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Abstract 
Electrodynamics of the one-electron currents due to the circular orbital motion of the electron 
particle in the hydrogen atom has been examined. The motion is assumed to be induced by the 
time change of the magnetic field in the atom. A characteristic point is that the electric resistance 
calculated for the motion is independent of the orbit index and its size is similar to that obtained 
earlier experimentally for the planar free-electron-like structures considered in the integer 
quantum Hall effect. Other current parameters like conductivity and the relaxation time behave in 
a way similar to that being typical for metals. A special attention was attached to the relations be-
tween the current intensity and magnetic field. A correct reproduction of this field with the aid of 
the Biot-Savart law became possible when the geometrical microstructure of the electron particle 
has been explicitly taken into account. But the same microstructure properties do influence also 
the current velocity. In fact the current suitable for the Biot-Savart law should have a speed cha-
racteristic for a spinning electron particle and not that of a spinless electron circulating along the 
orbit of the original Bohr model. 
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1. Introduction 
The electrodynamics of the electron motion in atoms is rather seldom discussed. The Bohr model of the hydro-
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gen atom concerns mainly the mechanical effects due to the presence of the electron motion in the atom. In par-
ticular these are the velocity, angular momentum and energy of the electron particle. The electrostatic force be-
tween nucleus and electron applied in calculations defines the geometrical distance which separates both ele-
mentary particles composing the atom, but the electric field as such does not enter the formalism. The energy 
differences define the spectroscopic properties of the atom; however—at the same time—the magnetic effects 
connected with the electron motion seem to be fully neglected. The aim of the present paper is—in the first step 
—to bridge this magnetic gap. Next the electron motion on an orbit is considered as a current and parameters of 
that current (potential, intensity and resistance) are examined. In a further step the electron is considered as a 
particle moving in a conductor having a definite conductivity constant. This constant, as well as the length of the 
free path and relaxation time connected with it, are all applied in a study of the Ohm’s law for the one-electron 
orbital current in the atom.   

A separate problem concerns a reference of the geometrical microstructure of the electron particle to its elec-
trodynamical properties. In fact an examination of the electron current along the orbits leads to two concepts of 
the current intensity: one of them neglects totally the electron spin, but in another one the spin effect is directly 
involved. Our aim is to discuss a connection of the electron microstructure and spin with the current intensity in 
some detail. 

2. Magnetic Field Due to the Electron Motion Present in the Atom and Its  
Consequences  

A circular motion of the electron particle along the orbits provides us necessarily with the magnetic field di-
rected normally to the orbit planes. The strength of the field 

B must fit the frequency  
eB
me

Ω =                                        (1) 

of the circular orbital motion. In effect the strength nB  obtained for any orbit n should satisfy the relation  

2π
n

nT
Ω =                                        (2) 

where  
2 2 3 3

2 2 4

2π 2π 2πn
n

n

r n n nT
v me e me

= = ⋅ =
                                (3) 

is the time period of the electron circulation along the orbit n. The orbit radius [1] [2]  
2 2

2n
nr
me

=
                                        (4) 

and the electron velocity  
2

n
ev
n

=


                                       (5) 

on the orbit are taken into account in (3). 
A substitution of nT  into (2) gives the relation  

4

3 3
neB me

mc n
=



 

from which  
2 3

3 3n
m e cB
n

=


                                      (6) 

indicating the change (decrease) of nB  with an increase of n. 
Physically the effect of the change of nB  with n is especially characteristic when the magnetic flux Φ  
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across the orbit area is considered. Assuming a constant nB  on the orbit area nS  we obtain  
2 3 4 4

3 3 2 4d π π
2n n n n

m e c n n c hcB S B S n
e en m e

Φ = = = = =∫
 



                      (7) 

since  
4 4

2
2 4π π .n n

nS r
m e

= =
                                    (8) 

Equation (7) implies that the change of the magnetic flux due to the electron transition between the orbit 
1n +  and n becomes  

( )1 1 .
2 2n n
hc hcn n

e e+∆Φ = Φ −Φ = + − =                             (9) 

The ∆Φ  obtained in (9) is identical with the magnetic flux quanta observed experimentally in superconduc-
tors [3] [4]. In the present paper this ∆Φ  will be applied in a study of the electrodynamical properties of the 
electron motion in the hydrogen atom; see [5] [6]. 

