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Abstract 
A proper edge coloring of a graph is acyclic, if every cycle C of the graph has at least 3 colors. Let r 
be a positive integer. An edge coloring is r-acyclic if it is proper and every cycle C has at least 

{ }C rmin ,  colors. The r-acyclic edge chromatic number ( )′ra G  of a graph G is the minimum 
number of colors needed for any r-acyclic edge coloring of G. When r = 4, the result of this paper is 
that the 4-acyclic chromatic number of a graph with maximum degree Δ and girth { }g max ,9≥  ∆  

is less than 18∆ . Furthermore, if the girth of graph G is at least { }22max 0, ∆ , then ( )′a G4 6< ∆ . 
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1. Introduction 
All graphs considered in this paper are finite and simple. A proper edge coloring of a graph ( ),G V E=  is a 
map ( ): E G C→   such that ( ) ( )e f≠   for each pair of adjacent edges ( ),e f E G∈ , where C denotes 
the color set. A proper edge coloring of G is called acyclic if there are no bichromatic (two-colored) cycles in G. 
In other words, the subgraph induced by the union of any two color classes is a forest. The acyclic edge chro-
matic number (also called the acyclicchromatic index) of a graph G, denoted by ( )a G′ , is the minimum num-
ber of colors required for any acyclic edge coloring of G. In 2001, Alon, Sudakov and Zaks [1] gave the well- 
known Acyclic Edge Coloring Conjecture.  

Conjecture 1 (AECC). For every graph G with maximum degree ( )G∆ , we have ( ) ( ) 2a G G′ ≤ ∆ + . 
Given a positive integer r, the r-acyclic edge coloring is a generalization of the acyclic edge coloring of graphs.  
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An edge coloring is r-acyclic if it is proper and every cycle C has at least { }min ,C r  colors. The r-acyclic edge  
chromatic number ( )ra G′  of a graph G is the minimum number of colors needed for any r-acyclic edge coloring 
of G. This definition was first introduced by Gerke, Greenhill and Wormald [2] in 2006. 

Gerke et al. [3] proved that ( ) ( ) ( )6 1ra G r G′ ≤ − ∆  for any graph G with girth ( ) ( )3 1g r G≥ − ∆ . In [4], we 
reduced the r-acyclic edge chromatic number ( )ra G′  of a graph G to ( ) ( )2 5r G+ ∆  when the girth of G  
equals to ( ){ }max 220, G∆ . 

In this paper we considered the r-acyclic edge coloring problems with r = 4. Using probabilistic arguments, we 
get some new upper bounds for the 4-acyclic edge chromatic number of arbitrary graph G.  

Theorem 1. Let G be a graph with maximum degree ∆  and girth g.  
1) If { }max 9,g ≥ ∆ , then ( )4 18a G′ ∆< . 
2) If { }max 220,g ≥ ∆ , then ( )4 6a G′ ∆< . 

2. Proof of Theorem 1 
We make use of the Lovász Local Lemma as an important tool in our proof. Before giving the proof of Theorem 
1, we state the general version of the Lovász Local Lemma (see [5] [6] for details) as follows. 

Lemma 2. Let 1 2, , , nA A A  be events in an arbitrary probability space. Let the graph ( ),H V E=  on the 
nodes { }1,2, , n  be a dependency graph for the events iA ; that is, assume that for each i, iA  is independent  
of the family of events ( ){ }: ,jA i j E∉ . If there are reals 0 1ix≤ <  such that for all i 

( , )

Pr( ) (1 ),i i j
i j E

A x x
∈

≤ −∏  

then 

( )
11

Pr 1 0,
n n

i i
ii

A x
==

 
≥ − > 

 
∏

 
so that with positive probability no event iA  occurs. 

Proof of Theorem 1. 
When 2∆ ≤ , ( )ra G r′ ≤  can be proved easily. Hence we assume that Gisa graph with 3∆ ≥  in our follow-

ing arguments. 
In the first step, we have to prove that there is an edge coloring ( ) { }: 1, 2, ,E G c→ ∆  , where c > 1 is a 

constant to be fixed later, such that 


 satisfies the following four properties. 
1) Every vertex has at most two incident edges of any single color; 
2) There are no cycles colored by a single color; 
3) There are no cycles colored by just two colors; 
4) If the cycle D is colored by just three colors, there are ( ),e f E G∈  such that they are adjacent and have 

the same color.  
For each edge ( )e E G∈ , we do the following random experiment. Choose a color uniformly and indepen-

dently at random from the color set { }1,2, ,c∆ , and let it be the color of the edge e. In order to make sure the 
resulting random coloring 


 satisfying properties (i)-(iv), we define four types of “bad events” as follows. 

Type I. For each set of three edges { }1 2 3, ,e e e  incident with a given vertex ( )u V G∈ , let { }1 2 3, ,e e eE  be the 
event that all the three edges 1 2 3, ,e e e   receive the same color. 

Type II. Given a cycle D of length k, let { },D kE  be the event that all the edges of D are colored by the same 
color. 

