inverse 
A general (square or rectangular) matrix n nA R ×∈  can be decomposed as 

Σ HA U V=                                       (2.1) 
where 

Σ 0,
a diagonal matrix(does NOT have to be a square matrix)

Σ 0,
ij

ij

for i j
for i j

= ≠Σ = =  ≥ =
          (2.2) 

[ ] [ ] unitary matricesU and V =  

1

(for real matrices)
and

H T

H

U U
U U −

 =
 

= 
                           (2.3) 

Let A be a singular matrix of size m n×  and let k be the rank of the matrix. Based on Equation (2.1), one has 

;HA U V= Σ  

1

2Σ

k

where

σ
σ

σ

 
 
 =
 
 
 



 

with 

1 2 0;kσ σ σ≥ ≥ ≥ >                                 (2.4) 

and Eigen Values of (or )T T
i A A AAσ = −  

Note: Eigen-values of HA A×  and Eigen-values of HA A×  are the same. However, the Eigen-vectors of 
HA A×  and Eigen-vectors of HA A×  are “NOT” the same. 

Then, the generalized inverse A+  of A  is the n m×  matrix and is given as 
HΣ UA V+ +=                                     (2.5) 

where 
[ ] [ ]
[ ] [ ]

0
0 0
E+  

Σ =  
 

 and E  is the k k×  diagonal matrix, with 1 1ii iE for i k−= Σ ≤ ≤ . 



S. K. Bose, D. T. Nguyen 
 

 
18 

3. Efficient Generalized Inverse Algorithms [1]-[3] [5] [6]  
Moore-Penrose inverse can be computed using Singular Value Decomposition (SVD), Least Squares Method, 
QR factorizations, Finite Recursive Algorithm [2] [3], etc. In this work, our numerical algorithms have been 
based on: 

(a) The “special Cholesky factorization” (for symmetrical/singular coefficient matrix), and 
(b) The generalized inverse of a product of 2 matrices [6] and can be described in the following paragraphs.  
The Moore-Penrose inverse (or generalized inverse or pseudo inverse) of a m n×  matrix K  (not necessar-

ily a square matrix) is the unique n m×  matrix K +  which satisfies the following four conditions: 
1. General condition:  ,KK K K+ =  
2. Reflexive condition: ,K KK K+ + +=  

3. Normalized condition: ( ) ,KK KK+ +′ =  

4. Reverse normalized condition: ( )K K K K+ +′ =  

Consider [ ] ,G x b=




 with a square coefficient n n×  matrix, and let the rank be less than the size of the ma-

trix (if r is the rank of the matrix, then r n≤ ). Let the size of the known right-hand-side vector b


 be 1n× . 
Consider a symmetric positive n n×  matrix ,G G′  with rank r n≤  (here, the matrix [ ]G  plays the same 

role as matrix [ ]A  in Equation (1.1)), then based on the theorem presented in [6], there exists a unique [ ]M  
such that: 

G G M M′ ′=                                      (3.1) 

In Equation (3.1), matrices [ ] [ ]andG G′  have the dimensions  and n m m n× × , respectively. 
M is the upper triangular (special) Cholesky factorized matrix and contains exactly n r−  zero rows. Re-

moving the zero rows from M, one obtains a r n×  (upper, rectangular) matrix L′ . 
A M M LL′ ′≡ =                                   (3.2) 

In this work, the upper triangular (special) Cholesky factorized matrix [ ]M  can be obtained by the regular/ 
standard Cholesky factorization, with the following modifications: 

a) When the diagonal term of the current thi  row is very close to zero, then factorization of this dependent 
row is skipped. 

b) When the current thi  row is factorized, all previous rows 1, 2, , 1k i= … −  were used except those depen-
dent row(s). 

Consider the generalized inverse of a matrix product AB [1] [6] 

( ) ( )AB B A ABB A+ +′ ′ ′ ′=                                 (3.3) 

From Equation (3.3), if B I=  then 

( )A A A A++ ′ ′=                                    (3.4) 

If B A′=  and A is a n r×  matrix of rank r, then one obtains from Equation (3.3) 

( ) ( ) ( )( )AA A A AA A A
+

+ ′ ′′ ′ ′ ′ ′ ′=                              (3.5) 

Let us consider regular inverse in Equation (3.5) in place of generalized inverse 

( ) ( ) ( ) ( )1 1 1AA A A AA A A A A A A A A+ − − −′ ′ ′ ′ ′ ′ ′= =                      (3.6) 

Using Equation (3.4), 

( )G G G G++ ′ ′=                                     (3.7) 

From Equations (3.1)-(3.2) and Equation (3.6) one obtains, 



S. K. Bose, D. T. Nguyen 
 

 
19 

( ) ( ) ( ) ( )1 1G G LL L L L L L L+ + − −′ ′ ′ ′ ′= =                            (3.8) 

Thus, Equation (3.7) becomes  

( ) ( ) ( )1 1G G G G L L L L L L G+ − −+ ′ ′ ′ ′ ′ ′= =                          (3.9) 

While MATLAB solution can be obtained by ( ) ,x pinv G b= ×




 implying the generalized inverse G+  [see 

Equation (3.9)] to be formed explicitly, our main idea is to solve SLE where b


 is a known right-hand-side 
vector. 

4. Numerical Performance of ODU Generalized Inverse Solver  
Based on the detailed algorithms explained in Section 3, the numerical performance of our proposed procedures 
are evaluated in this section. The known RHS vector { }b  can be random vector, or can be chosen such a way 

that the unknown solution vector { } { }1,1, ,1x = … .    
We also compared the performance of our algorithm with the efficient algorithm described in [6] and also 

with MATLAB built-in function ( )pinv  [7] for computing the generalized inverse explicitly. We use 
MATLAB version 7.6.0.324 (R2008a) on Intel Core 2 CPU, 2.13 GHZ, 2GB RAM, Windows XP Professional 
SP3 for numerical comparisons.  

