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Abstract 
This paper deals with the Bayesian inferences of unknown parameters of the progressively Type II 
censored Weibull-geometric (WG) distribution. The Bayes estimators cannot be obtained in expli-
cit forms of the unknown parameters under a squared error loss function. The approximate Bayes 
estimators will be computed using the idea of Markov Chain Monte Carlo (MCMC) method to gen-
erate from the posterior distributions. Also the point estimation and confidence intervals based 
on maximum likelihood and bootstrap technique are also proposed. The approximate Bayes esti-
mators will be obtained under the assumptions of informative and non-informative priors are 
compared with the maximum likelihood estimators. A numerical example is provided to illustrate 
the proposed estimation methods here. Maximum likelihood, bootstrap and the different Bayes 
estimates are compared via a Monte Carlo Simulation study. 
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1. Introduction 
The Weibull distribution is one of the most popular widely usable models of failure time in life testing and re-
liability theory. The Weibull distribution has been shown to be useful for modeling and analysis of life time data 
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in medical, biological and engineering sciences. Some applications of the Weibull distribution in forestry are 
given in Green et al. [1]. Several distributions have been proposed in the literature to extend the Weibull distri-
bution. Adamidis and Loukas [2] introduce the two-parameter exponential-geometric (EG) distribution with de-
creasing failure rate. Marshall and Olkin [3] present a method for adding a parameter to a family of distributions 
with application to the exponential and Weibull families. Adamidis et al. [4] introduce the extended exponen-
tial-geometric (EEG) distribution which generalizes the EG distribution and discuss variety of its statistical 
properties along with its reliability features. The hazard function of the EEG distribution can be monotone de-
creasing, increasing or constant. Kus [5] proposes the exponential-Poisson distribution (following the same idea 
of the EG distribution) with decreasing failure rate and discusses its various properties. Souza et al [6] introduce 
the Weibull-geometric (WG) distribution that contains the EEG, EG and Weibull distributions as special sub- 
models and discuss some of its properties. For more details about Weibull-geometric (WG) distribution and its 
properties, see Barreto-Souza [7] and Hamedani and Ahsanullah [8]. 

Let X follows a WG distribution, then the probability density function (pdf) ( )f x  and distribution function 
(cdf) ( )F x  of WG distribution are given respectively by 
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Some special sub-models of the WG distribution (1) are obtained as follows. If 0p = , we have the Weibull 
distribution. When 1p → , the WG distribution tends to a distribution degenerate in zero. Hence, the parameter 
p can be interpreted as a concentration parameter. The EG distribution corresponds to 1α =  and 0 1p< < , 
whereas the EEG distribution is obtained by taking 1α =  for any 1p < . Clearly, the EEG distribution extends 
the EG distribution. WG density functions are displayed. For 1 1p− ≤ < , the WG density is unimodal if 1α >  
and strictly decreasing if 1α ≤ . The mode 1 1

0x u αβ −=  is obtained by solving the nonlinear equation 

( )1 1 1expu p u u α α
α α

− − − + + = 
 

                             (3) 

For 1p < − , the WG density can be unimodal. For example, the EEG distribution ( 1α = ) is unimodalif 
1p < − . 

The survival and hazard functions of X are 
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Suppose that n independent items are put on a life test with continuous identically distributed failure times 
1 2, , , nX X X . Let further that a censoring scheme ( )1 2, , , mR R R  is previously fixed such that immediately 

following the first failure 1X , 1R  surviving items are removed at random from the test, after the next failure 
2X , 2R  surviving items are removed at random from the test; this process continues until, at the time of the 

m-th observed failure mX , the remaining mR  items are removed from the test. The m is ordered observed fail-
ure times denoted by 1, 2, ,, , ,m m m mX X X

R R R , are called progressive Type II right censored order statistics of size m 
from a sample of size n with progressive censoring scheme ( )1 2, , , mR R R= R . If the failure times of the n 
items, originally on the test are from a continuous population with pdf ( )f x  and cdf ( )F x , the joint proba-
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bility density function for 1, 2, ,, , ,m m m mX X X

R R R  is given (see Balakrishnan and Sandhu [9]) by 

( ) ( ) ( )1,2, , 1; , 2; , ; , ; , ; ,
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where 

( )( ) ( )1 1 2 1 2 11 2 1 .mC n n R n R R n R R R m−= − − − − − − − − − − −                  (7) 

Progressive Type II censored sampling is an important scheme of obtaining data in lifetime studies. For more 
details on the progressive censored samples see Aggarwala and Balakrishnan [10]. 

