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Abstract 
In this paper, we study oscillatory properties of solutions for the nonlinear impulsive hyperbolic 
equations with several delays. We establish sufficient conditions for oscillation of all solutions. 
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1. Introduction 
The theory of partial functional differential equations can be applied to many fields, such as biology, population 
growth, engineering, control theory, physics and chemistry, see the monograph [1] for basic theory and applica-
tions. The oscillation of partial functional differential equations has been studied by many authors see, for ex-
ample [2]-[7], and the references cited therein. 

The theory of impulsive partial differential systems makes its beginning with the paper [8] in 1991. In recent 
years, the investigation of oscillations of impulsive partial differential systems has attracted more and more at-
tention in the literature see, for example [9]-[13]. Recently, the investigation on the oscillations of impulsive 
partial differential systems with delays can be found in [14]-[19]. 

To the best of our knowledge, there is little work reported on the oscillation of second order impulsive partial 
functional differential equation with delays. Motivated by this observation, in this paper we study the oscillation 
of nonlinear forced impulsive hyperbolic partial differential equation with several delays of the form 

http://www.scirp.org/journal/jamp
http://dx.doi.org/10.4236/jamp.2015.311175
http://dx.doi.org/10.4236/jamp.2015.311175
http://www.scirp.org
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            (1) 

with the boundary conditions 

( ) ( ) ( ) , , ,u h x u g x t x t
γ

+∂
+ = ∈∂Ω×

∂
                              (2) 

( ) ( ) , , ,u x t x tϕ += ∈∂Ω×                                 (3) 

and the initial condition 

( ) ( ) ( ) [ ], , , , ,0 .u x t x t x t δ= Φ ∈ − ×Ω                                (4) 

Here NΩ⊂   is a bounded domain with boundary ∂Ω  smooth enough and ∆  is the Laplacian in the  
Euclidean N-space N

 , γ  is a unit exterior normal vector of ∂Ω , { }max jδ σ= , 

( ) [ ]( )2, ,0 , .x t C δΦ ∈ − ×Ω   

In the sequal, we assume that the following conditions are fulfilled: 
(H1) ( ) ( ) ( ), ,r t a t PC + +∈   , jσ  is a positive constant, ( ) ( ), , ,jp x t q x t  are class of functions which are  

piece wise continuous in t with discontinuities of first kind only at , 1, 2,kt t k= =   and left continuous at 
, 1, 2,kt t k= =   

(H2) ( ) ( ) ( ), ,jf u f u C + +∈   ; 
( )f u

C
u

≥  is a positive constant, 
( )j

j

f u
C

u
≥  is a positive constant, for

0;u ≠  ( ) ( ), ;h x C +∈ ∂Ω×Ω   ( ) ( ), , ;F x t PC +∈ ×Ω   ( ),g t x  and ( ) ( ), , ;t x PCϕ +∈ ×∂Ω   

1 20 , lim .k kk
t t t t

→∞
< < < < < = ∞   

(H3) ( ),u x t  and their derivatives ( ),tu x t  are piecewise continuous in t with discontinuities of first kind 

only at , 1, 2, ,kt t k= =   and left continuous at ,kt t=  ( ) ( ), , ,k ku x t u x t−=  ( ) ( ), , ,t k t ku x t u x t−=  1, 2, .k =   

(H4) ( )( ) ( )( ) ( ), , , , , , , , ,k k k k k t kx t u x t x t u x t PCα β +∈ ×Ω×    1, 2, ,k =   and there exist positive con-

stants * *, , , k k k ka a b b  and *
k kb a≤  such that for 1, 2, ,k =   

( )* , ,k k
k k

x t
a a

α ξ
ξ

≤ ≤  

( )* , ,
.k k

k k

x t
b b

β ξ
ξ

≤ ≤  

Let us construct the sequence { } { } { },
jk k kt t t σ=   where 

jk k jt tσ σ= +  and 1,k kt t +<  1, 2, .k =   

By a solution of problem (1), (2) ((1),(3)) with initial condition (4), we mean that any function ( ),u x t  for 
which the following conditions are valid: 

1. If 0,tδ− ≤ ≤  then ( ) ( ), , .u x t x t= Φ  
2. If 1 10 ,t t t≤ ≤ =  then ( ),u x t  coincides with the solution of the problem (1) and (2) ((3)) with initial con-

dition. 

