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Abstract 
A REDUCE code for the Newman-Janis algorithm is described. This algorithm is intended to include 
rotation into nonrotating solutions of the Einstein field equations with spherically symmetry or 
perturbed spherically symmetry and has been successfully applied to many spacetimes. The ap-
plicability of the code is restricted to metrics containing potentials of the form 1/r. 
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1. Introduction 
In 1965, Newman and Janis [1] found that it is possible, by means of a very peculiar complex coordinate trans-
formation applied to Schwarzschild’s spacetime [2] [3], to generate the spinning Kerr solution [2] [4] of the 
Einstein field equations. In the original paper they refer to the method as a curious derivation since the series of 
steps to obtain the desired Kerr metric do not have a simple or clear explanation on why they should generate a 
new solution (different from Schwarzschild) or even why those steps should provide a solution to vacuum field 
ecuations at all. However, they do mention that in a private communication, Kerr has shown this procedure work 
for the class of solutions 2g l lµν µν µ νη λ= +  which contains Schwarzschild as a special case. In the same issue 
of the journal where this work was published, Newman et al. [5] used a similar argument and applied the exact 
same complex transformation to the Reissner-Nordström metric [2] [6] [7] to obtain what they claimed to be di-
rectly shown to be a solution of the Einstein-Maxwell equations. Nowadays it is well known as the Kerr-New- 
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man spinning and charged black hole solution. A short time after that, Demiański and Newman [8] succeeded in 
pulling out another solution by applying the same method to Schwarzschild’s metric (Appendix) again, but 
this time using a more involved complex coordinate transformation. The result was the Kerr-Taub-NUT like 
Demiański-Newman spacetime [9] [10]. Talbot [11], on an attempt to explain the effectiveness of the method, 
briefly elaborated an argument on why the complex coordinate trick had been successful on its applications so 
far. Also, he provided criteria on which metrics the procedure should work according to the form of a given 
component of the Weyl tensor, all of this within the context of an application of the Newman-Penrose formalism 
to find twisting degenerate solutions to field equations. Later, Demiański proposed to find the most general solu-
tion which could be obtained by this method, assuming a spherical symmetric seed line element and requiring 
the presence of a non-vanishing Λ  term. He thus demonstrated that he could obtain the generalization of Kerr- 
Taub-NUT including cosmological constant, but he was also surprised on the fact that he was not able to get a 
version of Kerr with non-vanishing Λ . Although he gave an expression for his solution, it was later corrected 
by Quevedo [12] who also pointed out the limitations of the Newman-Janis (NJ from now on) method on gene-
rating certain solutions, just like Demiański failed to obtain Kerr with a Λ  term. 

Despite still not being fully understood and the fact that a complete satisfactory explanation of why it works 
has not been given yet [13], one can see that the Newman-Janis method has proved to be successful in generat-
ing new stationary solutions of the Einstein field equations [14] [15]. Because of this effectiveness, applications 
have also been studied outside the domain of general relativity and in various modified gravitation theories. For 
example, it was shown by Krori and Bhattacharjee [16] that the NJ technique could be applied within the context 
of Brans-Dicke theory of gravitation. Then, calculations were carried out to obtain not only a NUT-like metric in 
this theory but also a Kerr-like solution which turns out to be the rotating generalization of the Janis-Newman- 
Winicour solution [17] for a spherically symmetric space time coupled to a zero rest mass scalar field. 

To perform the NJ transformation, a REDUCE program [18] was written. The interested reader can get our 
code, called Newman-Janis.red, and send us an email. The main goal of the code is to facilitate the application 
of the algorithm to metrics with spherically symmetry or perturbed spherically symmetry. 

2. The Newman-Janis Algorithm 
The method is easily described as a series of steps to be followed once one has the seed metric to which the al-
gorithm is meant to be applied. 

1) The seed metric in spherical coordinates needs to be transformed to the advanced null coordinates, also 
known as Eddington-Finkelstein coordinates [2] [19] [20]. 

