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Abstract 
In this paper, the analytic solutions to constrained optimal control problems are considered. A 
novel approach based on canonical duality theory is developed to derive the analytic solution of 
this problem by reformulating a constrained optimal control problem into a global optimization 
problem. A differential flow is presented to deduce some optimality conditions for solving global 
optimizations, which can be considered as an extension and a supplement of the previous results 
in canonical duality theory. Some examples are given to illustrate the applicability of our results. 
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1. Introduction 
In this paper, we consider the following linear-quadratic optimal control problem involving control constraints: 

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
0

T T

0 0 0

1min , d
2

. . , , , , ,

ft

t

f

J x u x t Qx t u t Ru t t

s t x t Ax t Bu t x t x u t U t t t

= +

 = + = ∈ ∈ 

∫


                 (1) 

where n nQ ×∈  is a positive semidefinite symmetric matrix, m mR ×∈  is a positive definite symmetric ma-
trix, and n nA ×∈ , n mB ×∈  are two given matrices. ( ) nx t ∈  is a state vector, and ( ) mu t ∈  is an ad-
missible control taking values on the set U, which is integrable or piecewise continuous on 0 , ft t   . In our work, 
we suppose that U is a closed convex set, and we study two forms of the set U, a sphere constraint and box con-
straints respectively. Problems of the above type arise naturally in system science and engineering with wide 
applications [1] [2]. 

In recent years, significant advances have been made in efficiently tackling optimal control problems [1] [3]. 
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In the unconstrained case, an optimal feedback control can be successfully obtained which seems to be a perfect 
result. For constrained optimal control problems the level of research is less complete. It is now well known that 
common approaches are based on applying a quasi-Newton or sequential quadratic programming (SQP) tech-
nique to the constrained; see for instance [4]-[8] and the references therein. But due to the presence of state or 
control constraints, all the above methods are trapped in analytical difficulties and thus are not guaranteed to 
find analytic solutions to the constrained, at best, they can provide numerical solutions. 

In this paper, a different way, canonical dual approach is used to study the problem ( )  by converting the 
original control problem into a global optimization problem. The canonical duality theory was developed from 
nonconvex analysis and mechanics during the last decade (see [9] [10]), and has shown its potential for global 
optimization and nonconvex nonsmooth analysis [10]-[14]. Meanwhile, we introduce a differential flow for 
constructing the so-called canonical dual function to deduce some optimality conditions for solving global opti-
mizations, which is shown to extend some corresponding results in canonical duality theory [9]-[11]. In com-
parison to the previous work mainly focused on simple constraints, we not only discuss linear box constraints, 
but also the nonlinear sphere constraint. Then combining the canonical dual approach given in this paper with 
the Pontryagin maximum principle, we solve the constrained optimal control problem ( )  and characterize the 
analytic solution expressed by the co-state via canonical dual variables. 

Now, we shall give the Pontryagin maximum principle and an important Lemma. 
Pontryagin Maximum Principle If ( )û ⋅  is an optimal solution to the problem ( )  and the corresponding 

state and co-state are denoted by ( )x̂ ⋅  and ( )λ̂ ⋅  respectively, for the Hamilton function 

( ) ( )T T T1 1ˆ ˆ, , , ,
2 2

H t x u Ax Bu x Qx u Ruλ λ= + + +                         (2) 

then we have, 

( ) ( )0 0
ˆˆ ˆ ˆ ˆ ˆ ˆ, , , , ,x H t x u Ax Bu x t xλ λ= = + =                            (3) 

( ) ( )Tˆ ˆ ˆ ˆˆ ˆ ˆ, , , , 0,x fH t x u A Qx tλ λ λ λ= − = − − =


                           (4) 

and 
( ) ( ) ( )( ) ( ) ( ) ( )( ) 0

ˆ ˆˆ ˆ ˆ, , , min , , , , a.e. , .fu U
H t x t u t t H t x t u t t t t tλ λ

∈
 = ∈                  (5) 

Lemma 1. An admissible pair ( ) ( )( )ˆ ˆ,x t u t  is an optimal pair to the primal problem ( )  if and only if this 
pair ( ) ( )( )ˆ ˆ,x t u t  satisfies the Pontryagin maximum principle (3), (4) and (5). 

Proof. Denote 

( ) ( ) 0
ˆ ˆ, , min , , , a.e. , .fu U

H t x H t x u t t tλ λ∗

∈
 = ∈                            (6) 

Let ( ) ( )( ),x t u t  be an arbitrary admissible pair satisfying (3). By the definition of H ∗ , we have  

( ) ( )ˆ ˆ, , , , ,H t x H t x uλ λ∗ ≤ , and ( )ˆ, ,H t x λ∗  is equivalent to the following global optimization 

( )T T
0

1 ˆmin , a.e. , .
2 fu U

u Ru t Bu t t tλ
∈

 + ∈                            (7) 

Moreover, it is easy to see that the minimizer û  of (7) depends only on the co-state λ̂ , i.e. 
ˆ