3. If { } { }1, \
jk k k k kt t t t t t σ+< ≤ ∈ , then ( ),u x t  coincides with the solution of the problem (1) and (2) ((3)). 
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4. If { }1, jk k k kt t t t t σ+< ≤ ∈ , then ( ),u x t  coincides with the solution of the problem (2) ((3)) and the follow-

ing equations 

( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) ( )( )( ) ( ) ( )
1

,  , , ,

, , , ,  ,  ,
n

j j j k
j

r t u x t a t u x t p x t f u x t
t t

q x t f u x t F x t t t x t Gσ

+ + +

+ +

=

∂ ∂  = ∆ − ∂ ∂ 

− − + ≠ ∈Ω× =∑ 

 

( ) ( ) ( ) ( ) { } { },  , , , , , for \ ,
jk k t k t k k k ku x t u x t u x t u x t t t t σ

+ += = ∈  

or 

( ) ( )( ) ( ) ( )( ) { } { },  , , , , ,  , , , , for .
i i jk k k k t k k k t k k k ku x t x t u x t u x t x t u x t t t tσα β+ += = ∈   

Here the number ik  is determined by the equality .
ik kt t=  

We introduce the notations: 

( ) ( ){ }1 0
, : , , ; ,k k k kk

x t t t t x ∞
+ =

Γ = ∈ ∈Ω Γ = Γ


 

( ) ( ){ }1 0
, : , , ; ,k k k kk

x t t t t x ∞
+ =

Γ = ∈ ∈Ω Γ = Γ


 

( ) ( ) ( ) ( ) min , and min , .j jx x
p t p x t q t q x t

∈Ω ∈Ω
= =  

The solution ( ) ( )2 1u C C∈ Γ Γ  of problem (1), (2) ((1),(3)) is called nonoscillatory in the domain G if it is 
either eventually positive or eventually negative. Otherwise, it is called oscillatory. 

This paper is organized as follows: Section 2, deals with the oscillatory properties of solutions for the problem 
(1) and (2). In Section 3, we discuss the oscillatory properties of solutions for the problem (1) and (3). Section 4 
presents some examples to illustrate the main results. 

2. Oscillation Properties of the Problem (1) and (2) 
To prove the main result, we need the following lemmas. 

Lemma 2.1. Suppose that λ  is the minimum positive eigenvalue of the problem 

( ) ( )  0, ,x x xη λη∆ + = ∈Ω  

( ) ( )  0, ,h x x xη
η

γ
∂

+ = ∈∂Ω
∂

 

and ( )xη  is the corresponding eigenfunction of λ . Then 0λ >  and ( ) 0, .x xη > ∈Ω  Proof. The proof of 
the lemma can be found in [20].   

Lemma 2.2. Let ( ) ( ) ( )2 1,u x t C C∈ Γ Γ  be a positive solution of the problem (1), (2) in G. Then the func-
tions 

( ) ( ) ( ) ( ) ( ), d and , d 0v t u x t x x F x t x xη η
Ω Ω

= ≤∫ ∫  

are satisfies the impulsive differential inequality 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

,
n

j j j k
j

r t v t a t v t Cp t v t C q t v t R t t tλ σ
=

′′ + + + − ≤ ≠   ∑                  (5) 

( )
( )

* k
k k

k

v t
a a

v t

+

≤ ≤                                     (6) 

( )
( )

* , 1, 2,k
k k

k

v t
b b k

v t

+′
≤ ≤ =

′
                                (7) 
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where 

( ) ( ) ( ) ( ), d .R t a t x g x t Sη
∂Ω

= ∫  

has an eventually positive solution. 
Proof. Let ( ),u x t  be a positive solution of the problem (1), (2) in G. Without loss of generality, we may 

assume that there exists a 00, T t T> >  such that ( ) ( ), 0, , 0, 1, 2, , ,ju x t u x t j nσ> − > =   for 