( ) ( ), , , , , ,t r v rθ φ θ φ→  

2) The next step is to find the null tetrad system that satisfies the contravariant metric. 
3) Once the null tetrads are obtained, the Newman-Janis trick is used. The trick goes as follows, the radial 

coordinate of your metric is allowed to belong to a complex domain, this meaning merely that it can acquire 
complex values, but is required specifically that it must be always real, therefore terms of the form 

*

2 1 1
r r r
→ +  

where *r  is the complex conjugate of r. 
4) Then, perform the NJ complex transformation on the advanced and radial coordinates: 

cos
cos

v v ia
r r ia

θ
θ

θ θ

φ φ

= +
= +

=

=

                                    (1) 

where a is the rotation parameter. 
5) Finally, it is applied the Boyer-Lindquist coordinate transformation [21] on the obtained advanced contra-

variant metric.  
In the following section, these different steps will be described as the code makes the calculation. 
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3. The Program 
The code Newman-Janis.red is explained in detail as we go through the above exposed steps. The metric that the 
code needs to run, has the form: 

2 2 2 2 2d d d d d ,tt rr th pps g t g r g gθ φ= − − −                           (2) 

where one has to define explicitly the metric components ( ), , ,tt rr th ppg g g g . A subroutine finds the generalized 
Eddington-Finkelstein transformation: 

d d drr

tt

gv t r
g

= +                                     (3) 

in terms of the seed metric. 
Now, we have the metric in terms of the advanced null coordinates: 

2 2 2 2d d 2 d d d d ,tt vr th pps g v g v r g gθ φ= + − −                          (4) 

where 

.vr tt rrg g g= −  

The code enlists the components of this new metric tensor, writes it in matrix notation to calculate the inverse 
matrix. Then, the null tetrads are computed in terms of the components of this metric. To avoid errors the pro-
gram computes the contravariant metric and verifies that both the tetrads and the metric components fulfill the 
following relation 

ij i j i j i j i jg l n n l m m m m= + − −                               (5) 

The step 3 of the Newman-Janis procedure can only be done by hand, this is because it is cumbersome to do it 
with REDUCE [18], and it may be impossible to compute at all. 

The next step is to apply the Newman-Janis transformation (1) to the latter obtained null tetrads, which is the 
key step in the whole process. For the sake of simplicity in notation the code displays the following quantity in 
all the tetrads expressions 

( )22 2 cosr aρ θ= +                                    (6) 

Then, the new contravariant metric components are obtained using Equation (5). The expression for it is of the 
form 

2 2 2 2d d 2 d d 2 d d 2 d d d d .tt vr vp rp th pps g t g v r g v g r g gφ φ θ φ= + + + + +                 (7) 

The new covariant metric is determined from the contravariant one. The code computes again the new cova-
riant metric in a more compacted way and confirms that both expressions are equivalent by performing the dif-
ference between them. 

Next, the transformation to the generalized Boyer-Lindquist coordinates is performed by the program in order 
to display the final metric in the standard form. The code rewrites the expressions in a simpler and standard way: 

( )2 2 2 2 2d d d d 2 d d dtt vr rp pp vp ths g t g g r g g t gα β φ φ θ= − + + + +                  (8) 

and compares them to avoid mistakes. In (8) we have used 

( )
( )

2

,

,

.

pp vr rp vp

rp tt vp vr

tt pp vp

g g g g

g g g g

g g g

α γ

β γ

γ

= −

= −

= −

 

4. Test Results  
We tested the program for the Schwarzschild [3] and Brans-Dicke metrics [16]. The first metric is given by 
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1
2 2 2 2 2d 1 d 1 d d ,s sR R

s t r r
r r

−
   = − − − − Ω   
   

 

where 2sR M= , and 2 2 2 2d d sin d .θ θ φΩ = +  The output was the Kerr metric as expected [2] [4]: 

( )
2 2222 2 2 2 2 2 2

2 2

sind d sin d d d d d .s t a r a a t rθ ρθ φ φ ρ θ
ρ ρ
∆   = − − + − − −    ∆

 

where 2 2
sr R r a∆ = − + . 

The second metric is given by 
1

2 2 2 2 2d 1 d 1 d 1 d ,s s sR R R
s t r r

r r r

η ξ ξ−
     = − − − − − Ω     
     

 

where η , and ξ  are constant. 
The resulting metric [16] is given by 

[ ]

[ ]

2
22 2 2

2 2

2

dd 1 d d 1 d

2 1 d d d ,

s s

s

R r R r rs t

R r
t

η ξ

σ

ω φ ρ
ρ ρ

ω φ φ
ρ

    
= − + − − + Ω     ∆     

 
− − + 

 

 

where 2sinaω θ= . 

5. Conclusion 
This REDUCE program is very useful to include rotation to metrics with spherical symmetry. It should not be 
used for metrics with cosmological constant and with no spherical symmetry. The inputs to the program that the 
user has to provide, are the metric and the change in term like *2 1 1r r r→ + . Moreover, it was successfully 
tested with the Schwarzschild and the Brans-Dicke metrics. At the moment, there is no standard procedure to in-
clude rotation into metrics with no other than spherical symmetry, but if in the future it could be possible, then 
this code can be an initial step towards other programs to attack that problem. 
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Appendix  
The output for main result in the case of the Schwarzschild metric is: 
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