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Abstract 
In this paper, we consider the shape identification problem of a body immersed in the incompres-
sible fluid governed by Stokes-Oseen equations. Based on the domain derivative method, we de-
rive the explicit representation of the derivative of solution with respect to the boundary. Then, 
according to the boundary parametrization technique, we propose a regularized Gauss-Newton 
algorithm for the shape inverse problem. Finally, numerical examples indicate that the iterative 
algorithm is feasible and effective for the practical purpose. 
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1. Introduction 
The purpose of this paper is to determine a shape of the body located in an incompressible viscous Stokes-Oseen 
flow by applying a formulation of the domain derivative to a numerical simulation. 

Shape inverse problem usually consists in reconstructing or recovering the geometry shapes from the mea- 
sured (observed) data. This kind of problems usually entails very large computational costs: besides numerical 
approximation of partial differential equations, it requires also a suitable approach for representing and deform- 
ing efficiently the shape of the underlying geometry. The control variable is the shape of the domain; the object 
is to recover the unknown boundary from the data which may be given by the designers. 

For the domain derivative method, many people are contributed to it. Kress proposed a quasi-Newton method 
to solve inverse scattering problem in [1]. Hettlich solved the inverse obstacle scattering problem for sound 
obstacles problem [2], and discussed a discontinuity in a conductivity from a single boundary measurement [3]. 
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Chapko et al. dealt with the inverse boundary problem for the time-dependent heat equation only in the case of 
perfectly conducting and insulating inclusions [4] [5]. Serranho presented a hybrid method for inverse scattering 
for shape and impedance [6]. Harbrecht and Tausch considered the numerical solution of a shape identification 
problem for the heat equation [7]. Yan et al. recovered the shape of a solid in the incompressible fluid driven by 
the Stokes flow [8], and considered the shape optimization problem of a body immersed in the incompressible 
fluid governed by Navier-Stokes equations coupling with a thermal model in [9]. 

The structure of the paper is as follows. In Section 2, we briefly introduce the shape reconstruction problem of 
the steady Stokes-Oseen equations. In Section 3, we describe the domain perturbation method which is used for 
the characterization of the deformation of the shapes, and derive the explicit representation of the derivative of 
solution with respect to the boundary. This will serve as the theoretical foundation of the Newton method for the 
approximation solution. Section 4 is devoted to the regularized Gauss-Newton scheme applied to the numerical 
shape identification problem. The performance of the numerical method is discussed and illustrated by numeri- 
cal examples. 

2. Shape Identification Problem 
In this paper, we consider the shape identification of an immersed body in the incompressible viscous fluid 
which is driven by the steady-state Stokes-Oseen equations,  

( ) ( )
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in
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u u w w u f
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Here u  denotes the velocity field, w  is the equilibrium solution of the Navier-Stokes equation, p is the 
pressure, and ν  is the kinematic viscosity of the incompressible fluid. For a Newtonian fluid the stress tensor 
is given as ( ) ( ), : I 2p pσ νε= − +u u  with the rate of deformation tensor ( ) ( )*: D D 2,ε = +u u u  where * Du  
denotes the transpose of the matrix. n  is the unit normal vector on the smooth boundary ∂Ω  which consists 
of four parts. inΓ  is the inflow boundary, outΓ  denotes the outflow boundary, wΓ  represents the boundary 
corresponding to the fluid wall, and sΓ  is the boundary to be recovered. For a given domain Ω , it is well 
known that this boundary value problem has a unique solution [10]. 

The purpose of this paper is to investigate the feasibility of recovering the unknown boundary sΓ  from the 
measured (observed) data. We define the operator F on the admissible set X by ( )2F MΓ = , where M is the 
measured (observed) data and may represent a given objective related to specific characteristic features of the 
incompressible fluid. The inverse problem is both ill-posed and nonlinear. 