0u
x
∂

=
∂

, which 

implies that 

( ) ( ) ( ) ( )ˆˆ ˆ ˆ ˆˆ ˆ ˆ, , , , , , , , , , , .x x u x
uH t x H t x u H t x u H t x u
x

λ λ λ λ∗ ∂
= + =

∂
                   (8) 

Taking into account of the convexity of the integrand in the cost functional as well as the set U, the function 
( )ˆ, ,H t x λ∗  is convex in x, and 

( ) ( ) ( )( )

( ) ( )( )

T

T

ˆ ˆ ˆˆ ˆ ˆ, , , , , ,

ˆ ˆˆ ˆ ˆ ˆ ˆ, , , , , , ,

x

x

H t x H t x H t x x x

H t x u H t x u x x

λ λ λ

λ λ

∗ ∗ ∗≥ + −

= + −
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which leads to 

( ) ( ) ( )Tˆ ˆ ˆˆ ˆ ˆ, , , , , , .H t x u H t x u x xλ λ λ− ≤ −  

Thus, we have 

( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )( )

T

0 0

0

T T
0 0 0

ˆ

ˆ ˆ ˆˆ ˆ ˆ, , , , , , d d

ˆ ˆˆ ˆd 0.

f f

f

t t

t t

t

t

J u J u

H t x t u t t H t x t u t t t t x t x t t

t x t x t t x t x t

λ λ λ

λ λ

⋅ − ⋅      
 = − + − 

 ≤ − = − − = 

∫ ∫

∫



           (9) 

This means that J attains its minimum at û . The proof is completed. 
The above Lemma reformulates the optimal control problem ( )  into a global optimization problem (7). 

Based on this fact, we can derive the analytic solution of the problem ( )  by only solving problem (7) via the 
canonical dual approach. 

The rest of the paper is organized as follows. In Section 2, we consider the optimal control problem with a 
sphere constraint. By introducing the differential flow and canonical dual function for solving global optimiza-
tions, we derive the analytic solution expressed by the co-state via canonical dual variables. Based on the similar 
canonical dual strategy, the box constrained optimal control problem is studied and the corresponding analytic 
expression of optimal control is obtained in Section 3. Meanwhile, some examples are given to demonstration. 

2. Sphere Constrained Optimal Control Problem 

In this section, we let ( ) ( ) ( )T1 , 0
2

mU u t u t u t a a 
= ∈ ≤ > 
 

  be a sphere. Before we go to derive the analytic  

solution for the problem ( ) , we first make some preliminary concepts and theorems in solving global optimi-
zation over a sphere based on canonical duality theory which will be used in the sequel. 

2.1. Global Optimization over a Sphere 
Consider the following general optimization problem 

( ) T1min . . , ,
2

P u s t u U U u u a ∈ = ≤ 
 

                          (10) 

where ( )P u  is assumed to be twice continuously differentiable in m . 
The original idea of this section is from the paper [13] by Zhu. Denote 

( ){ }2 0, 0, for every .P u I u Uρ ρ ρ = ∈ ∇ + > ≥ ∈ 


   

  is an open set with respect to [ )0,+∞ , and it is easy to see that if ρ̂ ∈ , then ρ ∈  for any ˆρ ρ≥ . 
Assume that a ρ∗ ∈  and a nonzero vector u U∗ ∈  such that 

( ) 0.P u uρ∗ ∗ ∗∇ + =


                                  (11) 

We focus on the differential flow ( )û ρ  which is well defined near ρ∗  by 

( )
12ˆd ˆ ˆ 0,

d
u P u I uρ
ρ

−
 + ∇ + = 



                              (12) 

( )ˆ .u uρ∗ ∗=                                      (13) 

Based on the classical theory of ODE, we can obtain the solution ( )û ρ  of (12) (13), which can be extended to 
an interval in   [2]. Thus, the canonical dual function [9] [10] with respect to a given flow ( )û ρ  is defined 
as follows 
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( ) ( )( ) ( ) ( )Tˆ ˆ ˆ ,
2

dP P u u u aρ
ρ ρ ρ ρ ρ= + −                          (14) 

and the canonical dual problem associated with the problem (10) can be proposed as follows 

( ) ( ) ( )( ) ( ) ( )Tˆ ˆ ˆ: max .
2

d dP P P u u u aρρ ρ ρ ρ ρ ρ 
= + − ∈ 

 
                  (15) 

Notice that ( ) ( ) ( )( ) ( )
2

1T 2
2

d
ˆ ˆ ˆ

d
P

u P u I u
ρ

ρ ρ ρ ρ
ρ

−
 = − ∇ +  . By the definition of  , it follows that the canonical  

dual function ( )dP ρ  is concave on  . For a critical point ρ̂ ∈ , it must be a global maximizer of ( )dP ρ  
on  , sometimes, which leads to a global minimizer ( )ˆˆ ˆu u ρ=  of (10). 

