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Abstract 
Let ( ){ }H HX X t t += ∈,   be a subfractional Brownian motion in d . We prove that HX  is 
strongly locally nondeterministic. 
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1. Introduction 
The fractional Brownian motion (fBm for short) is the best known and most used process with long-dependence 
property for models in telecommunications, turbulence, image processing and finance. This process is first in-
troduced by [1] and later studied by [2]. The self-similarity and stationarity of the increments are two main 
properties for which fBm enjoy success as a modeling tool. The fBm is the only continuous Gaussian process 
which is self-similar and has stationary increments; see [3]. Many authors have also proposed for using more 
general self-similar Gaussian processes and random fields as stochastic models; see e.g. [4]-[9]. Such applica-
tions have raised many interesting theoretical questions about self-similar Gaussian processes and fields in gen-
eral. However, in contrast to the extensive studies on fractional Brownian motion, there has been little systemat-
ic investigation on other self-similar Gaussian processes until [10] fills the gap by developing systematic ways 
to study sample path properties of a class of self-similar Gaussian process, namely, the bifractional Brownian 
motion. Their main tools are the Lamperti transformation, which provides a powerful connection between 
self-similar processes and stationary processes; see [11], and the strong local non-determinism of Gaussian 
processes; see [12]. In particular, for any self-similar Gaussian processes ( ){ },X X t t= ∈ , the Lamperti 
transformation leads to a stochastic integal representation for X. 

An extension of Bm which preserves many properties of the fBm, but not the stationarity of the increments, is 
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so called sub-fractional Brownian motion (sub-fBm, in short) introduced by [13]. The sub-fBm is another class 
of self-similar Gaussian process which has properties analogous to those of fBm; see [13]-[15]. Given a constant 

( )0,1H ∈ , the sub-fractional Brownian motion in   is a centered Gaussian process  
( ){ }0 0 ,H HX X t t += ∈  with covariance function  

( ) ( ) ( ) 222 2 1, : ,
2

HHH H HR s t R s t s t s t s t = = + − + + −                       (1) 

and ( )0 0 0HX = . 
Let 1 , ,H H

dX X  be independent copies of 0
HX . We define the Gaussian process ( ){ },H HX X t t += ∈  

with values in d  by  

( ) ( ) ( )( )1 , , ,    .H H H
dX t X t X t t += ∀ ∈ 

                          (2) 

By (1), one can verify easily that HX  is a self-similar process with index H, that is, for every constant 
0a > , 

( ){ } ( ){ }, , ,
d

H H HX at t a X t t+ +∈ = ∈                            (3) 

where 
d

X Y=  means that the two processes have the same finite dimensional distributions. Note that HX  
does not have stationary increments. 

The strong local non-determinism is an important tool to study the sample path properties of self-similar 
Gaussian process, such as the small ball probability and Chung’s law of the iterated logarithm. In this paper, we 
apply the Lamperti transformation to prove the strong local non-determinism of 0

HX . Throughout this paper, a 
specified positive and finite constant is denoted by ic  which may depend on H. 

2. Strong Local Non-Determinism 

Theorem 1. For all constants 0 a b< < , 0
HX  is strongly locally ϕ -nondeterministic on [ ],I a b=  with 

( ) 2Hr rϕ = . That is, there exist positive constants 
1

c  and 0r  such that for all t I∈  and all 

{ }00 min ,r t r< ≤ ,  

( ) ( )( ) ( )0 0 0 1| : , .H HVar X t X s s I r s t r c rϕ∈ ≤ − ≤ ≥                       (4) 

Proof. By Lamperti’s transformation (see [11]), we consider the centered stationary Gaussian process 
( ){ }0 0 ,Y Y t t= ∈  defined by   

( ) ( )0 0e e ,   for every .Ht H tY t X t−= ∈                             (5) 

The covariance function ( ) ( ) ( )( )0 0: 0r t Y Y t=   is given by 

( ) ( ) ( )2 22 22 21 1e 1 e e 1 e 1 e e 1 1 e 1 e ,
2 2

H HH HHt Ht t t Ht Ht t tr t − − − −      = + − + + − = + − + + −            
     (6) 

where ( )r t  is an even function. By (6) and Taylor expansion, we verify that ( ) ( )e tr t O β−= , as t →∞ , 
where { }min ,1H Hβ = − . It follows that ( ) ( )1r L⋅ ∈  . Also, by using (6) and the Taylor expansion again, we 
also have 

( ) ( )221~ 2 2     as  0.
2

HHr t t t− + →                             (7) 