If ,f u  and p are smooth functions satisfying (2.1), taking the scalar product of (2.1) with a function 
( )1

0 div,∈ Ωv H  we obtain  

( )
( ) ( ) ( ) ( ) ( )
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, , , , , , , div,a b b

 ∈ Ω


+ + = ∀ ∈ Ω

u

u v u w v w u v f v v

H

H
                   (2) 

where  

( ) ( )( )
, 1

, D D d ,
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i j i j
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a u v xν
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= ∑ ∫u v  

( ) ( )
, 1

, , D d .
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i i j j
i j

b u v w x
Ω

=

= ∑ ∫u v w  

Throughout the paper we will use the standard notation for Sobolev spaces. Specially ( )rH Ω , where r is an 
integer greater than zero, will denote the Sobolev space of real-valued functions with square integrable 
derivatives of order up to r equipped with the usual norm which we denote 

r⋅ . ( )r ΩH  will denote the space 
of vector-valued functions each of whose n components belong to ( )rH Ω . We introduce the space  
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( ) ( ){ }1 1
0 : , | 0 ,∂ΩΩ = ∈ Ω =v vH H  

and  

( ) ( ){ }1 1
0 div, : , d 0 in , | 0 .iv ∂ΩΩ = ∈ Ω = Ω =v v vH H  

3. Domain Derivative Method 
In this section, we will discuss how to derive the explicit representation of the derivative of solution with respect 
to the boundary. This will serve as the theoretical foundation of the numerical algorithm in next section. 

A derivative of operator F at boundary Γ  can be defined as follows [11]: For any real vector field 
( )2 2;C∈ Γ δ , we denote the set by δΓ   

( ){ }, ,δΓ = + ∈Γx x xδ  

where : max ∈Γ∞
= xδ δ  is small enough. Now we define the domain derivative of F at boundary Γ  in the 

direction δ  by  

( ) ( ) ( )
0

1; : lim ,F F Fεδ→
′  Γ = Γ − Γ  

δ  

where the limit should exist uniformly. 
Similarly, we denote a perturbation of the interior boundary sΓ  by  

( ){ }, ,h
s sΓ = + ∈Γx h x x  

which is a 2C  boundary of a perturbed domain hΩ , if the vector field ( )2
sC∈ Γh  is sufficiently small. We  

choose an extension of ( )2C∈ Ωh  with ( ) ( )2 2 , 0,
sC Cc c

Ω Γ
≤ >h h  which vanishes in the exterior of a  

neighbourhood of sΓ , and define the diffeomorphism ( ) ( )ϕ = +x x h x  in Ω . If the inverse function of ϕ  
is denoted by ψ , Jϕ  and Jψ  are Jacobian matrices. 

Let ( )1
0 div,h h∈ Ωu H  be the solution of corresponding boundary value problem, i.e. satisfy the variational 

equation  
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for all ( )1
0 div,h h∈ Ωv H . Transporting the variables to the reference domain Ω  leads to  
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for all ( )1
0 div,∈ Ωv H , where the notations ( ) 1

detR J Jϕ ϕ

−
= , ( ) ( )

T1 1 detQ J J Jϕ ϕ ϕ
− −=  and h ψ=f f

 . 

Denoting the Jacobian of h by hJ . From hJ I Jϕ = +  and ( )( )2
21

h CJ J I J Oψ ϕ ψ−
Ω

= = − + h , the follow-  

ing estimates hold [8]  
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In order to prove the main theoretical result of the paper, we introduce some useful identities (see [2] [12]) 
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without proof. 
Lemma 3.1. If ( )1

0, ∈ Ωu v H , then the following identity holds:  

( ) ( ) ( )T div div ,h hJ J I∇ + − ⋅ ∇ = − ⋅∇ ∆ − ⋅∇ ∆u h v T h u v h v u                      (8) 

where ( ) ( ) ( )= ⋅∇ ∇ + ⋅∇ ∇ − ∇ ⋅∇T h u v h v u u v h .  
Lemma 3.2. Let ( )2w C∈ Γ  be a scalar function, and a vector field ( )1 NC∈ Γv . The following decom- 

positions hold:  
w w wτ∇ = ∇ + ∂n n                                        (9) 

( ) ( ), .v vτ τ= ⋅ + = ∧ ∧v v n n n v n                               (10) 

Theorem 3.1. Let ( )2∈ Ωf L , ( )1
0 div,∈ Ωu H  denote the solution of (2.1), and u  is defined in (3.2). 