Theorem 1. If the flow ( )û ρ  (defined by (11)-(13)) meets a boundary point of the ball U at ρ̂ ∈  such  

that ( ) ( )T1 ˆ ˆˆ ˆ ,
2

u u aρ ρ =  then ( )ˆû ρ  is a global minimizer of ( )P u  over U. Further one has 

( ) ( )( ) ( ) ( )
ˆ

ˆ ˆˆmin max .d d

u U
P u P u P P

ρ ρ
ρ ρ ρ

∈ ≥
= = =                        (16) 

Detailed proof of Theorem 1 can be referred to [13]-[15]. 
In what follows, we show that ( )û ρ  can be derived by solving backward differential equation. 
Lemma 2. Let ( )û ρ  be a given flow defined by (11)-(13). We call ( )û ρ , (0,ρ ρ∗ ∈   a backward diffe-

rential flow. 
Since U is bounded and ( )P u  is twice continuously differentiable, we can choose a large positive parameter 

ρ∗  such that ( )2 0P u Iρ∗ ∇ + >  , u U∀ ∈  and ( ){ }supU P uρ∗ > ∇ . If ( )0 0P∇ ≠ , then it follows from 

( )2

1
P u
ρ∗

∇
<  uniformly in U that there is a unique nonzero fixed point u U∗ ∈  such that 

( )P u
u

ρ

∗
∗

∗

−∇
=                                      (17) 

by Brown fixed-point theorem, which means that the pair ( ),u ρ∗ ∗  satisfies (11). Then we can solve (11) 
backwards from ρ∗  to get the backward flow ( )û ρ , (0,ρ ρ∗ ∈  . We refer the interested reader to [16] [17] 
for detail of choosing the desired parameter ρ∗ . 

2.2. Analytic Solution to the Sphere Constrained Optimal Control Problem 

Let ( ) ( )T T1 ˆ
2

P u u Ru t Buλ= +  in (10). Based on the canonical dual approach in Section 2.1, a relationship  

between mu∈  and [ )0,ρ ∈ = +∞  (since R is a positive definite matrix) is well defined as 

( ) [ ] ( )1 T
0

ˆˆ a.e. , .fu R I B t t t tρ ρ λ−  = − + ∈                          (18) 

So, the canonical dual function can be formulated as, for each 0ρ ≥  

( ) ( ) ( ) ( )1T T1 ˆ ˆ .
2

dP t B R I B t aρ λ ρ λ ρ−= − + −                        (19) 

Next, we have the following properties. 

Lemma 3. Let ( )û ρ  be a given flow defined by (18) and ( ) ( ) ( )T1 ˆ ˆ
2

y u uρ ρ ρ= , we have 

( ) ( ) ( ) ( )Td 1 ˆ ˆ ,
d 2

dP
u u a y a

ρ
ρ ρ ρ

ρ
= − = −                           (20) 
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( ) ( ) [ ] ( )Tˆ ˆd d d
.

d d d
y u u

R I
ρ ρ ρ

ρ
ρ ρ ρ

 
= − + 

 
                           (21) 

Proof. Since ( )dP ρ  is differentiable, 

( ) ( )
( )

( )

( ) ( ) ( ) ( ) ( )

( ) ( )

1

T T

1 1T T

T

dd 1 ˆ ˆ
d 2 d

d1 ˆ ˆ
2 d
1 ˆ ˆ .
2

d R IP
t B B t a

R I
t B R I R I B t a

u u a

ρρ
λ λ

ρ ρ
ρ

λ ρ ρ λ
ρ

ρ ρ

−

− −

 + = − −

+
= + + −

= −

 

( ) ( ) ( ) ( ) [ ] ( )T
T ˆ ˆ ˆd d d d

ˆ .
d d d d
y u u u

u R I
ρ ρ ρ ρ

ρ ρ
ρ ρ ρ ρ

 
= = − + 

 
 

Lemma 4. Let ( )û ρ  be a given flow defined by (18), and ( )dP ρ  be the corresponding canonical dual 
function defined by (19). 

1) ( )y ρ  is monotonously decreasing on [ )0,+∞ . 
2) if there exists [ )ˆ 0,ρ ∈ +∞  such that ( )ˆû Uρ ∈ , then ( )dP ρ  is monotonously decreasing on [ )ˆ ,ρ +∞ . 

Proof. By (21), it follows that ( )d
0

d
y ρ
ρ

≤  for any [ )0,ρ ∈ +∞ , which means that ( )y ρ  is monotonously  

decreasing on [ )0,+∞ . 
If there exists one point [ )ˆ 0,ρ ∈ +∞  and ( )ˆû Uρ ∈  such that ( )ˆy aρ ≤ , by the monotonous decline of 
( )y ρ , we have ( )û Uρ ∈  for any ˆρ ρ≥ . By (20), we can conclude that ( )dP ρ  is monotonously decreas-

ing on [ )ˆ ,ρ +∞ . The proof is completed. 
Theorem 2. For the sphere constrained optimal control problem ( ) , the analytic solution expressed by the 

co-state is given as follows 

( ) 1
Tˆ ˆˆ ,optu R I Bρ λ λ

−
 = − +                                (22) 

where ( )ˆoptρ λ  with respect to the co-state λ̂  is defined by the following condition 