( ) [ )0, , .x t t∈Ω× ∞  

For 0 , , 1, 2, ,kt t t t k≥ ≠ =   multiplying Equation (1) with ( )xη , which is the same as that in Lemma 2.1 
and then integrating (1) with respect to x over Ω  yields 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( )
1

d d , d , d , , d
d d

, , d , d .
n

j j j
j

r t u x t x x a t u x t x x p x t f u x t x x
t t

q x t f u x t x x F x t x x

η η η

σ η η

Ω Ω Ω

= Ω Ω

 
= ∆ − 

 

− − +

∫ ∫ ∫

∑∫ ∫
  

By Green’s formula, and the boundary condition we have 

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

, d  d d  d d

 , d , d ,

uu x t x x u S u x g hu u h S u x

x g x t S u x t x x

η
η η η η η λη

γ γ

η λ η
Ω ∂Ω Ω ∂Ω Ω

∂Ω Ω

 ∂ ∂
∆ = − + ∆ = − − − + − ∂ ∂ 

= −

∫ ∫ ∫ ∫ ∫

∫ ∫
 

where dS  is the surface element on ∂Ω . 
Also from condition (H2), and Jenson’s inequality we can easily obtain 

( ) ( )( ) ( ) ( ) ( ) ( ), , d , dp x t f u x t x x Cp t u x t x xη η
Ω Ω

≥∫ ∫  

( ) ( )( ) ( ) ( ) ( ) ( ), , d , dj j j j j jq x t f u x t x x C q t u x t x xσ η σ η
Ω Ω

− ≥ −∫ ∫  

Thus, ( ) 0.v t >  Hence we obtain the following differential inequality 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
1

d d , d , d , d
d d

, d , d ,
n

j j j
j

r t u x t x x a t u x t x x Cp t u x t x x
t t

C q t u x t x x a t g x t x S

η λ η η

σ η η

Ω Ω Ω

= Ω ∂Ω

 
+ + 

 

− − ≤

∫ ∫ ∫

∑ ∫ ∫
 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

,
n

j j j k
j

r t v t a t v t Cp t v t C q t v t R t t tλ σ
=

′′ + + + − ≤ ≠   ∑  

where 

( ) ( ) ( ) ( ), d .R t a t x g x t Sη
∂Ω

= ∫  

For 0 , , 1, 2, ,kt t t t k≥ = =   from (1) and condition (H4), we obtain 

( )
( )

*
,

 
,

k
k k

k

u x t
a a

u x t

+

≤ ≤  

( )
( )

*
,

 .
,

t k
k k

t k

u x t
b b

u x t

+

≤ ≤  

According to ( ) ( ) ( ), d ,v t u x t x xη
Ω

= ∫  we obtain 
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( )
( )

*  k
k k

k

v t
a a

v t

+

≤ ≤  

( )
( )

*  , 1, 2, .k
k k

k

v t
b b k

v t

+′
≤ ≤ =

′
  

Hence, we obtain that ( ) 0v t >  is a positive solution of impulsive differential inequalities (5)-(7). 
This completes the proof.   
Lemma 2.3. Let ( ) ( ) ( )2 1,u x t C C∈ Γ Γ  be a positive solution of the problem (1), (2) in G. If we further 

assume that ( ) ( ) ,f u f u− = −  ( )0,u∈ +∞  and the impulsive differential inequality (5), and 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

,
n

j j j k
j

r t v t a t v t Cp t v t C q t v t R t t tλ σ
=

′′ + + + − ≤ − ≠   ∑                (8) 

( )
( )

* k
k k

k

v t
a a

v t

+

≤ ≤                                      (9) 

( )
( )

* , 1, 2,k
k k

k

v t
b b k

v t

+′
≤ ≤ =

′
                                (10) 

have no eventually positive solution, then each nonzero solution of the problem (1)-(2) is oscillatory in the do-
main G. 

Proof. Let ( ),u x t  be a positive solution of the problem (1), (2) in G. Without loss of generality, we may 
assume that there exists a 00, T t T> >  such that ( ) ( ), 0, , 0, 1, 2, ,ju x t u x t j nσ> − > =  , for 
( ) [ )0, , .x t t∈Ω× ∞  

From Lemma 2.2, it follows that the function ( )v t  is an eventually positive solution of the inequality (5) 
which is a contradictions. 