Using Bochner’s theorem, 0Y  has the following stochastic integral representation   

( ) ( )0 e d ,     ,i tY t W tλ λ= ∀ ∈∫                                (8) 

where W is a complex Gaussian measure with control measure ∆  whose Fourier transform is ( )r ⋅ . The meas-
ure ∆  is called the spectral measure of 0Y . 
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Since ( ) ( )1r L⋅ ∈  , the spectral measure ∆  of 0Y  has a continuous density function ( )f λ  which can be 
represented as the inverse Fourier transform of ( )r ⋅ : 

( ) ( ) ( )
0

1 cos d .
π

f r t t tλ λ
∞

= ∫                                 (9) 

We would like to prove that f has the following asymptotic property 

( ) ( )1 2
2~    as ,Hf cλ λ λ− + → ∞                              (10) 

where 2 0c >  is an explicit constant depending only on H. 
In the following we give a direct proof of (10) by using (9) and an Abelian argument similar to that in the 

proof of Theorem 1 of [16]. Without loss of generality, we assume that 0λ > . Applying integration-by-parts to 
(9), we get   

( ) ( ) ( )
0

1 sin d
π

f r t t tλ λ
λ

∞
′= − ∫                              (11) 

with 

( ) ( ) ( ) ( )2 1 2 12 1 1e 1 e 1 e e 1 1 e 1 e .
2 2

H HHt Ht t t t tr t H
− −− − − − − ′ = − + + − − − +  

             (12) 

We need to distinguish three cases: 2 1H < , 2 1H =  and 2 1H > . In the first case, it can be verified from 
(12) that ( ) ( )e astr t O tβ−= → ∞ , hence ( ) ( )1r t L′ ∈  , and 

( ) 2 1~    as 0.Hr t H t t−′ − →                                (13) 

We will also make use of the properties of higher order derivatives of ( )r t . It is elementary to compute 
( )r t′′  and verify that, when 2 1H < , we have   

( ) ( ) 2 2~ 2 1    as 0Hr t H H t t−′′ − − →                            (14) 
and ( ) ( )e tr t O β−′′ =  as t →∞  which implies ( ) ( )1r L′′ ⋅ ∈  . 

The behavior of the derivatives of ( )r t  is simpler when 2 1H = . (12) becomes 

( ) 21 e ,
2

t

r t
−

′ = −                                     (15) 

and 

( ) 21 e .
4

t

r t
−

′′ =                                     (16) 

Hence, we have ( ) 10
2

r′ = − , ( ) 10
4

r′′ = , and both ( )r′ ⋅  and ( )r′′ ⋅  are in ( )1L  . 

When 2 1H > , it can be shown that (14) still holds, and ( ) ( )e tr t O β−′′ =  as t →∞ . 

Now, we proceed to prove (10). First, we consider the case when 0 2 1H< < . By a change of variable, we 
can write 

( ) 2 0

1 sin d .
π

tf r t tλ
λλ

∞  ′= −  
 ∫                               (17) 

Hence,  

( )
( ) ( )

( )
( )1 02

sin d .
1π 1

f r t
t t

rr

λ λ
λλ λ

∞

−

′
=

′′−
∫                            (18) 

Let ( )0,p∈ ∞  be a fixed constant. It follows from (13) and the dominated convergence theorem that   

( )
( )

2 1
0 0

lim sin d sin d .
1

p p Hr t
t t t t t

rλ

λ
λ

−

→∞

′
=

′∫ ∫                            (19) 
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On the other hand, integration-by-parts yields 

( ) ( ) ( )11 sin d cos cos d .
p p
r t t r p p r t t tλ λ λ

λ
∞ ∞
′ ′ ′′= +∫ ∫                     (20) 

By Riemann-Lebesgue lemma, 

( ) ( ) ( ) { } ( ) ( )1 cos d cos d 1 cos d 0   as .x pp p
r t t t r x x x r x x xλλ

λ λ λ λ
λ

∞ ∞ ∞

≥−∞
′′ ′′ ′′= = → →∞∫ ∫ ∫        (21) 

Moreover, since 
2 1

~  as
Hp pr H λ

λ λ

−
   ′ − → ∞   
   

 by (13) and 
2 1Hp

λ

−
  → ∞ 
 

 as λ →∞ , we have 

pr
λ

 ′ → ∞ 
 

 as λ →∞ . It follows that   

1 cos d    as .
p

t pr t t r λ
λ λ λ

∞    ′′ ′≤ → ∞   
   ∫                          (22) 

