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Abstract 
We use the Bethe’s ansatz method to study the entanglement of spinons in the quantum phase 
transition of half integer spin one-dimensional magnetic chains known as quantum wires. We cal-
culate the entanglement in the limit of the number of particles N →∞ . We obtain an abrupt 
change in the entanglement next the quantum phase transition point of the anisotropy parameter 

1∆ =  from the gapped phase 1∆ >  to gapless phase 1∆ < . 
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1. Introduction 
The study of entanglement in quantum spin chains has been subject of intense research recently. In this field of 
knowledge, theory of quantum information and condensed matter theory intertwine. In special, the study of 
properties of entanglement in systems of many particles and analysis of its behavior near quantum phase transi-
tion deserve much attention [1] [2]. In this work, we deal entanglement of low-lying magnetic excitations in the 
spin-1/2 one-dimensional Heisenberg model (HM). It is well known that one-half spin chains are different from 
integer spin chains due to the opening of a gap in the spectrum, where integer spin chains present a gap in the 
spectrum known as the Haldane gap [3] [4]. It is also known that there is an absence of this gap in the 
half-integer spin Heisenberg chains according to the Lieb, Schultz and Mattis theorem [5]. Besides, the low-ly- 
ing excitations are different for integer and half-integer spin chains. While in the integer spin chains the excita-
tions are magnons, in the half-integer spin chains, the excitations are spinons that are particles without charge 
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but spin one-half. It is very important to understand the entanglement of these quasi-particles in neighborhood of 
the quantum phase transition which is well known to be dominated by strong quantum fluctuations. 

One-half spin chains present a quantum phase transition with the anisotropy parameter ∆ . In the range 
1 1− < ∆ <  the system does not present gap in the spectrum. When 1∆ >  and 1∆ < − , there is an opening of a 

gap in the spectrum. It is important to know the influence of these quantum phase transitions on the entangle-
ment. 

The spin one-half Heisenberg model was solved exactly for the first time by Bethe in 1931; the solution was 
known as the Bethe’ ansatz [6]. In reality the initial solution proposed by Bethe is nominated as coordinates of 
the Bethe’s ansatz. However, the Bethe’s ansatz suffered modifications among the years and today uses a ver-
sion modified by the initial Bethe’s ansatz nominated as the algebraic Bethe’s ansatz. 

The quantum spin-1/2 (HM) was much studied extensively in the literature using the Jordan-Wigner trans-
formation and Abelian and non-Abelian bosonization. The thermodynamic properties of this model were studied 
by Klümper in Ref. [7] [8]. The dynamics properties such as spin and thermal transport were also extensively 
studied [9]-[14]. 

For the integer spin Heisenberg chains, the thermodynamics properties and dynamics such as spin transport 
were much studied in the literature using different methods. The non-linear sigma model was used by Haldane 
[3] [4]; he verified that integer spin chains are different from half-integer spin by opening a gap in the spectrum 
until by the use of spin wave approximations [15]-[18], Schwinger boson theory [19]-[23] and so on. 

In general, entanglement is a property at the heart of quantum mechanics [24], which was first brought to the 
intriguing questions posed by Einstein, Podolsky and Rosen [25]. Entanglement is defined in terms of some 
kinds of instantaneous interaction, contrary to the relativistic principle that all interaction is possible only at a 
velocity less than that of light [26]. The entanglement in the quantum critical phenomena in one-dimensional 
spin-1/2 XX and XY models were studied by Vidal et al. [27], in non-critical and critical regimes. He calculated 
the entropy for a block of L contiguous spins. The entanglement for 1D spin-1/2 XY model was calculated for a 
lattice with N sites in transverse field by [28]-[30]. 

The aim of this paper is to verify the influence of quantum phase transition on entanglement of the quantum 
one-half spin Heisenberg model. This work is divided in the following way. In Section 2, we discuss the proper-
ties of the model. In Section 3, we develop the analytical tools to calculate the entanglement of the system. In 
Section 4 we present the analytical results, and in the last section, Section 5, we present the conclusions and the 
final remarks. 

2. The Model 
The model is defined by the following Hamiltonian  

( )1 1 1
1

,
N

x x y y z z
i i i i i i

i
J S S S S S S+ + +

=

= + + ∆∑                             (1) 

with periodic boundary conditions on a chain of length L. When 1∆ = +  the system is an isotropic Heisenberg 
antiferromagnetic (AFM). For 1∆ = − , the system reduces to the isotropic Heisenberg ferromagnetic (FM). The 

0∆ =  correspond to the XY model. The anisotropy parameter is conveniently parameterized by cosγ∆ = , 
where 0 πγ≤ < . We restrict to the critical regime 1 1− < ∆ ≤ , where the system displays correlation functions 
algebraically decaying to zero temperature [9]. For 1∆ > , easy axis, the system is Ising like which is the sim-
plest quantum lattice system to exhibit a quantum phase transition [31]. The dependence of the ground state with 
∆  is quite complicated. However, it is possible to investigate the ∆ →∞  limit exactly [28].  