2. Markov Chain Monte Carlo Techniques 
MCMC methodology provides a useful tool for realistic statistical modeling (Gilks et al. [11]; Gamerman, [12]), 
and has become very popular for Bayesian computation in complex statistical models. Bayesian analysis re-
quires integration over possibly high-dimensional probability distributions to make inferences about model pa-
rameters or to make predictions. MCMC is essentially Monte Carlo integration using Markov chains. The inte-
gration draws samples from the required distribution, and then forms sample averages to approximate expecta-
tions (see Geman and Geman, [13]; Metropolis et al., [14]; Hastings, [15]). 

Gibbs Sampler 
The Gibbs sampling algorithm is one of the simplest Markov chain Monte Carlo algorithms. It was introduced 
by Geman [13]. The paper by Gelfand and Smith [16] helped to demonstrate the value of the Gibbs algorithm 
for a range of problems in Bayesian analysis. Gibbs sampling is a MCMC scheme where the transition kernel is 
formed by the full conditional distributions.  

The Gibbs sampler is applicable for certain classes of problems, based on two main criterions. Given a target 
distribution ( )g Θ , where ( )1 2, , , ,i dθ θ θ θΘ =   The first criterion is 1) that it is necessary that we have an 
analytic (mathematical) expression for the conditional distribution of each variable in the joint distribution given 
all other variables in the joint. Formally, if the target distribution ( )g Θ  is d-dimensional, we must have d in- 
dividual expressions for ( ) ( )1 2 1 1| , , ; , , , | , .i i i d i jg g i jθ θ θ θ θ θ θ θ− + = ≠   

Each of these expressions defines the probability of the i-th dimension given that we have values for all other 
( i j≠ ) dimensions. Having the conditional distribution for each variable means that we don’t need a proposal 
distribution or an accept/reject criterion, like in the Metropolis-Hastings algorithm. Therefore, we can simply 
sample from each conditional while keeping all other variables held fixed. So that we must be able to sample 
from each conditional distribution if we want an implementable algorithm. 

To define the Gibbs sampling algorithm, let the set of full conditional distributions be  

( ) ( ) ( ){ }1 2 3 2 1 3 1 2 1| , , , ; | , , , ; ; | , , ,d d d dg g gθ θ θ θ θ θ θ θ θ θ θ θ −    .  

Now one cycle of the Gibbs sampling algorithm is completed by simulating { } 1

d
k k

θ
=

 from these distributions, 
recursively refreshing the conditioning variables.  

Algorithm: 
1) Choose an arbitrary starting point ( ) ( ) ( )( )0 0 0

1 , , dθ θ θ=   for which ( )( )0 0g θ > ; 

2) Obtain ( )
1

tθ  from conditional distribution ( ) ( ) ( )( )1 1 1
1 2 3| , , ,t t t

dg θ θ θ θ− − −
 ; 

3) Obtain ( )
2

tθ  from conditional distribution ( ) ( ) ( )( )1 1
2 1 3 1| , , ,t t tg θ θ θ θ− −

 ; 

4) Obtain ( )t
dθ  from conditional distribution ( ) ( ) ( ) ( )( )1 2 3 1| , , , ,t t t t

d dg θ θ θ θ θ − ; 

5) Repeat of steps 2 - 4 thousands (or millions) of times for the number of samples M. 
The results of the first M or so iterations should be ignored, as this is a “burn-in” period for the algorithm to 

set itself up.  
In this paper, we obtain and compare several techniques of estimation based on progressive Type II censoring 
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for the three unknown parameter of WG distribution. In Bayesian technique, we use the idea of Markov chain 
Monte Carlo (MCMC) techniques to generate from the posterior distributions. Finally, we will give an example 
to illustrate our proposed method.  

3. Maximum Likelihood Estimation 

Let ; ,i i m nX X= R , 1, 2, , ,i m=   be the progressive first-failure censored order statistics from a Weibull-geometric  
distribution, with censored scheme R, where n independent items are put on a life test with continuous identi-
cally distributed failure times 1 2, , , nX X X . Suppose further that a censoring scheme ( )1 2, , , mR R R  is pre-
viously fixed. From (1), (2) and (3), the likelihood function is given by 
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where C is given by (7). The logarithm of the likelihood function l may then be written as 
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Calculating the first partial derivatives of (9) with respect to ,α β  and p equating each to zero, we get the 
likelihood equations as in the following:  
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Since (10-12) cannot be solved analytically for ˆˆ ,α β  and p̂ , some numerical methods such Newton’s me-
thod must be employed. 