( ) ( ) T 2 T

T 2 T

ˆ ˆ ˆˆ if 2 ,ˆ
ˆ ˆ0 if 2 ,

opt
BR B a

BR B a

ρ λ λ λ
ρ λ

λ λ

−

−

 >= 
 ≤

                          (23) 

and ( )ˆρ̂ λ  satisfies the equation ( ) ( )2
T Tˆ ˆ ˆ ˆ2 , 0.B R I B aλ ρ λ λ ρ λ

−
 + = ≥   

Proof. We first consider ( )T ˆ 0B tλ ≠  for some one point 0 , ft t t ∈   . 
For any [ )0,ρ ∈ +∞ , when ( )T ˆ 0B tλ ≠ , with (12), (18) and taking into account of Lemma 3, we have 

( )ˆ 0u ρ ≠  and ( )ˆd
0

d
u ρ
ρ

≠ . This means that ( )y ρ  is strictly monotonously decreasing on [ )0,+∞ . 

Case 1: Suppose that ( ) ( )T1 ˆ ˆ0 0
2

u u a> . Since ( )y ρ  is continuous and strictly monotonously decreasing on 

[ )0,+∞  and ( ) 0y ρ →  as ρ → +∞ , there must exist one point ˆ 0ρ >  such that ( ) ( )T1 ˆ ˆˆ ˆ
2

u u aρ ρ = , i.e.  

( )ˆû Uρ ∈ , which leads to ( )û Uρ ∈  for any ˆρ ρ≥ . For each element ˆ,ρ ρ ρ≥ , the function ( )f uρ  is giv- 
en as follows 

( ) ( ) ( )T T T T1 1 1ˆ ,
2 2 2

f u P u u u a u Ru t Bu u u aρ ρ λ ρ   = + − = + + −   
   

                (24) 
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where ρ  is a parameter. It is obvious that ( ) ( )P u f uρ≥  for all u U∈ . Since ( )f uρ  is twice continuously 
differentiable in m , there exists a closed convex region   containing U such that on  , ( )2 0f uρ∇ >  and 

( )( )ˆ 0f uρ ρ∇ = . This implies that ( )û ρ  is the unique global minimizer of ( )f uρ  over  . By (18) and (19), 
we have 

( )( ) ( ) [ ] ( ) ( )1T T1 ˆ ˆˆ ,
2

df u t B R I B t a Pρ ρ λ ρ λ ρ ρ−= − + − =  

and 

( ) ( ) ( ) ( )( ) ( )ˆmin .d

u U
P u f u f u f u Pρ ρ ρ ρ ρ

∈
≥ ≥ = =                       (25) 

Further, it follows from Lemma 4 that 

( ) ( ) ( )( )
ˆ

ˆ ˆˆmax .d dP P P u
ρ ρ

ρ ρ ρ
≥

= =                              (26) 

Thus, for every u U∈ , when ˆρ ρ≥ , we have 

( ) ( ) ( ) ( ) ( ) ( ) ( )T T T T

ˆ

1 1ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆmin max .
2 2

d d

u U
u Ru t Bu u Ru t Bu P P

ρ ρ
λ ρ ρ λ ρ ρ ρ

∈ ≥
+ = + = =  

Case 2: Suppose that ( ) ( )T1 ˆ ˆ0 0
2

u u a≤ . It is easy to verify that ( ) ( )T1 ˆ ˆ
2

u u aρ ρ <  for any 0ρ > , and 

( ) ( )
0

max 0d dP P
ρ

ρ
≥

= . Then, by using the similar proving strategy in case 1, we can show that ( )ˆ 0u  is a global 

minimizer of (7) in case 2. 
On the other hand, If there exists one point 0 , ft t t ∈    such that ( )T ˆ 0B tλ = , then (7) is equivalent to the 

problem T1min
2u U

u Ru
∈

, and it is clear that ( )ˆ 0 0u =  is a global minimizer of this problem. 

Define 

( )
( )

ˆ ˆif 0 2 ,

ˆ0 if 0 2 ,
opt

u a

u a

ρ
ρ

 >= 
≤

 

where ρ̂  is the only solution of the equation [ ] ( ) [ )1 T ˆ 2 , 0,R I B t aρ λ ρ−+ = ∈ +∞  under the condition  

( )ˆ 0 2u a> . Based on canonical duality theory, ( )ˆ optu ρ  is a global minimizer of the problem (7). Hence, by 
Lemma 1, we can derive the optimal solution 

( ) ( )
1 T

0
ˆˆ , a.e. , .opt opt

fu R I B t t t tρ ρ λ
−

   = − + ∈                        (27) 

If consider optρ  as a function with respect to the co-state λ̂ , we can define the function ( )ˆoptρ λ  satisfy-
ing (23), and the analytic solution by the co-state to the problem ( )  can be given as (22). This completes the 
proof. 

Theorem 3. Let R be an identity matrix I in (1). Then the analytic solution to problem ( )  is obtained as 
follows 

T

T

ˆ
ˆ .