Type III. Given a cycle D of length l, let { },
ˆ

D lE  be the event that the edges of D are colored by just two col-
ors. 

Type IV. Given a cycle D of length h, let { },D hE  be the event that the edges of D are properly colored by 
three colors. 

Obviously, if all the events of Type I, II, III and IV do not occur, then the edge coloring 


 satisfies properties 
(i)-(iv). 

Let us construct a graph H needed in Lemma 2. Denote X to be a set of three edges or a cycle D in the graph 
G, where all the three edges are incident with a given vertex and colored by the same color, and all the edges of 

( )E D  are colored by a single color, or colored by two colors, or properly colored by three colors. Let ( )V H  =  
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{ XE | XE  is an event of type I, II, III or IV}. For each pair of nodes ( ),X YE E V H∈ , XE  and YE  are adja-
cent if and only if X Y ≠ ∅ . Since the occurrence of each event XE  depends only on the colors of the edges 
in X, H is a dependency graph for our events. Furthermore, a node of H is called a node of type i if it corresponds 
to an event of type i, where 1 4i≤ ≤ . In order to apply the Local Lemma, we have to estimate the probability of 
every event and the number of nodes of each type in graph H which are adjacent to a given node. 

Lemma 3. Let { }1 2 3, ,e e e  be the edge set of type I and D be a cycle in the graph G.  

1) For each event { }1 2 3, ,e e eE  of type I, { }( ) ( )
1 2 3

2
, ,Pr 1e e eE c≤ ∆ ; 

2) For each event { },D kE  of type II, { }( ) ( ) 1
,Pr 1 k

D kE c −≤ ∆ ; 

3) For each event { },
ˆ

D lE  of type III, { }( )
2

2
,

1 2ˆPr
2

l

lD lE C
c

−
 ≤  ∆ 

; 

4) For each event { },D hE  of type IV, { }( )
3

3
,

1 2Pr
6

h

hD hE C
c

−
 ≤  ∆ 

. 

Let e be any given edge of graph ( ),G V E= . The number of sets which consist of e and two other edges ad-
jacent to e at the same vertex, is less than 2∆ . For every 3k ≥ , no edge lies in more than 2k −∆  cycles of 
length k. For every node ( )XE V H∈ , let x be the number of edges contained in X. Lemma 3 tells us that the 
number of nodes of type I, II, III and IV adjacent to XE  in graph H is no more than 2x∆ , 2kx −∆ , 2lx −∆  and 

2hx −∆ , respectively. 
Let ( )2

0 1x α= ∆ , ( ) 11 k
kx β −= ∆ , ( ) 21 l

ly γ −= ∆  and ( ) 31 h
hz ε −= ∆  be the values corresponding to events 

of type I, II, III and IV, respectively, where , , , 1α β γ ε >  are constants to be determined later. Applying the 
Local Lemma, we have that, with positive probability none of bad events occur, provided the following four in-
equalities hold for every , ,k l h g≥ . 

( )
( ) ( ) ( ) ( )

22 2 233 3 3
0 02

1 1 1 1 1
ji t

i j t
i g j g t g

x x x y z
c

−− −∆∆ ∆ ∆

≥ ≥ ≥

≤ − − − −
∆

∏ ∏ ∏                (1.1) 

( )
( ) ( ) ( ) ( )

22 2 2

01

1 1 1 1 1
ji tkk k k

k i j tk
i g j g t g

x x x y z
c

−− −∆∆ ∆ ∆

−
≥ ≥ ≥

≤ − − − −
∆

∏ ∏ ∏                (1.2) 

( ) ( ) ( ) ( )
22 2 2

2
2

0
1 2 1 1 1 1
2

ji t
l

ll l l
l l i j t

i g j g t g
C y x x y z

c

−− −
−

∆∆ ∆ ∆

≥ ≥ ≥

  ≤ − − − − ∆ 
∏ ∏ ∏              (1.3) 

( ) ( ) ( ) ( )
22 2 2

3
3

0
1 2 1 1 1 1
6

ji t
h

hh h h
h h i j t

i g j g t g
C z x x y z

c

−− −
−

∆∆ ∆ ∆

≥ ≥ ≥

  ≤ − − − − ∆ 
∏ ∏ ∏              (1.4) 

Let ( ) ( )1 1 zf z z= − . It is well-known that ( )f z  is an increasing function which converges to 1/e as z tends  

to be infinity. Define ( ) ( ) ( ) ( ){ }1 1 1 1
0min , min , min , mini j ti g j g t g

f x f x f y f z− − − −

≥ ≥ ≥
Θ =    . So we have  

( )
2 21

01 x α∆− ≥ Θ   

( )
( )

( )
1

1

2 1

1

1
1

11 1

i
i

i i

i ix

β
β

β

β

−
−

− −

∆
∆

∆ ∆
−

    − = − ≥ Θ  ∆     

( )
( )

( )
2

2

2 2

1

1
2
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j
j

j j

j jy

γ
γ

γ

γ

−
−

− −

∆
∆

−

    − = − ≥ Θ  ∆      
and 
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( )
( )

( )
3

3

2 3

3

11 1 .