Table 1 and Table 2 records the times (in seconds) taken by our proposed algorithm, the algorithm mentioned 
in [6] and MATLAB built-in function [7] ( )pinv . For our convenience, we represent our algorithm with

( )ODU ginverse− , algorithm in [6] with geninv  and MATLAB built-in function with ( )MATLAB pinv− . 
In addition, we have also presented the error norm for all the test matrices. 

 
Table 1. Computational times (in seconds) for symmetric rank-deficient test matrices with RHS Vector as linear combina-
tion of columns of coefficient matrix. 

Sl. No. Name Size Rank ODU-ginverse 
Error Norm 

geninv 
Error Norm 

MATLAB-pinv ( ) 
Error Norm 

1 lock_700 700 × 700 165 0.1514 
1.033 × 10−8 

0.3446 
1.1399 × 10−6 

1.2967 
2.215 × 10−11 

2 dwt_1005 1005 × 1005 995 2.6634 
7.1302 × 10−9 

4.2889 
6.764 × 10−6 

14.0320 
4.5736 × 10−12 

3 bcspwr06 1454 × 1454 1446 8.5029 
1.477 × 10−8 

13.3176 
1.829 × 10−5 

40.3646 
2.7131 × 10−12 

4 bcsstm13 2003 × 2003 1241 11.5997 
6.7629 × 10−9 

19.1901 
1.826 × 10−8 

36.3413 
5.6493 × 10−13 

5 lock2232 2232 × 2232 368 5.5518 
7.9519 × 10−9 

10.8755 
2.5797 × 10−7 

40.7582 
1.0761 × 10−11 

6 cegb2802 2802 × 2802 289 8.9571 
9.7558 × 10−9 

18.6816 
3.7220 × 10−7 

69.9847 
1.7532 × 10−11 

 
Table 2. Computational times (in seconds) for rectangular rank-deficient test matrices (Tall type: Rows >> Cols) with RHS 
Vector as linear combination of columns of coefficient matrix. 

Sl. No. Name Size Rank ODU-ginverse 
Error Norm 

geninv 
Error Norm 

MATLAB-pinv ( ) 
Error Norm 

1 D_6 970 × 435 339 0.1347 
1.216 × 10−11 

0.2809 
1.333 × 10−11 

1.3240 
7.403 × 10−13 

2 mk9-b2 1260 × 378 343 0.1162 
5.950 × 10−14 

0.2478 
1.018 × 10−13 

0.6098 
1.681 × 10−13 

3 Franz1 2240 × 768 755 1.3077 
1.457 × 10−13 

2.3649 
1.290 × 10−13 

6.0490 
2.806 × 10−13 

4 mk10-b2 3150 × 630 586 0.8094 
1.599 × 10−13 

1.5776 
2.057 × 10−13 

3.2363 
2.573 × 10−13 



S. K. Bose, D. T. Nguyen 
 

 
20 

5. Conclusion  
In this paper, various efficient algorithms for solving SLE with full rank, or rank deficient have been reviewed, 
proposed and tested. The developed numerical procedures can be applied to solve “general” SLE (in the form 
[ ]{ } { }G x b= , where the coefficient matrix [ ]G  could be square/rectangular, symmetrical/unsymmetrical, 
non-singular/singular). The users have option to choose either a direct solver or an iterative solver inside the ge-
neralized inverse to solve for SLE. Numerical results have shown that the proposed algorithms are highly effi-
cient as compared to existing algorithms [6] (including the popular MATLAB built-in function ( )*pinv G b ) 
[7]. 

Acknowledgements  
The authors would like to acknowledge Gelareh Bakhtyar for her useful discussions. 

References 
[1] Nguyen, D.T. (2006) Finite Element Methods: Parallel-Sparse Statics and Eigen-Solutions. Springer Publisher. 
[2] Golub, G.H. and Loan, C.F.V. (1996) Matrix Computations. The John Hopkins University Press. 
[3] Heath, M.T. (1997) Scientific Computing: An Introductory Survey. McGraw Hill Publisher. 
[4] Hou, G. and Wang, Y. (2004) A Substructuring Technique for Design Modifications of Interface Conditions. Structur-

al Dynamics & Materials Conference, Palm Springs, California, 19-22 April 2004.  
http://dx.doi.org/10.2514/6.2004-2010  

[5] Farhat, C. and Roux, F.X. (1994) Implicit Parallel Processing in Structural Mechanics. Computational Mechanics Ad-
vances, 2, Elsevier Publisher. 

[6] Pierre, C. (2005) Fast Computation of Moore-Penrose Inverse Matrices. Neural Information Processing—Letters and 
Reviews, 8. 

[7] MATLAB, MATLAB—The Language of Technical Computing. 
[8] Davis, T. University of South Florida Matrix Collection. 
[9] SJSU, SJSU—Singular Matrix Database. 

http://dx.doi.org/10.2514/6.2004-2010

	Efficient Generalized Inverse for Solving Simultaneous Linear Equations
	Abstract
	Keywords
	1. Introduction
	2. Singular Value Decomposition (SVD) and the Generalized Inverse
	3. Efficient Generalized Inverse Algorithms [1]-[3] [5] [6] 
	4. Numerical Performance of ODU Generalized Inverse Solver 
	5. Conclusion 
	Acknowledgements 
	References