Then u  is differentiable at sΓ  in the sense that there exists *u  depending on h , such that 
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*
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→
− − =

h
u u u

h
                                   (11) 

Furthermore, ( )* ′= + ⋅∇u u h u , where the domain derivative ′u  satisfies the following equations  
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where n = ⋅h h n  is the normal component of the vector field h .  
Proof: Step 1: We establish the continuous dependence of the solution u  on variations of the boundary sΓ . 

Considering the difference −u u , the variational equation holds  
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From Equations (3.1) and (3.2), we have  
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Recall the the approximation (3.3)-(3.5), and set = −v u u  in the last expression  

( )21 0, as 0.C Ω
− → →u u h  

Step 2: In order to show the differentiability, let ( )* 1
0∈ Ωu H  be the solution of  
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for all ( )1
0 div,∈ Ωv H . 

From the properties of forms ( ),a ⋅ ⋅  and ( ), ,b ⋅ ⋅ ⋅ , the following expression holds  
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Considering *u  is the solution of (3.11), we rewrite the above identity as  
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Let = − − *v u u u , and employ the norm estimates (3.3)-(3.5) again,  

2
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Step 3: We split *u  into ( )⋅∇h u  and ′u . According to Lemma 2.2, Lemma 2.3 and the divergence for- 
mula, we obtain  
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Notice that u  satisfies the Stokes-Oseen Equation (2.1) and applies the geometrical decompositions 
formulae, and we can get  
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From Lemma 3.2, we have the identity,  
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Considering ( )* ′= + ⋅∇u u h u , the following equation holds  

( ) ( ) ( ), , , , , 0.a b b′ ′ ′+ + =u v u u v u u v  

Step (4): Give the conditions on boundaries. It is known that | 0
sΓ
=u  implies | 0

sτ Γ∇ =u . Note that *u   

vanishes on the neighborhood of the boundary sΓ ,  

* .nτ τ
∂ ∂ ′ = − ⋅∇ = − ⋅∇ + ⋅ = − ∂ ∂ 

u uu u h u h u h n h
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Thus, ′u  satisfies the boundary value problem (3.10). The proof is completed. 

4. Numerical Algorithm and Examples 
In this section, we will propose a regularized Gauss-Newton algorithm and numerical examples in two 
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dimensions, and the numerical results verify that our methods could be very feasible and effective for the shape 
inverse problem of the Stokes-Oseen equations. 

To our knowledge, there are two groups of approaches for the solution of shape inverse problems of this type, 
namely regularized Gauss-Newton iterations and decomposition methods. In this paper, we choose the re- 
gularized Gauss-Newton method. Generally, Newton method is based on the observed information. We define 
an operator F on set X of admissible boundaries by  

( ) ,sF MΓ =                                           (14) 

where M is the measured (observation) data [12], ( ){ }2
2

1 2: ,0s CX Cϕ ρ ϕ ρ= ∈ Γ < ≤ ≤ , and ϕ  is the 
parametrized form of boundary sΓ . However, since the linearized version of (4.1) inherits the ill-posedness, the 
Newton iterations need to be regularized. 

First of all, we apply the following boundary parametrization technique in numerical implementations. Here 
the parametric representations are denoted by  

( ) ( ) ( )( ){ },1 ,2: , ,0 2π , ,i i i iX x x i d sθ θ θ θΓ = = ≤ < =  

where 2:iX →   is twice differentiable and 2π-periodic with ( ) 0iX θ >  for all θ . Then, we assume that 
the orientation of the parametrization 1x  is clockwise and the parametrization 2x  is counter-clockwise.  

( ) ( )
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, 0 2
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X rη η

θ
θ θ θ π

θ
 

= ≤ < 
 

                              (15) 
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1
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N

j j N
j

r j jη θ η η θ η θ+
=

= + +∑  

with ( )T 2 1
0 2, , N

Nη η += ∈ η  for some fixed number N. Moreover, we set the variation  

( ) ( ) ( )( ) [ ){ }T
cos , sin : 0,2π .q qθ θ θ θ θ θ= ∈h  From the representation (4.2), we have  
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=
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( )22
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Now, let ( ) [ ]{ }2 1
1 2: : , 0, 2πN

NU rηρ θ ρ θ+= ∈ ≤ ≤ ∈η  for some 1 20 ρ ρ< < . We can assign to each  

NU∈η  the cost function ( )( ) , 1, ,s iF x i QΓ =  . In the following, we fix N and Q, and obtain the following 
theorem as an application of Theorem 3.1. 