If ( ), 0u x t <  for ( ) [ )0, , ,x t t∈Ω× ∞  then the function 

( ) ( ) ( ) [ )0, , , , , ,u x t u x t x t t= − ∈Ω× ∞  

is a positive solution of the following impulsive hyperbolic equation 

( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )
1

, , , ,

, , , , ,  ,
n

j j j k
j

r t u x t a t u x t p x t f u x t
t t

q x t f u x t F x t t t x t Gσ +

=

∂ ∂  = ∆ − ∂ ∂ 

− − + ≠ ∈Ω× =∑ 

 

( ) ( )( ),  , , , ,k k k ku x t x t u x tα+ =  

( ) ( )( ),  , , , , ,   1, 2, .t k k k t k ku x t x t u x t t t kβ+ = = =   

( ) ( ) ( ) , , , .u h x u g x t x t
γ

+∂
+ = − ∈∂Ω×

∂
  

and satisfies 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
1

d d , d , d , d
d d

, d , d ,
n

j j j
j

r t u x t x x a t u x t x x Cp t u x t x x
t t

C q t u x t x x a t g x t x S

η λ η η

σ η η

Ω Ω Ω

= Ω ∂Ω

 
+ + 

 

− − ≤ −

∫ ∫ ∫

∑ ∫ ∫

  



 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

,
n

j j j k
j

r t v t a t v t Cp t v t C q t v t R t t tλ σ
=

′′ + + + − ≤ − ≠   ∑  
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where 

( ) ( ) ( ) ( ), d .R t a t x g x t Sη
∂Ω

= ∫  

For 0 , , 1, 2, ,kt t t t k≥ = =   from (1) and condition (H4), we obtain 

( )
( )

*
,

 
,

k
k k

k

u x t
a a

u x t

+

≤ ≤




 

( )
( )

*
,

 .
,

t k
k k

t k

u x t
b b

u x t

+

≤ ≤




 

According to ( ) ( ) ( ), d ,v t u x t x xη
Ω

= ∫   we obtain 

( )
( )

*  k
k k

k

v t
a a

v t

+

≤ ≤  

( )
( )

*  , 1, 2, .k
k k

k

v t
b b k

v t

+′
≤ ≤ =

′
  

Thus, it follows that the function ( ) ( ) ( ), dv t u x t x xη
Ω

= ∫   is a positive solution of the inequality (8)-(10) for

0t T>  which is also a contradiction. This completes the proof.   
Now, if we set 0g ≡  in the proof of Lemma 2.3, then we can obtain the following lemma. 
Lemma 2.4. Let ( ) ( ) ( )2 1,u x t C C∈ Γ Γ  be a positive solution of the problem (1), (2) in G. If we further 

assume that ( ) ( ) ,f u f u− = −  ( )0,u∈ +∞  and the impulsive differential inequality (5), and 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
1

0,
n

j j j k
j

r t v t a t v t Cp t v t

C q t v t t t

λ

σ
=

′′ + +  

+ − ≤ ≠∑
                          (11) 

( )
( )

* k
k k

k

v t
a a

v t

+

≤ ≤                                    (12) 

( )
( )

* , 1, 2,k
k k

k

v t
b b k

v t

+′
≤ ≤ =

′
                                (13) 

has no eventually positive solution, then each nonzero solution of the problem (1), satisfying the boundary con-
dition 

( ) ( )0, , ,  k
u h x u x t t t
γ

+∂
+ = ∈∂Ω× ≠

∂
  

is oscillatory in the domain G. 
Proof. Let ( ),u x t  be a positive solution of the problem (1), (2) in G. Without loss of generality, we may 

assume that there exists a 00, T t T> >  such that ( ) ( ), 0, , 0, 1, 2, , ,ju x t u x t j nσ> − > =   for 

( ) [ )0, , .x t t∈Ω× ∞  

From Lemma 2.2, it follows that the function ( )v t  is an eventually positive solution of the inequality (5) 
which is a contradiction. 