ˆ
max 1,

2

Bu
B

a

λ

λ
= −

 
 
 
 

                                 (28) 

Proof. Suppose that R I= . By Theorem 2, it follows that 
( )T ˆ

max 0, 1
2

opt
B t

a

λ
ρ

 
 = − +
 
 

, thus, the analytic  
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solution can be expressed as, a.e. 0 , ft t t ∈   , 

( ) ( ) ( )
( )

T
1 T

T

ˆ
ˆˆ .

ˆ
max 1,

2

opt opt B t
u R I B t

B t

a

λ
ρ ρ λ

λ

−
 = − + = −   

 
 
 

 

This concludes the proof of Theorem 3. 

2.3. Applications 
Now, we give an example to illustrate the applicability of Theorem 2. We consider the following sphere con-
strained optimal control problem. 

Example 1: In (1), we consider 
3 1 2
5 0 7

4 4.5 7
A

− 
 = − 
 − 

, 
3.5 2
2 6
8 9

B
− 

 =  
 − 

, 
2 5 7
1 2 1.5
3 0 8

Q
− − 

 =  
 − 

, 2 2R I ×= ,  

( ) ( )T0 1, 1, 1x = − − − , 0 0t = , 1ft = , and 
1
2

a = . 0Q ≥  and 0R >  satisfy the assumptions in this paper. 

By Lemma 1 and Theorem 2, in order to derive the optimal solution of Example 1, we need to solve a system 
on the state and co-state 

( ) ( ) ( )Tˆˆ ˆ ˆ ˆ ˆ ˆ, , , , 0 1, 1, 1 ,x H t x u Ax Bu xλ λ= = + = − − −                       (29) 

( ) ( )Tˆ ˆ ˆ ˆˆ ˆ ˆ, , , , 1 0.xH t x u A Qxλ λ λ λ= − = − − =


                          (30) 

and 

[ ]
T

T
T T

T1

ˆ1 ˆˆ arg min a.e. 0,1 .
ˆ2 max 1,u u

Bu u u Bu t
B
λλ

λ≤

 = + = − ∈    
 

                  (31) 

By numerical methods of two-point boundary value problems [18] [19], we can obtain the optimal solution û  
and the dual variable ( )ˆoptρ λ  as follows (see Figure 1, Figure 2). 
 

 
Figure 1. The optimal feedback control û  in Example 1. 
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Figure 2. The dual variable ( )ˆoptρ λ  in Example 1. 

3. Box Constrained Optimal Control Problem 
In this section, we consider ( ) ( ){ }1 1, 1,2, , ,m

iU u t u t i m= ∈ − ≤ ≤ =   0 , ft t t ∈   , and U is a unit box. 
Using the similar method in Section 2, the analytic solution to the box constrained optimal control problem 
( )  can be derived. 

3.1. Global Optimization with Box Constraints 
Similarly, consider the general box constrained problem 

( ) { }min . . , 1 1, 1, 2, , ,iP u s t u U U u i m∈ = − ≤ ≤ = 
                    (32) 

where ( )P u  is assumed to be twice continuously differentiable in m . 
Denote 

( ) ( ){ }2 0, 0, for every ,m P u Diag u Uρ ρ ρ = ∈ ∇ + > ≥ ∈ 
 

   

where ( )T
1 2, , , mρ ρ ρ ρ=   and ( ) m mDiag ρ ×∈  is a diagonal matrix with , 1, 2, ,i i mρ =  , being its di-

agonal elements. It is obvious that if ρ̂ ∈ , then ρ ∈  for any ˆρ ρ≥ . Parallel to what we did before, a 
differential flow ( )û ρ  is given as follow. 

Assumed that ρ∗ ∈  and a nonzero vector u U∗ ∈  such that 

( ) ( ) 0,P u Diag uρ∗ ∗ ∗∇ + =


                                (33) 

we focus on the flow ( )û ρ  which is well defined near ρ∗  

( ) ( ) ( ) ( )
( )

1 1 1 2 2 2

* *

ˆ ˆ ˆ ˆd d d d ,

ˆ , 1, 2, , ,
i i i im m m

i i

u H u H u H u

u u i m

ρ ρ ρ ρ ρ ρ ρ

ρ

= + + +


= =





                  (34) 

where ( )( ) ( ) ( )( ) ( )
12ˆ ˆ, ij m m

H u H P u Diagρ ρ ρ ρ ρ
−

×
  = = − ∇ +     and ( ) ( ) ( ) ( )( )T

1 2ˆ ˆ ˆ ˆ, , , mu u u uρ ρ ρ ρ=  . 
Moreover, near ρ∗ , the differential flow ( )û ρ  also satisfies 

( )( ) ( ) ( )ˆ ˆ 0.P u Diag uρ ρ ρ∇ + =


                              (35) 

Based on the extension theory, the solution ( )û ρ  of (34) can be extended to an interval in  . Then, the 
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canonical dual function is defined as follows 

( ) ( )( ) ( )2

1
ˆ ˆ 1 ,

2

m
d i

i
i

P P u uρ
ρ ρ ρ

=

 = + − ∑                            (36) 

and the canonical dual problem associated with the problem (32) can be formulated as follows 

( ) ( ) ( )( ) ( )2

1
ˆ ˆ: max 1 .