Theorem 4.1. For NU∈α  the mapping F is differentiable with ( ) ( )i j n j iF u xα α ′∂ ∂ = ∂  for 1, ,i Q=   
and 0, , 2j N=  . Here ( ),j ju p′ ′  are the solutions to the thermodynamic equations  

( ) ( ) 0 in
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for [ ]0,2πθ ∈ . 
The numerical algorithm can be organized as follows: 
1): Given an initial curve, parametrize it to 0η  by the boundary parametrization technique; 
2): Solve the direct problem (2.1) by the finite element method; 
3): For a given nη , calculate the discrete domain derivative Equation (4.3) and the Jacobian matrix; 
4): Apply the regularized Gauss-Newton method,  

( ) ( )( ) ( ) ( )
1T1 ,n n n n n nJ J J r
−

+ = −η η η η η η  

where ( ) ( ) ( )( )T

1 1, ,n n n
Q Qr F M F M= − −η η η . If  

( ) 2

1
,

Q
n

i i
i

F M µ ε
=

− + <∑ η η  

then terminate, where µ  is a regularization parameter; otherwise go back to step (2). 
We carry out the numerical examples to demonstrate the feasibility and validity of the proposed algorithm. In 

the following, we set D to be a rectangle [ ] [ ]4,4 2.5,2.5− × −  with the fixed boundary dΓ , and the boundary 
sΓ  of solid S is to be recovered in our simulations. We choose sΓ  to be different curves: 
Case 1: A circle whose center is at the origin with radius 0.6,  

( ) ( ) [ ]{ }0.6 cos , 0.6 sin , 0,2π .x t t y t t t= ∗ = ∗ ∈  

Case 2: A cone-shaped curve is denoted by the functions  

( ) ( ) ( ) [ ]{ }0.8 cos 0.18 cos 2 1 , 0.6 sin , 0,2π .x t t t y t t t= ∗ + ∗ − = ∗ ∈  

The dimension of the admissible space NU  is 2 1 49N + = , and the number of observation points is 96. We 
use the finite element method to solve both the direct and inverse problems. Spatial discretization is effected 
using the Taylor-Hood pair of finite element spaces on a triangular mesh [13] [14], that is, the finite element 
spaces are chosen to be continuous piecewise quadratic polynomials for the velocity and continuous piecewise 
linear polynomials for the pressure. 

For case 1, Figure 1 and Figure 2 give the comparison between the exact curve with the approximate curve 
for the viscosity coefficient ν  = 0.01 and 0.0025, respectively. For case 2, Figure 3 and Figure 4 display the 
comparison between the target shape with the reconstructed shape for the viscosity coefficient ν = 0.01, 0.005. 
The numerical examples indicate the feasibility of the proposed algorithm and further research is necessary on 
efficient implementations. 

 

 
Figure 1. Case 1: shape reconstruction of a circle, ν = 0.01.                       
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Figure 2. Case 1: shape reconstruction of a circle, ν = 0.0025.                                    

 

 
Figure 3. Case 2. shape reconstruction of a cone-shaped curve, 
ν = 0.01.                                                                       

 

 
Figure 4. Case 2: shape reconstruction of a cone-shaped curve, 
ν = 0.005.                                                       

5. Conclusion 
This paper is concerned with the numerical simulation for shape identification of the steady Stokes-Oseen 
problems. The continuous dependence of the solution on variations of the boundary is established, and the repre- 
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sentation of domain derivative of corresponding equations is derived. This allows the investigation of iterative 
method for the ill-posed problem. By the parametric method, a regularized Gauss-Newton scheme is employed 
to the shape inverse problem. Numerical experiments indicate the feasibility of the proposed method. 
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