If ( ), 0u x t <  for ( ) [ )0, , ,x t t∈Ω× ∞  then the function ( ) ( ) ( ) [ )0, , , , , ,u x t u x t x t t= − ∈Ω× ∞  is a positive 
solution of the following impulsive hyperbolic equation 
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( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )
1

,   , , ,

, , , , ,  ,
n

j j j k
j

r t u x t a t u x t p x t f u x t
t t

q x t f u x t f x t t t x t Gσ +

=

∂ ∂  = ∆ − ∂ ∂ 

− − + ≠ ∈Ω× =∑ 

  

( ) ( )( ),  , , , ,k k k ku x t x t u x tα+ =  

( ) ( )( ),  , , , , ,   1, 2, .t k k k t k ku x t x t u x t t t kβ+ = = =   

( ) ( )0, , ,u h x u x t
γ

+∂
+ = ∈∂Ω×

∂
  

and satisfies 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
1

d d , d , d , d
d d

, d 0,
n

j j j
j

r t u x t x x a t u x t x x Cp t u x t x x
t t

C q t u x t x x

η λ η η

σ η

Ω Ω Ω

= Ω

 
+ + 

 

− − ≤

∫ ∫ ∫

∑ ∫

  



 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

0, .
n

j j j k
j

r t v t a t v t Cp t v t C q t v t t tλ σ
=

′′ + + + − ≤ ≠   ∑  

For 0 , , 1, 2, ,kt t t t k≥ = =   from (1) and condition (H4), we obtain 

( )
( )

*
,

 
,

k
k k

k

u x t
a a

u x t

+

≤ ≤




 

( )
( )

*
,

 , 1, 2, .
,

t k
k k

t k

u x t
b b k

u x t

+

≤ ≤ =






 

According to ( ) ( ) ( ), d ,v t u x t x xη
Ω

= ∫   we obtain 

( )
( )

*
*  k
k k

k

v t
a a

v t
≤ ≤  

( )
( )

*
*  .k
k k

k

v t
b b

v t

′
≤ ≤

′
 

Thus it follows that the function ( ) ( ) ( ), d ,v t u x t x xη
Ω

= ∫   is a positive solution of the inequality (11)-(13) for 

0t T>  which is also a contradiction. This completes the proof.   
Lemma 2.5. Assume that 
(A1) the sequence { }kt  satisfies 0 10 ,t t< < <  lim kk

t
→∞

= ∞ ; 
(A2) ( ) 1 ,m t PC + ∈     is left continuous at kt  for 1, 2, ;k =   

(A3) for 1, 2,k =   and 0 ,t t≥  

( ) ( ) ( ) ( ) , ,km t p t m t q t t t′ ≤ + ≠  

( ) ( ) ,k k k km t d m t e+ ≤ +  

where ( ) ( ) ( ), ,p t q t C +∈   , 0kd ≥  and ke  are constants. PC denote the class of piecewise continuous 
function from +

  to  , with discontinuities of the first kind only at , 1, 2, .kt t k= =   
Then 
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( ) ( ) ( )( ) ( )( ) ( )

( )( )
0 0

0

0

0 exp d exp d d

exp d .

k k

k
k k j

t t t
k kt t s

t t t s t t

t
j kt

t t t t t t

m t m t d p s s d p r r q s s

d p s s e

< < < <

< < < <

≤ +

+

∏ ∏∫ ∫ ∫

∑ ∏ ∫
 

Proof. The proof of the lemma can be found in [21].   
Lemma 2.6. Let ( )v t  be an eventually positive (negative) solution of the differential inequality (11)-(13). 
Assume that there exists 0T t≥  such that ( ) 0v t >  ( )( )0v t <  for .t T≥  If 

0
0

*

lim d
k

t k
tt t t s k

b s
a→+∞ < <

= +∞∏∫                                   (14) 

hold, then ( ) 0v t′ ≥  ( )( )0v t′ ≤  for [ ] ( ]( )1 1, , ,k kk l
t T t t t+∞

+=
∈ 



 where { }min : .kl k t T= ≥  

Proof. The proof of the lemma can be found in [22].   
We begin with the following theorem. 
Theorem 2.1. If condition (14), and the following condition 