2

m
d d i

i
i

P P P u uρ
ρ ρ ρ ρ

=

  = + − ∈   
∑                    (37) 

Lemma 5. Let ( )û ρ  be a given flow defined by (33)-(34), and ( )dP ρ  be the corresponding canonical 
dual function defined by (36). Near ρ∗ , we have 

( ) ( ) ( ) ( )
T

2 2 2
1 2

1 1 1ˆ ˆ ˆ1 , 1 , , 1 ,
2 2 2

d
mP u u uρ ρ ρ ρ      ∇ = − − −       

                  (38) 

( ) ( )( ) ( )( ) ( ) ( )( )12 2ˆ ˆ ˆ .dP Diag u P u Diag Diag uρ ρ ρ ρ ρ
−

 ∇ = − ∇ +                 (39) 

Proof. Since ( )dP ρ  is differentiable, near ρ∗ , 

( ) ( )( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( )( ) ( ) ( )

( )( ) ( ) ( )( ) ( ) ( )

T 2

=1

T T 2

T 2

ˆˆ 1ˆ ˆ ˆ1
2

ˆ ˆ 1ˆ ˆ ˆ 1
2

ˆ 1ˆ ˆ ˆ 1 .
2

d m
j

i j j
ji i i

i
i i

i
i

uP u
P u u u

u u
P u Diag u u

u
P u Diag u u

ρρ ρ
ρ ρ ρ ρ

ρ ρ ρ
ρ ρ

ρ ρ ρ ρ
ρ ρ

ρ
ρ ρ ρ ρ

ρ

∂∂ ∂
 = ∇ + − + ∂ ∂ ∂

∂ ∂
 = ∇ + + − ∂ ∂

∂
 = ∇ + + − ∂

∑

 

By (35), it follows that ( ) ( )21 ˆ 1
2

d

i
i

P
u

ρ
ρ

ρ
∂

 = − ∂
. 

Form (34), we have ( ) ( ) ( )
ˆ

ˆi
ij j

j

u
H u

ρ
ρ ρ

ρ
∂

=
∂

, then 

( ) ( ) ( ) ( ) ( ) ( )
2 ˆ

ˆ ˆ ˆ .
d

i
i i ij j

i j j

P u
u u H u

ρ ρ
ρ ρ ρ ρ

ρ ρ ρ
∂ ∂

= =
∂ ∂ ∂

 

By the definition of ( )( )ˆ,H uρ ρ , this concludes the proof of Lemma 5. 
Lemma 5 shows that the canonical dual function ( )dP ρ  is concave on  , so, the problem ( )dP  can be 

solved by any commonly used nonlinear programming methods. 
Theorem 4. (Perfect duality theorem) The canonical dual problem ( )dP  is perfectly dual to the primal prob- 

lem (32) in the sense that if ρ∗ ∈  is a critical point of ( )dP ρ , then the vector ( )ˆu u ρ∗ ∗=  is a KKT point 
of (32) and ( ) ( )dP u P ρ∗ ∗= . 

Proof. By the KKT theory, ρ∗  is a KKT point of ( )dP  if and only if there exists one multiplier mλ∈  
such that 

( )* T * *0, 0, 0, 0,dP ρ λ λ ρ λ ρ∇ − = = ≤ ≥
  

                         (40) 

( ) ( ) ( ) ( )
T

* 2 * 2 * 2 *
1 2

1 1 1ˆ ˆ ˆ1 , 1 , , 1 ,
2 2 2

d
mP u u uρ ρ ρ ρ      ∇ = − − −       

  

where ( )û ρ  is defined as (33)-(34). This shows that ( )û ρ∗  is a KKT point of the primal problem (32). By 
the complementarity conditions (40), we have 

( ) ( )( ) ( ) ( )( ) ( )2

1
ˆ ˆ ˆ1 .

2

m
d i

i
i

P P u u P u P uρρ ρ ρ ρ
∗

∗ ∗ ∗ ∗ ∗

=

 = + − = = ∑  

The proof is completed. 
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Theorem 5. (Triality theorem) Consider ( )P u  to be concave on the box U. If the flow ( )û ρ  defined by 
(33)-(35) meets a boundary point of U at ρ̂ ∈  such that ( )2 ˆˆ 1, 1, 2, ,iu i mρ = =  , then ( )ˆˆ ˆu u ρ=  is a global 
minimizer of the problem (32). Further one has 

( ) ( )( ) ( ) ( )
ˆ

ˆ ˆˆmin max .d d

u U
P u P u P P

ρ ρ
ρ ρ ρ

∈ ≥
= = =                        (41) 

Proof. By Lemma 5 and the fact that ( )2 ˆ ˆˆ 1,iu ρ ρ= ∈ , it can verify that ( )2 0dP ρ∇ ≤  and ( )dP ρ∇  is 
monotonously decreasing as ˆρ ρ≥ . This means that ( )û ρ  will stay in U and ( ) ( )ˆd dP Pρ ρ≤  as ˆρ ρ≥ . 
Using the definition of ( )û ρ  as well as  , we have 

( )( ) ( ) ( )( ) ( ) ( )2

1
ˆ ˆ ˆ ˆ1 0,

2

m
i

i
i

P u u P u Diag uρ
ρ ρ ρ ρ ρ

=

  ∇ + − = ∇ + =   
∑



 

( ) ( ) ( ) ( )2 2 2

1
1 0, .