3. Maxwell Equations and the Electric Resistance Characteristic for the Orbital  
Motion  

A constant current can exist only in the presence of the electric field of a non-electrostatic nature; see e.g. [7]. 
We assume that the electric field nE  active along the orbit n is due to the time change of B from 1nB +  to nB . 
The fields E  and B  are coupled by the Maxwell equation  

1
c t
∂

∇× = −
∂
BE                                    (10) 

[8]. When the both sides of (10) are integrated over the geometrical parameters characteristic, say, for some or-
bit n they give  

1 1 1d d .n nc t c t c t
∂ ∂Φ ∆Φ

= − = − ≈ −
∂ ∂ ∆∫ ∫E l B S



                        (11) 

Let the interval ∆Φ  be that given in (9), whereas t∆  is the time interval necessary for the electron transi-
tion between the orbits 1n +  nad n. In a preceding paper [9] we have shown that t∆  is coupled with the tran-
sition energy E∆  from level 1n +  to n, viz  

1n nE E E+∆ = −                                    (12) 

by the formula  
.E t h∆ ∆ =                                      (13) 

It should be noted that t∆  entering (13) approaches the time period nT  given in (3); see [5] [6] [9]. 
Because the field intensity nE  can be a constant number along the orbit n, we obtain from (9), (11) and (13) 

the relation  
1 1 12π .

2 2 2n n
hc h E Er

c e t e h e
∆ ∆

= − = − = −
∆

E                          (14) 

The left-hand side of the formula (14) defines the electromotive force   connected with the electron motion 
along the orbit n, so—when the absolute value of   is considered—we have  

1 .
2

E
e
∆

=                                      (15) 

4. Electric Resistance of the Orbital Motion  
The electric resistance R is the ratio between the electromotive force and the current intensity i obtained in 
course of the transition time t∆ :  
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.e e Ei
t h

∆
= =
∆

                                    (16) 

Here the formula (13) is again taken into account. This gives together with (15):  

2

1 1 .
2 2

E h hR
i e e E e

∆
= = =

∆
                                (17) 

We find R independent of the size of parameters E∆  and t∆ . In effect R is the same constant number for 
all orbits n. Moreover, the value of R is equal to one-half of the electric resistance associated with the integer 
quantum Hall effect; see e.g. [10].  

5. Electric Conductivity and the Length of a Free Path of the Electron  
Let us define the electric conductivity σ  by the relation  

n ni i σ= = E                                     (18) 

so  

.n

n

i
σ =

E
                                      (19) 

On condition the absolute value of (14) is taken into account, we obtain  

1 1 .
2 2πn

n

E
e r
∆

=E                                    (20) 

Therefore from (16) and (19)  
24π

2 .n
n

r ee E er
h E

σ ∆
= =

∆ 

                               (21) 

The formula for the contribution of a single electron to the metal conductivity is [11]  
2

metal
n

eσ = Λ


                                    (22) 

where Λ  is a free path of the electron being in the state n. A comparison of (21) and (22) indicates that  
2n nrΛ = Λ =                                      (23) 

is a free path in the case of the electron being in the orbital state n of the hydrogen atom. 
The Λ  in (23) divided by the electron velocity nv  gives the relaxation time τ  of the conduction process. 

In the present case this is  
2 2 3 3

2 2 4

2 2 2 .n
n

n n

r n n n
v v me e me

τ Λ
= = = =

                               (24) 

Evidently the nτ  in (24) differs solely by the factor of π  from the time period nT  in (3). The approximate 
value of nτ  for 1n =  is 1610−  sec; it increases with an increase of n.  

6. The Ohm’s Law Referred to the Size Properties of the Conductor  
If the electric field has a potential, so gradϕ= −E , the integral of E  performed along a closed current path 
becomes equal to zero [7]. This means that solely the field due to the time change of B can provide us with nE  
associated with the current. We demonstrate here that a typical connection between the current conductivity and 
the field strength concerns not i alone but also a modified current  

eff .n
cS

σ= =
ij E                                    (25) 

The term cS  is the cross-section area of the current. 
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A comparison of (25) with (19) gives the relation  
eff .cSσ σ=                                      (26) 

In fact we shall find that the resistance in (17) can be represented by  

eff

1 n

c

l
R

Sσ
=                                      (27) 

which is a well-known formula; see e.g. [7]. Evidently with the aid of  
2πn nl r=                                       (28) 

which is the length of the orbital conductor, we obtain  

eff 2 2

2π 2π 2π1 1 2π .
2 2

n c n n
n

c c n

r S r r hR r
S S re eσ σσ

= = = = =
                      (29) 

This is a result equal to the resistance R calculated before; see (17).  