Then for all λ  large enough, we derive   

( ) ( ) ( ) ( )1 sin  d  cos cos d 2 .
p p
r t t t r p p r t t t r pλ λ λ λ

λ
∞ ∞
′ ′ ′′ ′≤ + ≤∫ ∫              (23) 

Hence, we have   

( ) 2 1 sin  d 2 .limsup H
p
r t t t p

λ
λ

∞ −

→∞
′ ≤∫                             (24) 

Combining (18), (19), and (24), we have   

( )
( ) ( )

( )
( )

( )
( )

( )
( )

1 02

0

2 1
0

lim lim sin d
1π 1

lim sin d lim sin d
1 1

sin d     as .

p

p

H

f r t
t t

rr

r t r t
t t t t

r r

t t t p

λ λ

λ λ

λ λ
λλ λ

λ λ
λ λ

∞

−→∞ →∞

∞

→∞ →∞

∞ −

′
=

′′−

′ ′
= +

′ ′

→ →∞

∫

∫ ∫

∫

                       (25) 

Then we see that, when 0 2 1H< < , (10) holds with 1 2 1
2 0

π sin dHc H t t t
∞− −= ∫ . 

Secondly, we consider the case 2 1H = . Since ( )r t′  is continuous and ( ) 10
2

r′ = − , (19) becomes   

( ) ( ) ( )( )
0 0

lim sin d 0 sin d 0 1 cos .
p p
r t t t r t t r p

λ
λ

→∞
′ ′ ′= = −∫ ∫                    (26) 

Using (20) and integration-by-parts again we derive   

( ) ( ) ( )1sin d cos cos d .
p p
r t t t r p p r t t tλ λ λ

λ
∞ ∞
′ ′ ′′= +∫ ∫                     (27) 

It follows from the (27), (16) and Riemann-Lebesgue lemma that   

( ) ( )lim sin d 0 cos .
p
r t t t r p

λ
λ

∞

→∞
′ ′=∫                             (28) 

We see from the above and (17) that   

( ) 21~    as .
2π

f λ λ λ− → ∞                                (29) 

This verifies that (10) holds when 2 1H = . 
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Finally we consider the case 1 2 2H< < . Note that (19) and (24) are not useful anymore and we need to 
modify the above argument. By using integration-by-parts to (11) we obtain   

( ) ( ) ( )2 0

1 cos d .
π

f r t t tλ λ
λ

∞
′′= − ∫                             (30) 

Note that we have 1 2 2 0H− < − < . Hence ( )r t′′  is integrable in the neighborhood of 0t = . Consequently, 
the proof for this case is very similar to the case of 0 2 1H< < . From (30) and (14), we can verify that (10) 
holds as well and the constant 2c  is explicitly determined by H. Hence we have proved (10) in general. 

It follows from (10) and Lemma 1 of [17] (see also [12] for more general results) that ( ){ }0 0 ,Y Y t t= ∈  is 
strongly locally ϕ -nondeterministic on any interval [ ],J T T= −  with ( ) 2Hr rϕ =  in the following sense: 
There exist positive constants δ  and 3c  such that for all [ ],t T T∈ −  and all ( )0,r t δ∈ ∧ ,   

( ) ( )( ) ( )0 0 3| : , .Var Y t Y s s J r s t c rδ ϕ∈ ≤ − ≤ ≥                       (31) 

Now we prove the strong local nondeterminism of 0
HX  on I. To this end, note that ( ) ( )0 0 logH HX t t Y t=  

for all 0t > . We choose 0r aδ= . Then for all ,s t I∈  with 0r s t r≤ − ≤  we have   

log log .r s t
b

δ≤ − ≤                                  (32) 

Hence, it follows from (31) and (32) that for all [ ],t a b∈  and 0r r< ,   

( ) ( )( )
( ) ( )( )
( ) ( )( )

( ) ( )

( )

0 0 0

0 0 0

2
0 0 0

2
0 0

2
2 2

3 1 1

| : ,

log | log : ,

log | log : ,

log | log : , log log

,

H H

H H

H

H

H
H H

Var X t X s s I r s t r

Var t Y t s Y s s I r s t r

t Var Y t Y s s I r s t r

ra Var Y t Y s s I s t
b

ra c c r c r
b

δ

ϕ

∈ ≤ − ≤

= ∈ ≤ − ≤

= ∈ ≤ − ≤

 ≥ ∈ ≤ − ≤ 
 

 ≥ = = 
 

                  (33) 

where 
2

1 3

Hac c
b

 =  
 

. This proves Theorem 1. 
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