3. Algebraic Bethe’s Ansatz 
We search for a pseudo-vacuum state Ω  that is a simple eigenstate of the diagonal operator valued with en-
tries A and D of the monodromy matrix  , where A D= + . The lower-left entry C of the monodromy ma-
trix applied to Ω  yields zero, the upper-right of the entry B yields new non vanishing states. Hence C and B 
play the role of annihilation and creation operators. 

The reference state is given by  

1
,

N

i
i

ω
=

Ω =⊗                                      (2) 
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where iω  are the local states. The monodromy matrix   applied to Ω  yields an upper triangular 2 2×  
matrix of states  

0

N

N

a B
b

 Ω Ω
Ω =   Ω 

                                 (3) 

or explicitly  

( ), , .N N N NA a D b T a bΩ = Ω Ω = Ω Ω = + Ω                    (4) 

Therefore, Ω  is an eigenstate of  . We intend to use the operators B as creation operators for excitations, 
i.e. we demand that the new state ( ) ( )1 :v B vΩ = Ω  (one-particle state) be an eigenstate of  . The algebra 
for exchange ( )B v  with ( )A u  and ( )D u  can be obtained from the Yang-Baxter equation  

( ) ( ) ( ) ( ) ( ) ( ).u v R v u R v u v u⊗ − = − ⊗                           (5) 

We have that  

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( )

1 1

,

a v u a u v
v u u v

b v u b u v

c v u c u v
v v B u

b v u b u v

α β

α β

 − −
Ω = + Ω 

− −  
 − −

− + Ω 
− −  



                    (6) 

where Naα = , Nbβ = . For any N-particle state, we look at the following state  

( ) ( )
1

N

i i
i

v B v
=

Ω 〉 = Ω∏                                  (7) 

where the numbers iv  are Bethe ansatz roots of  

( ) ( )
( )
( ) ( )

( )
( )

( )
( )

( )
( )

1 1
,

,

N Nj j

j jj j

N j ii

j ii i j

a v u a u v
u u u

b v u b u v

b v vv
v b v v

α β

α
β

= =

≠

− −
Λ = +

− −

−
=

−

∏ ∏

∏
                       (8) 

for 1, ,i N=   and ( )uΛ  is the eigenvalue. 
The Bethe’s ansatz equation above is the basis of an efficient analytical and numerical treatment of the ther-

modynamics of the Heisenberg chain. There are, however, variants in form of integral equations that are some-
what more convenient for the analysis in the case where the external magnetic fields h close to 0h → . The al-
ternative integral expression for the eigenvalues Λ  reads  

( ) ( ) ( )0ln ln d ,e K x x x xβ
∞

−∞
Λ = − +   ∫ u u                           (9) 

where  

( ) 1 ,
π4cosh
2

K x
x

=                                   (10) 

where 1 Tβ = . The ground state energy 0e  is given in [7] and ( )xu , ( )xu  are complex-valued functions 
with integration paths along the real axis. These functions are determined from the following set of non-linear 
integral equations  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

sin π πln ln ln 2 ,
π 2 πcosh
2

sin π πln ln ln 2 ,
π 2 πcosh
2

x x x i
x

x z x i
x

γ ββ κ κ
γ γ

γ ββ κ κ
γ γ

= − + + ∗ − ∗ +
−

= − − + ∗ − ∗ −
−





a u u

a u u
               (11) 
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where 1i = −  and  

( ) ( ) ( ) ( )1 , 1 .x x x x= + = +u a u a                             (12) 

the symbol ∗  denotes the convolution product ( ) ( ) ( )df g x f x y g y y
∞

−∞
∗ = −∫  and ( )xκ  is defined by  

( )

πsinh 2
1 e d ,
2π π2cosh sinh 1

ikx

k
x k

k k

γ
κ

γ

∞

−∞

 
− 

 =
 

− 
 

∫                         (13) 

where the Equation (11) can be simplified in the limit N →∞ . 