7. Microstructure of the Electron Particle and the Current Intensity  
The influence of the geometrical microstructure of the electron particle on the current intensity seemed to be a 
neglected problem. In the present Section we try to demonstrate that in fact such influence can be of importance. 
One of the typical relations of electrodynamics connecting the magnetic field intensity B and the current j is (see 
e.g. [12])  

4πd d .
c

=∫ ∫B l j S


                                   (30) 

The integral on the left of (30) is extended along a closed current path which in case of an electron orbit n is  

d 2π .n nl r= =∫ l


                                   (31) 

On the other side of (30) the current j  is crossing a planar area cS  normal to dl  which is equal to  

d .cS S= ∫                                       (32) 

In order to estimate cS  for the one-electron current we refer it to the microstructure properties of the elec-
tron particle represented by a small charged sphere [7] [8]. The particle has the radius  

2

2 .e
er

mc
≅                                       (33) 

Therefore we assume that for a one-electron orbit cS  is equal to  
22

2
2π π .c e e

eS S r
mc

 
= = =  

 
                               (34) 

In principle two concepts concerning the current nj  along the orbit n can be applied. The first of them is that  

.n
n

e n e

i ej
S T S

= =                                    (35) 

In this case we obtain on the left of (30) the expression  
2 3 2 2

3 3 2d 2π 2π 2π .n n
m ce n mecB r

nn me
= = =∫B l 





                        (36) 

But the right-hand side of (30) gives from (3) and (35)  
22 5

2 3 3

4π 4π 4π 4ππ ,
2πn e

n e n

e e e mej S
c c T S c T cmc n

 
= = = 

  

                     (37) 
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which is a result being in a full disagreement with (36). The ratio of (37) to (36) gives  

( )
( )

5 4
2

3 3 2 2 2 2

37 4π 1 1
36 2π2π π π

me n e
c mecn n c n

α= = =


 

                       (38) 

where α  is the well-known fine-structure atomic constant:  
2 1 .

137
e
c

α = ≅


                                    (39) 

But another situation is attained when instead of nj  in (35) we assume the current density  

.n nj ev ρ=                                       (40) 

Here nv  is the electron velocity given in (5) and ρ  is the density of the electron particle  

3

1 1 .
4π
3

e
e

V r
ρ = =                                    (41) 

This kind of current has been applied in calculating the Poynting vector associated with the energy emission 
in the hydrogen atom; see [9]. 

By applying the current intensity of (40) we obtain for the right-hand side of (30) the formula  
2 3 2

2
3 2

34π 4π 4π 3 π 3π 3πd π .
4π

n
n n e e

ee

ev e e mc emcj j S r
c c c ec n r n nr e c

= = = = =∫ S 

 

              (42) 

The result of (42) differs from the left-hand side of (30) calculated in (36) solely by the factor of 3/2. 
A direct application of nj —instead of nj —can be done in a check of the Biot-Savart law for the electron 

current in the hydrogen atom. According to this law [12]  

3

d
.n n

n n e
n

B j S
cr
×

= ∫
r r





                                   (43) 

Since  
3 3 2 2

2

1~e n e
e

e e mc emcjS ev S
n r n ne

ρ= = =

  

                          (44) 

and the integral on the right of (43) gives  
2 2

3 3 2 2

d 1~ ,n n n

nn n

r me
crcr cr cn

×
= =∫

r r




                             (45) 

we obtain for nB  in (43)  
2 2 3 2

2 2 3 3~n
emc me e m cB

n cn n
=

  

                               (46) 

which remains in a perfect agreement with the formula (6).  

8. Time Interval Entering the Current Velocity and Its Reference to the Electron  
Spin  

The aim of this Section is to examine the physical background of the difference between nj  and nj ; we find 
that velocity entering nj  should be associated with the electron spin. If j  in (40) is a correct expression for 
the current, which means that it satisfies the Biot-Savart law, a reference of j  to the intensity i—defined by a 
simple ratio of e and time T—is given by the formula  

.e
ei jS
T

= =                                       (47) 

Here T is an unknown time interval which has to be calculated. 
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The current is due to the electron orbital motion in the hydrogen atom, but in a previous approach to i—where 
the formula for nj  has been neglected—we had [9]  

n
ei i
T

= =                                       (48) 

and nT T=  was the time interval of the spinless orbital motion about the atomic nucleus given in (3). 
Let us transform (47) into the expression  

e
i eS
j Tj

= =
 

                                     (49) 

and assume the motion along the orbit 1n =  for the sake of simplicity. The next step is a transformation of (49) 
into  

1 1

1 1 12π
e e

e
V VT TS

T T v T r
= =                                  (50) 

because of  

1
1

e

evj j
V

= =                                       (51) 

and  

1 1 12π .T v r=                                      (51a) 

This gives  
3 2 2 4

2
2 2 2 2 2

1 1 1

1 4π 1 2 2 2
2π 3 2π 3π 3π 3ππ

e e

e e

V rT e me e
T S r rr mc c

α= = = = =
 

                 (52) 

where the last term refers to the formula (39) for α . 
Therefore we found that T for the current i in (47) should be approximately  

( )22 137α− ≅                                     (53) 

times smaller than 1T . Because the time period sT  of the spin circulation satisfies the relation [13] [14]  

2

1

sT
T

α=                                       (54) 

we find that T in (52) entering the current in (47) does approach the time period of the spin circulation sT  and 
not 1T  characteristic for the spinless motion along the electron orbit having the index 1n = . 