2

m
i

i
i

P u u P u Diag u Uρ ρ
=

 ∇ + − = ∇ + > ∀ ∈ 
 

∑                  (42) 

In the following deducing, we need to note the fact that since ( )P u  is twice continuously differentiable on 
m , there exists a positive real vector mδ ∈  such that (42) holds in { }2 1i iu δ< +  which contains U. So, we  

can show that ( )û ρ  is the global minimizer of ( ) ( )2

1
1

2

m
i

i
i

P u uρ
=

+ −∑  on U, and for any ˆρ ρ≥  

( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( )

2 2

1 1

2

1

1 inf 1
2 2

ˆ ˆ 1 .
2

m m
i i

i iUi i

m
di

i
i

P u P u u P u u

P u u P

ρ ρ

ρ
ρ ρ ρ

= =

=

 ≥ + − ≥ + − 
 

  = + − =   

∑ ∑

∑
                   (43) 

Thus, we have 

( ) ( ) ( ) ( )( ) ( ) ( )( )2

ˆ 1

ˆ
ˆ ˆ ˆ ˆˆ ˆ ˆmax 1 .

2

m
d d i

i
i

P u P P P u u P u
ρ ρ

ρ
ρ ρ ρ ρ ρ

≥ =

 ≥ = = + − = ∑              (44) 

By (43), (44) and the canonical duality theory, it leads to the conclusion we desired. 

3.2. Analytic Solution to the Box Constrained Optimal Control Problem 

Now, let ( ) ( )T T1 ˆ
2

P u u Ru t Buλ= +  in (32). For [ ){ }0, , 1, 2, ,m
i i mρ ρ ρ∈ = ∈ ∈ +∞ =    (since R is a 

positive definite matrix), we define 

( ) ( ) ( )1 T
0

ˆˆ , a.e. , ,fu R Diag B t t t tρ ρ λ
−

 = − + ∈                         (45) 

and the canonical dual function 

( ) ( ) ( ) ( )1T T T1 1ˆ ˆ .
2 2

dP t B R Diag B t eρ λ ρ λ ρ
−

= − + −                      (46) 

Set ( ) ( ) ( ) ( ) ( ) ( )( )T2 2 2
1 2ˆ ˆ ˆ ˆ ˆ, , , my u u u u uρ ρ ρ ρ ρ ρ= =   (the notation “


” denotes the Madamard product). 

Lemma 6. Let ( )û ρ  be a given flow defined by (45), and ( ) ( ) ( )ˆ ˆy u uρ ρ ρ= 
. ( )iy ρ  is monotonously 

decreasing with respect to iρ  on [ )0,+∞ , 1, 2, ,i m= 
. 

Proof. Notice that ( ) ( )2ˆi iy uρ ρ=  and 
( ) ( ) ( )ˆ

ˆ2i i
i

i i

y u
u

ρ ρ
ρ

ρ ρ
∂ ∂

=
∂ ∂

. Let ( )( ) ( ) 1ˆ,H u R Diagρ ρ ρ
−

= − +    and  

( )iiH ρ  be the ith diagonal element of H. 
By properties of the positive definite matrix, it follows that the diagonal element ( )iiH ρ  is a negative real 

number which means that 
( ) ( ) ( )2ˆ2 0i

ii i
i

y
H u

ρ
ρ ρ

ρ
∂

= ≤
∂

 because of the fact that 
( ) ( ) ( )

ˆ
ˆi

ii i
i

u
H u

ρ
ρ ρ

ρ
∂

=
∂

. Thus, 

we can have the conclusion we desired. 
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In the rest part of this section, we suppose that ( )R Diag r=  is a diagonal matrix with 0, 1, 2, , ,ir i m> =   
being the diagonal elements. We have the following result. 

Theorem 6. For the box constrained optimal control problem ( ) , the analytic solution expressed by the 
co-state is given as follows 

( )
( )

( )
( )

( )
( )

T
TT T

1 2

T T T
1 21 2

ˆˆ ˆ
ˆ , , , .