4. Entanglement and Quantum Phase Transitions 
A measure of the degree of entanglement of a quantum state is the von Neumann entanglement entropy. Consi-
dering a partition of a physical system Σ  into two disjoint subsystems that we will label by A and B where 

A BΣ =   and A B = ∅ . The Hibert space of states on Σ  is A B= ⊕   . Let Ω  be a pure quantum 
state of the system on A B , as such it can be decomposed as [1] [2]  

,
,

A B
i j i j

i j
M ω ωΩ = ⊗∑                                (14) 

where { }A
iω  and { }B

jω  are orthonormal basis states of A  and B , respectively, and ,i jM  are the  

matrix elements of an (in general) rectangular matrix M . Using the singular-value-decomposition theorem, we 
can write =M UD , where U  is a unitary matrix, and D  is a diagonal matrix ( )1diag , , ,nλ λ  . Then  
after going to the new bases, A A

i iω ω→U  and B B
i iω ω→U , we find the Schmidt decomposition of the 

state vector Ω ,  

1

L
A B

i i j
i
λ ω ω

=

Ω = ⊗∑                                 (15) 

where ( )min ,A BL d d= , with Ad  and Bd  being the dimensions of the Hilbert spaces A  and B . If the  
state vector Ω  is normalized to unity, 1Ω = , then the set of complex numbers iλ  must satisfy the sum 
rule  

2

1
1

L

i
i

λ
=

=∑                                       (16) 

The model Equation (1) has the unique ground state Ω . In the ground state, the entropy for the whole sys-
tem vanishes but the entropy of a sub-system can be positive. We treat the whole chain as a binary system 

A BΩ = ⊗ , where we denote the block of L neighbouring spins by sub-system A and the rest of the chain 
by sub-system B [29]. The density matrix of the pure state Ω  of the total system A B  is  

.A Bρ = Ω Ω


                                   (17) 

We can define the reduced density matrix for subsystem A to be the partial trace of A Bρ


 over the degrees of 
freedom in B as  

TrA A Bρ ρ=


                                     (18) 

and similarly for the reduced density matrix Bρ . 
The von Neumann entanglement entropy AS  for subsystem A, when the total system is in state Ω , is de-

fined to be the entropy of the reduced density matrix,  

( )Tr ln .A A A AS ρ ρ≡ −                                  (19) 

It also follows that the von Neumann entanglement entropy can be written as  
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( ) ( )2 2

1
Tr ln ln Tr ln ,

L

A A A A i i B B B B
i

S Sρ ρ λ λ ρ ρ
=

= − = − = − =∑                  (20) 

i.e. the entanglement entropy is symmetric in the two (entangled) subsystems. This symmetry property is a con-
sequence of our assumption that the total system A B  is in a pure state Ω . 

In the quantum field theory the Gibs’ density matrix of the system is ( )expρ β= −  , where   is the 
quantum Hamiltonian. The partition function is [32] [33]  

[ ]Tr Tre e .
d

Dd xZ ωβρ ω −− ∫= = = ∫
                              (21) 

It is well known that in the critical regime the entropy diverges logarithmically with the size of a block of L 
spins [27] [33] [34]. As derived in Ref. [35], in 1 1+  conformal field theory the entropy of a subregion of 
length L reads  

( )2 ,log
6

c cS L k+
≈ +                                  (22) 

with a coefficient given by the holomorphic and anti-holomorphic central charges c and c  of the theory. 

5. Results and Discussion 
In thermodynamic limit, we have [7]  

maxlim NN
Z

→∞
= Λ                                     (23) 

The integral expression for Λ  is given by Equation (9). 
The Helmholtz free energy is  

max
1 lnF
β

= − Λ                                     (24) 

where maxΛ  is the largest eigenvalue of the quantum transfer matrix [9]. The entropy is consequently given as  

max
max

ln
ln .S T

T
∂ Λ

= Λ −
∂

                                (25) 

At 0T =  we must have 0S →  as predicted by Nerst’s law. For high T we must have S →∞ . However 
for low temperature we must have S dominated by the quantum fluctuations near the quantum phase transition 
where the correlation length ζ  diverges in the quantum transition phase ζ → ∞ . 

The von Neumann entropy provides a good quantifier for the entanglement in the thermodynamic limit which 
is also equivalent to the entanglement of distinguished particles. We can define the entanglement for a N number 
of particles as [1] [2] 

( ) 2 ,logpE S Nρ= −                                   (26) 

where ( ) ( )2Tr logS ρ ρ ρ= − . Here 2log x  means ln x . When N →∞  we have, in this case, the entropy of 
entanglement is simply the von Neumann entropy of the reduced matrix of one particle and do not have the fac-
tor ( )2log N . We have that  

maxln .pE S→ = Λ                                   (27) 

In the limit N →∞ , the first term of the Equation (9) turns into [9]  