A natural question is how the number given in (52) is changed with the change of n. Since the velocity of a 
spinning electron does not change with n remaining close to c [13] [14], the number of spin loops along the 
electron trajectory increases proportionally to 2n :  

22π ~ ;n nl r n=                                     (55) 

see (4). The driving velocity for the electron motion becomes equal to the orbit velocity [7] [13]:  

( )
stat 5 2 3 3 2

2 4 4 3 2 .nn
d n

n n n

ce e m n ev c c v
B nr B n e m c

= = = = =
E





                      (56) 

This holds for any n; cf. (5) and (56). The symbol stat
nE  is the size of the static electric field acting on the 

electron. Because 1 3~n n nl v T n n−=  we obtain  
3 2n α−                                        (57) 

spin oscillations within the time period nT . 
We found that electrodynamics of the current in which the size of the electron particle is taken into account is 

much different than electrodynamics where this size is neglected. Equation (46) shows that for the one-electron 



S. Olszewski 
 

 
2209 

current the Biot-Savart law is satisfied in the first case, but does not hold in the second current case; see (36) and 
(37). In fact the momentary (local) velocity of the current becomes much different in each of the two examined 
cases. For the electron particle having a definite size this velocity approaches the speed characteristic for a spin-
ning electron; see (52) and (54). On the other side, the speed of electrons with a neglected size [see (5) and (48)] 
is equal to the average speed of the electron along its orbit; this is a much lower speed than of a spinning particle. 
In the Bohr theory the average speed on the orbit is also a local speed of a spinless electron particle. 

9. Summary 
The electron orbital motion in the hydrogen atom is considered as a one-electron current, and parameters of that 
current, like intensity and electric resistance, are examined in some detail. The calculations are done on the basis 
of the formula for the time change of the magnetic field induced by the electron motion in the atom; see (10) and 
(11). The result obtained for resistance is independent of the orbit index n and equal to one-half of the quantum 
of resistance observed in the integer quantum Hall effect examined for the planar crystalline structures. On the 
other hand, a calculation of the conductivity constant for the orbits depends on n and gives results formally sim-
ilar to those calculated for metals. 

The relaxation time, being the ratio of the free-electron path and electron velocity on the orbit, attains for the 
index 1n = —the value of 1610τ −≅  sec. This τ  increases gradually with n attaining already for small n—the 
value similar to that characteristic for the τ  in metals. 

In principle the current intensity does not depend on the electron velocity but is solely a function of the elec-
tric charge and the time connected with the charge flow [9]. However, an attempt to obtain a correct size of the 
magnetic field from the basic laws of electrodynamics, for example the Biot-Savart law, requires an insight into 
the microscopic (geometrical) properties of the electron particle combined with the use of the notion of the elec-
tron velocity. 

A characteristic result is obtained when a spinless current (48) having nT T=  is applied to calculate nB  in 
accordance with the Biot-Savart law. In this case the size of nr  should be reduced to that of er . We have in-
stead of (43):  

2

3 3

d 2π 2π .e e e
n n n n

ee e

r
B i i i

crcr cr
×

= = =∫
r r


                            (58) 

This equality holds if we note that  
5 2 2 3

3 3 2 3 3

2π 2π 2π
2π

n

e n e

i e me mc m e c
cr c T r c n e n

= = ⋅ =
 

                         (59) 

which is identical with nB  in (6) and (46). 
But the same property concerning the Biot-Savart law can be obtained for sB  which is the magnetic field in-

tensity for the electron spin [14]. In this case we have  
2 3

s
m cB

e
=


                                     (60) 

and the spin circulation frequency is  
22π ;s

s
s

eB mc
T mc

ω = = =


                                 (61) 

sT  is the time period of the spin circulation and  

2π
s

s
s

eei
T

ω
= =                                      (62) 

is the current intensity on the loop travelled by a spinning electron. 
A substitution of the above spin parameters in place of ni  and nT , together with the radius er  of the elec-

tron microparticle being unchanged, into the formula representing the Biot-Savart law in (59) gives  
2 2 2 3

2

2π
.s s

e e

i e mc e mc m c
cr cr c ee

ω
= = =

 

                             (63) 
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The result (63) remains in a perfect agreement with sB  presented in (60). 
We find in general that the velocity connected with the orbital motion, but coupled with a negligence of the 

microstructure properties of the electron particle, does not give a correct result for B. For example the size of B 
characteristic for the Bohr orbital motion in the hydrogen atom can be reproduced with the aid of the Biot-Savart 
law when a much higher local speed—namely that associated with a travelling of the electron along the spin 
loops and not that along the Bohr orbit—is taken into account. 
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