ˆ ˆ ˆmax , max , max ,
m

m m

BB B
u

r B r B r B

λλ λ

λ λ λ

 
 

= −                   

               (47) 

Proof. Set ( ) ( )( ) ( )( ) ( )( )( )T
T T T T

1 2
ˆ ˆ ˆ ˆ, , ,

m
B t B t B t B tλ λ λ λ=  . It comes from Lemma 3.2 and (45) that 

( )
( )( )T ˆ

ˆ i
i

i i

B t
u

r

λ
ρ

ρ
= −

+
, ( )

( )( )
( )

2T

2

ˆ
i

i
i i

B t
y

r

λ
ρ

ρ
=

+
 and ( ) ( )( )

( )

2T

3

ˆ2
i i

i i i

B ty

r

λρ
ρ ρ

∂
= −

∂ +
, ( ) 0,i

j

y
i j

ρ
ρ

∂
= ≠

∂
. This means that  

( )ˆiu ρ  and ( )iy ρ  depend only on the element iρ , i.e. ( ) ( )ˆ ˆi i iu uρ ρ=  and ( ) ( )i i iy yρ ρ= . 
Consider complementarity conditions ( )( )1 0, 1,2, , .i iy i mρ ρ − = =   If ( ) 1iy ρ >  at the point 0iρ = , by  

Lemma 6, it is easy to verify that there must exist one point ˆ 0iρ >  such that 
( )( )

( )

2T

2

ˆ
1

ˆ
i

i i

B t

r

λ

ρ
=

+
. Otherwise, for 

any 0iρ ≥ , we always have ( ) 1iy ρ ≤ . Thus, we define the vector opt mρ ∈ , 

( )( ) ( )( )
( )( )

T T

0
T

ˆ ˆif ,
a.e. , ,

ˆ0 if ,

i ii iopt
i f

ii

B t r B t r
t t t

B t r

λ λ
ρ

λ

 − >  = ∈  
 ≤


                 (48) 

which can be rewritten as ( )( )T
0

ˆmax 0, , a.e. ,opt
i i fi

B t r t t tρ λ   = − ∈   
. It follows form (45) and (48) that a.e. 

0 , ft t t ∈   , 

( )
( )( )

( )( )

T

T

ˆ
ˆ , 1, 2, , .

ˆmax ,
opt i

i

i i

B t
u i m

r B t

λ
ρ

λ
= − =

 
  


 

In what follows, parallel to the proof of Theorem 2, we shall show that ( )ˆ optu ρ  is the analytic solution for 
the problem ( ) . 

By statements as the above and Lemma 6, we have ( )û Uρ ∈  for any optρ ρ≥ , and the function family 
( ){ }f uρ  is given as follows 

( ) ( ) ( ) ( ) ( )2 T T 2

1 1

1 ˆ1 1 ,
2 2 2

m m
i i

i i
i i

f u P u u u Ru t Bu uρ
ρ ρ

λ
= =

= + − = + + −∑ ∑                (49) 

where ρ  is a parameter. Using (45) and (49), it is obvious that ( )û ρ  is a global minimizer of the problem 
( )min f uρ  on U by the fact that ( )( )ˆ 0f uρ ρ∇ =  and ( )2 0,f u u Uρ∇ > ∀ ∈ . Further, we have 

( ) ( ) ( ) ( )( ) ( )ˆinf .opt d opt

U
P u f u f u f u Pρ ρ ρ ρ ρ≥ ≥ = =                      (50) 

By Lemma 5 and (46), we have 

( ) ( ) ( ) ( )( )ˆmax .
opt

d d opt optP u P P P u
ρ ρ

ρ ρ ρ
≥

≥ = =                         (51) 

Thus, ( )ˆ optu ρ  is a global minimizer of the problem (7). Consider ρopt as a function with respect to the co-state 
λ̂ , by Lemma 1, then û  expressed by (47) is the analytic solution for the optimal control problem ( ) . This 
completes the proof. 
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3.3. Applications 
We will give an example to illustrate our results. 

Example 2: For the box constrained optimal control problem ( ) , we consider 
2 7
2.5 3

A  
=  − 

,  

2 5
1.5 7

B
− 

=  
 

, 
2.4 3

2 1
Q  
=  − − 

, 
2 0
0 3

R  
=  
 

, ( ) ( )T0 1,1x = , 0 0t = , and 1ft = , where 0Q ≥ , 0R >  sa-

tisfying the assumption in (1). 
Following idea of Lemma 1 and Theorem 2 as above, we need to solve a system on the state and co-state for 

deriving the optimal solution 
 

 
Figure 3. The optimal feedback control û  in Example 2. 

 

 

Figure 4. The dual variable ( )ˆoptρ λ  in Example 2. 
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( ) ( ) ( )Tˆˆ ˆ ˆ ˆ ˆ ˆ, , , , 0 1,1 ,x H t x u Ax Bu xλ λ= = + =                        (52) 

( ) ( )Tˆ ˆ ˆ ˆˆ ˆ ˆ, , , , 1 0,xH t x u A Qxλ λ λ λ= − = − − =


                        (53) 

and 

( )
( )( )

( )( )
( )

( )( )
( )( )

[ ]
T T

1 2
1 2

T T

1 2

ˆ ˆ
ˆ ˆ, , a.e. 0,1 .

ˆ ˆmax 2, max 3,

B t B t
u t u t t

B t B t

λ λ

λ λ
= − = − ∈

   
      

          (54) 

By solving Equations (52)-(54) in MATLAB, we can obtain the optimal optimal feedback control û  and the 
dual variable ( )ˆoptρ λ  as follows (see Figure 3, Figure 4). 
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