Approximate confidence intervals for ,α β  and p can be found by to be bivariately normal distributed with 
mean ( ), , pα β  and covariance matrix ( )1

0
ˆˆ ˆ, ,I pα β− . Thus, the ( )100 1 %α−  approximate confidence inter-

vals for ,α β  and p are 

( ) ( ) ( )
2 2 2 2 2 2

11 11 22 22 33 33
ˆ ˆˆ ˆ ˆ ˆ, , ,  and ,z v z v z v z v z v z vα α α α α αα α β β α α− + − + − +         (13) 

respectively, where 11v , 22v  and 33v  are the elements on the main diagonal of the covariance matrix 

( )1
0

ˆˆ ˆ, ,I pα β−  and 
2

zα  is the percentile of the standard normal distribution with right-tail probability 
2
α . 

4. Bootstrap Confidence Intervals 
The bootstrap is a resampling method for statistical inference. It is commonly used to estimate confidence inter-
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vals, but it can also be used to estimate bias and variance of an estimator or calibrate hypothesis tests. In this 
section, we use the parametric bootstrap percentile method suggested by Efron [17] [18] to construct confidence 
intervals for the parameters. The following steps are followed to obtain progressive first failure censoring boot-
strap sample from Weibull-geometric distribution with parameters ˆˆ ,α β  and p̂  based on simulated progres-
sively first-failure censored data set.  

Algorithm: 
• From an original data set 1; , , 2; , , ; , ,, , ,R R R

m n k m n k m m n kx x x x≡  , compute the ML estimates of parameters ˆˆ ,α β  
and p̂  from Equation (9) and Equation (10); 

• Use ˆˆ,α β  and p̂  to generate a bootstrap sample x∗  with the same values of ( ), 1, 2, ,iR i m=   using 
the algorithm of Balakrishnan and Sandhu [2]; 

• As in step 1 based on x∗  compute the bootstrap sample estimates of ˆˆ ,α β  and p̂  say ˆˆ ,α β∗ ∗  and p̂∗ ; 
• Repeat steps 2 - 3 N times representing N bootstrap MLE’s of ˆˆ ,α β  and p̂  based on N different bootstrap 

samples; 
• Arrange all ˆˆ ,j jα β∗ ∗  and ˆ jp∗  in an ascending order to obtain bootstrap sample [ ] [ ] [ ]( )1 2, , , ,N

t t tϕ ϕ ϕ  

1, 2,3t =  where ( 1 ˆ ,ϕ α∗=  2
ˆ ,ϕ β ∗=  3 p̂ϕ ∗= ); 

• Let ( ) ( )tG z P zϕ= <  be cumulative distribution function of tϕ ;  
• Define ( )1

tboot G zϕ −=  for given z. The approximate bootstrap 100 ( )1 %γ−  confidence interval of tϕ  
given by  

, 1 .
2 2tboot tboot
γ γϕ ϕ    −        

                               (14) 

5. Bayesian Estimation Using MCMC 
In this section, we consider the Bayes estimation of the unknown parameter(s). In many practical situations, the 
information about the parameters are available in an independent manner. Thus, here it is assumed that the pa-
rameters are independent a priori and assumed that α  and β  have the following gamma prior distributions 

( ) ( )1
1 exp ,a bπ α α α−∝ −                                (15) 

( ) ( )1
2 exp .c dπ β β β−∝ −                                 (16) 

Here all the hyper parameters a, b, c, d are assumed to be known and non-negative and let the NIP for para-
meter p which represented by the limiting form of the appropriate natural conjugate prior, the NIP for the acce-
leration factor p is given by  

( ) 1
3 ,     0.p p pπ −= >                                  (17) 

Therefore, the joint prior of the three parameters can be expressed by 

( ) ( )1 1 1, , exp ,      ,  ,  0.a cp p b d pπ α β α β α β α β− − −∝ − − >                   (18) 

Therefore, the Bayes estimate of any function of ,α β  and p say ( ), , pϕ α β , under squared error loss func-
tion (SEL) is  

( ) ( )( ), , |ˆ , , , , .p xp E pα βϕ α β ϕ α β=                             (19) 

The MCMC method to generate samples from the posterior distributions and then compute the Bayes estima-
tor of ( ), , pϕ α β  under the SEL function. 