t
t

t t

t tz

ε
ε

ε

ε

−
−

− −

∆
∆

∆ ∆
−

    − = − ≥ Θ  ∆   

 

Furthermore, since g ≥ ∆ , we have 
( ) ( )3 4 41 1t g g

t g

g
ε ε ε ε ε− − −

≥

∆ ∆
≤ ≤

− −∑ . Thus, the following three inequali-  

ties ( ) ( )2 21
11
11

i i g gi

i
i g

x β ββ
− ≥ −−∆ ∆ −∆

≥

∑
− ≥ Θ ≥ Θ∏ , ( ) ( )

2 32
11

11
j j g gj

j
j g

y γ γγ
− ≥ −−∆ −

≥

∑
− ≥ Θ ≥ Θ∏  and  

( ) ( )2 43 11
t gt g t

g

t
t g

z ε εε
− −≥ −

∆
∆ −

≥

∑
− ≥ Θ ≥ Θ∏  can be proved to be true. 

In order to prove inequalities (1.1)-(1.4) holds, we just need to show that the following four inequalities (1.5)-  
(1.8) hold for every k g≥ . 

( ) ( ) ( )2 2 3 4
3 1 1 1
2 1 1 11 1 g g g

g

c
α β β γ γ ε ε

α

− − −

 
 + + +
 ∆ − − − ≤ Θ                           (1.5) 

( ) ( ) ( )2 2 3 4
1 1 1

1 1 1 11 1 g g g
k g

k

c
α β β γ γ ε ε

β

− − −

 
 + + +
 − ∆ − − − ≤ Θ                          (1.6) 

( ) ( ) ( )2 2 3 4

1 1 1 12 2 2 1 1 12 1
2

g g g
l g

l llC
c

α β β γ γ ε ε

γ

− − −

 
 + + +−  − ∆ − − − 

 
≤ Θ 

 
                     (1.7) 

( ) ( ) ( )2 2 3 4

1 1 1 13 3 2 1 1 12 1
6

g g g
h g

h hhC
c

α β β γ γ ε ε

ε

− − −

 
 + + +−  − ∆ − − − 

 
≤ Θ 

 
                     (1.8) 

With the help of the MATLAB calculations, we receive the minimum values of c and corresponding values of 
, , ,α β γ ε  and g. Therefore, there is a random edge coloring   satisfying properties (i)-(iv) which needs c∆  

colors. 

When 4, 8l h≥ ≥ , ( )
1

2 22 l
lC −  and ( )

1
3 36 h
hC −  decrease with the increasing of l and h, respectively. Therefore,  

when { }max 9,g ≥ ∆ , we set 8.01, 8.21, 2.68, 2.58α β γ ε= = = =   . It can be verified that the inequalities (1.5)- 
(1.8) are satisfied by setting 8.8587c = . When { }max 220,g ≥ ∆ , we set 2.01, 1.2, 1.08, 1.07α β γ ε= = = =   . 
And it can be verified that the inequalities (1.5)-(1.8) are satisfied by setting 2.9352c = . 

From the above argument, we know that, there is an edge coloring ( ) { }: 1, 2, ,E G c→ ∆   of the graph G 
which satisfies properties (i)-(iv). 

Now turn to the second step of our proof. For every color { }1,2, ,i c∈ ∆ , let [ ]G i  be the induced subgraph  
of G by the edges with the color i. From properties (i) and (ii), we know that [ ]( ) 2G i∆ ≤  and [ ]G i  consists of  

some disjoint paths. Therefore, the edges of [ ]G i  can be recolored by two new colors { }1 2,i i , which becomes 
a proper 2-edge coloring of [ ]G i . 

After similar arguments of every color { }1,2, ,i c∈ ∆ , we get a new proper edge coloring  
( ) { }1 2 1 2 1 2: 1 ,1 , , , , , ,E G i i c c′ → ∆ ∆    of graph G. Furthermore, properties (iii) tells us there are no cycles 

colored by just two colors in the random edge coloring  . If D is a cycle colored by three colors in  , from 
property (iv), there are ( ),e f E D∈  such that they are adjacent and have the same color. And then, 

( ),e f E D∈  will get two different colors in the new coloring ′
 , which makes the number of colors occurs in 

the cycle D is at least 4. If the random edge coloring   makes the cycle D colored by at least 4 colors, then so 
does the new coloring ′

 . Hence, with the new coloring ′
 , there are at least 4 colors in every cycle of G.  

In a word, ′
  is a 4-acyclic edge coloring of graph G with at most 2c∆  colors. And then, it is true that: 

when the girth { }max 9,g ≥ ∆ , we have ( )4 17.7174 18a G′ ≤ ∆ < ∆ ; and when { }max 220,g ≥ ∆ , we have 
( )4 5.8703 6a G′ ≤ ∆ < ∆ . 
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3. Remarks 
This proof was finished mainly using the Lovász Local Lemma. We believe that with the use of more probabil-
istic methods, or more careful applications of the Local Lemma, the study of 4-acyclic edge colorings and r- 
acyclic edge colorings will go further. 
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