( ) ( ) ( ) ( )0 0 1 0 0
1 0 0

lim 0
nN

j nN j x x

e u e e x e x
x x

λ λ
→∞ = = =

∂ ∂  − = − −    ∂ ∂ 
∑                  (28) 

a rather irrelevant term as it is linear in 1λ  and nλ , therefore the second derivatives with respect to 1λ  and 
nλ  vanishes. 
The functions ( )xu  and ( )xu  are given by Equation (11) and Equation (12). The summation in Equation 

(11) can be simplified in the limit N →∞  as  
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( ) ( ) ( ) ( )0 0 1 0 0
1

lim 0
nN

j nN j
x iu i x i x

x x
ε ε λ ε λ ε

→∞ =

∂ ∂    − − = − − − −     ∂ ∂   
∑               (29) 

or  

( ) ( ) ( ) ( )0 0 1 1
1

lim 0
N

j n nN j
x iu x xε ε λ ε λ ε

→∞ =

 − − = − − ∑                       (30) 

where the first function is  

( ) ( )1
π2π
π2cosh
2

x K x
x

ε = =                               (31) 

and the second function is given by  

( ) ( )
1

1 .
n

n x i x
x

ε ε
−∂ = − ∂ 

                                (32) 

1λ , nλ  is given by [9]  

( ) 1
1

2 sin 2 sin, .
n

n
n

J Jiγ γλ β λ β
γ γ

−  
= = −  

 
                        (33) 

From the Equation (9) we have finally  

( )( ) ( )( )
max2

ln 1 ln 1
d ,log π4cosh

2

x x
x

x

∞

−∞

+ + +
Λ = ∫

a a
                        (34) 

therefore we obtain the entanglement in function of the γ  parameter in the thermodynamic limit as  

( )
( )( ) ( )( )ln 1 ln 1

d .
π4cosh
2

p

x x
E x

x
γ

∞

−∞

+ + +
= ∫

a a
                         (35) 

0∆ = , which is equivalent π 2γ = , corresponds to the XY model. As we have sin 0 sin π 2 sin π
0 π 2 π

> >  the 

entanglement is AFM XY FM
p p pE E E> > . In general the integral Equations (11) do not admit analytic solution [9]  

consequently we cannot solve the integral (35) directly. However an iterative procedure is conceivable to solve 
the Equation (11). Performing a saddle point integration we can find an expression for the entanglement in the 
low-temperature limit as  

( )1 2 3 2 5 2
0 1 2e ,pE e B T B T Tβεβ −  = − + +                          (36) 

where  

( )

( )

1 2
1 1

0 1 1
1 1

3 23
1

2
1 1 1

1
1 , ,

2 π

1
.

14 π

K kKk B
K K k

k KB
K k k

ε
 −

= − =  
 

 −
=   − 

                      (37) 

For 2x Kλ ′ℑ −  we have  
( ) ( )π 2 π

π 2 π

1 1e d e d ,
π 2π

p p
pE p pβε βε− −

− −
= − −∫ ∫                           (38) 

with  
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( ) ( )( ) ( )( )

( ) ( ) ( )

2 2 ,

d 2π ,
d

b

b

c x c x i K c x i K

x p x c x
x

λ λ

ε

′ ′= − − + + −

= =
                       (39) 

where ( )xε  is the energy dispersion of the lowest bound states. 
In the high-temperature limit we have ~ ln 2pE T− , with a high-temperature entropy ln 2  as it should be 

for a model with two states per site. 
Critical XXZ chain: the dispersion relation of the free states is [36] 

( ) π sin .k kε
γ

=                                    (40) 

At 0T =  the model is critical and the correlation lengths diverges like ~ 1 Tζ . In low-temperature we 
have that the expression for the entanglement reduces a simplest form given by  

π .
3p
TE
v

=                                       (41) 

where πv γ= , is the spin wave velocity. 

6. Conclusion 
In summary, we have calculated the entanglement in a quantum wire given by the quantum spin-1/2 anisotropic 
one-dimensional Heisenberg antiferromagnet. We verify the influence of quantum phase transition in the points 
of 1∆ = −  and 1∆ = , which correspond to πγ =  and 0γ =  points, on entanglement. We use the Bethe’s 
ansatz method to calculate the entanglement pE  since it is an exact method to the one-dimensional spin-1/2 
Heisenberg chains. Our calculations show that the entanglement is maximum in the point 1∆ =  and the entan-
glement is minimum when 1∆ = − . Consequently there is a large influence of the quantum critical region on the 
entanglement. The influence of the quantum phase transition obtained for this system is large as obtained in 
Reference [1] for the extended Hubbard model for a finite number of particles N. 
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