A wide variety of MCMC schemes are available, and it can be difficult to choose among them. An important 
subclass of MCMC methods are Gibbs sampling and more general Metropolis-Hastings (M-H) algorithm. The 
advantage of using the MCMC method over the MLE method is that we can always obtain a reasonable interval 
estimate of the parameters by constructing the probability intervals based on the empirical posterior distribution. 
This is often unavailable in maximum likelihood estimation. Indeed, the MCMC samples may be used to com-
pletely summarize the posterior uncertainty about the parameters ,α β  and p, through a kernel estimate of the 
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posterior distribution. This is also true of any function of the parameters. 
When practically possible, we give prior and posterior distributions in terms of known densities, such as the 

Gaussian, binomial, beta, gamma and others. The joint posterior density function of ,α β  and p can be ob-
tained by multiply the likelihood function (multivariate normal) with the prior which can be written as: 

( ) ( ) ( ) ( )
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We obtain the Bayes MCMC point estimate of lϕ  ( 1 ,ϕ α=  2ϕ β=  and 3 pϕ = ) as 

( ) ( )

1

1| ,
N

i
l l

i M
E x

N M
ϕ ϕ

= +

=
− ∑                                (21) 

where M is the burn-in period (that is, a number of iterations before the stationary distribution is achieved), and 
posterior variance of lϕ  becomes 

( ) ( ) ( )( )2

1

1ˆ ˆ| | ,
N

i
l l l

i M
V x E x

N M
ϕ ϕ ϕ

= +

= −
− ∑                          (22) 

6. Illustrative Example 
To illustrative the estimation techniques developed in this article, for given hybrid parameters ( )1.5, 1a b= =  

generate random sample of size 10, from gamma distribution the mean of the random sample 
10

1

1
10 i

i
α α

=

≅ ∑ , is 

computed and considered as the actual population value of 1.5.α =  That is, the prior parameters are selected to 

satisfy ( ) bE
a

α α= ≅ , that is approximately the mean of gamma distribution (21). Also for given values 

( )2, 1c d= = , generate according the last 2β = , from gamma distribution. The prior parameters are selected to 

satisfy ( ) dE
c

β β= ≅ , that is approximately the mean of gamma distribution. We have considered a progressive  

Type II sample is generated from WG distribution with parameters ( 1.5α = , 2β = , 0.5p = , 50n = , 
50m =  and { }2,0,2,0,1,0,2,0,0,3,0,0,2,0,2,0,1,0,3,0,3,0,2,0,2R = ) using the algorithm of Balakrishnan 

and Sandhu [9], the data given in by: 0.0212, 0.0463, 0.0568, 0.0686, 0.0764, 0.0832, 0.0933, 0.1031, 0.1496, 
0.1485, 0.1511, 0.1536, 0.1603, 0.1685, 0.1985, 0.2097, 0.2176, 0.2643, 0.2696, 0.2809, 0.3156, 0.3744, 0.3941, 
0.4196, 0.5236. 

 
Table 1. Different estimates of parameters of WG distribution. 

Parameters 
Method 

(.) ML (.) Boot (.) MCMC 
1.5α =  1.5896 1.9026 1.5996 
2.0β =  1.8969 2.4043 1. 9069 
0.5p =  0.4754 0.8028 0.4905 

 
Table 2. MLE, percentile bootstrap CIs and Bootstrap-t CIs based on 500 replications. 

Parameters 
Method 

(.) ML (.) Boot-p (.) Boot-t (.) MCMC 
1.5α =  (1.1324, 2.0897) (1.0203, 2.4396) (1.1436, 2.0643) (1.1542, 1.9643) 
2.0β =  (1.2273, 2.7381) (1.0952, 2.6645) (0.7809, 2.6922) (0.9458, 2.5504) 
0.5p =  (0.3452, 0.7655) (0.6543, 0.9756) (0.1501, 0.7901) (0.0491, 0.6895) 
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Figure 1. Simulation number of α  generated by MCMC method and its histogram. 

 

 
Figure 2. Simulation number of β  generated by MCMC methodand its histogram. 
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Figure 3. Simulation number of p generated by MCMC methodand its histogram. 

 
Under these data, we compute the approximate MLEs, bootstrap and Bayes estimates of ,α β  and p using 

MCMC method results are given in Table 1 and Table 2. Note that Table 2 gives the 95%, approximate MLE 
confidence intervals, two bootstrap confidence intervals and approximate credible intervals based on the MCMC 
samples. Figures 1-3 show simulation number of WG parameters generated by MCMC method and the corres-
ponding histogram. 
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