( ) ( )
0

0

*

lim d ,
k

t k
ktt t t s k

a r t F s s
b→+∞ < <

= +∞∏∫                             (15) 

hold, where 

( )
( ) ( ) ( )( ) ( )

( )

1
1

exp
,

n

j j
j

a t Cp t w t C q t
F t

r t

λ δ
=

+ + −
=

∑
 

then every solution of the problem (1), (2) oscillates in G. 
Proof. Let ( ),u x t  be a nonoscillatory solution of (1), (2). Without loss of generality, we can assume that 

there exists 00, ,T t T> ≥  such that ( ), 0,u x t >  ( ), 0,ju x t σ− >  1, 2, ,j n=   for ( ) [ )0, , .x t t∈Ω× ∞  

From Lemma 2.4, we know that ( )v t  is a positive solution of (11)-(13). Thus from Lemma 2.6, we can find 
that ( ) 0v t′ ≥  for 0.t t≥  

For 0 ,t t≥  ,kt t≠  1, 2, ,k =   define 

( ) ( ) ( )
( ) 0, .

v t
w t r t t t

v t
′

= ≥  

Then we have ( ) 0,w t >  0 ,t t≥  ( ) ( ) ( ) ( ) 0.r t v t w t v t′ − =  We may assume that ( )0 1,v t =  thus we have 
that for 0t t≥  

( ) ( )( )
0

exp d ,
t

t
v t w s s= ∫                               (16) 

( ) ( ) ( )( )
0

  exp d ,
t

t
v t w t w s s′ = ∫                            (17) 

( ) ( ) ( )( ) ( ) ( )( )
0 0

2 exp d exp d .
t t

t t
v t w t w s s w t w s s′′ ′= +∫ ∫                   (18) 

Substitute (16)-(18) into (11) and then we obtain, 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( )

0 0 0

0 0 0

2

1

exp d exp d exp d

 exp d exp d exp d 0.j

t t t

t t t

nt t t
j jt t t

j

r t w t w s s r t w t w s s w t w s s

a t w s s Cp t w s s C q t w s s
σ

λ
−

=

 ′ ′+ +  

+ + + ≤

∫ ∫ ∫

∑∫ ∫ ∫
 

Hence we have 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )2

1
exp d 0, ,

j

n t
j j kt

j
r t w t r t w t a t Cp t C q t w s s t t

σ
λ

−
=

′+ + + + − ≤ ≠∑ ∫  

or 

( ) ( ) ( ) ( ) ( ) ( )( )
1

exp d 0, .
j

n t
j j kt

j
r t w t a t Cp t C q t w s s t t

σ
λ

−
=

′ + + + − ≤ ≠∑ ∫  

From above inequality and condition * ,k kb a≤  it is easy to see that the function ( )w t  is nonincreasing for
1 0.t t tδ≥ ≥ +  Thus ( ) ( )1w t w t≤  for 1t t≥  which implies that 

( ) ( ) ( ) ( ) ( )( ) ( )1
1

exp 0, .
n

j j k
j

r t w t a t Cp t w t C q t t tλ δ
=

′ + + + − ≤ ≠∑  

From (12)-(13), we obtain 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )* * ,k k k k
k k k k k

k k kk

v t b v t bw t r t r t r t w t
a v t av t

+
+ + +

+

′ ′
= ≤ =  

and 

( ) ( ) ( ) ( ) ( )( ) ( )1
1

exp , .
n

j j k
j

r t w t a t Cp t w t C q t t tλ δ
=

′ ≤ − − − − ≠∑  

( ) ( ) ( )* , 1, 2,k
k k k

k

bw t r t w t k
a

+ ≤ =   

Let 

( )
( ) ( ) ( )( ) ( )

( )

1
1

exp
.

n

j j
j

a t Cp t w t C q t
F t

r t

λ δ
=

− − − −
− =

∑
 

Then according to Lemma 2.5, we have 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0
0

0
0 0

0 * *

*

0*

d

d 0.

k k

k k

tk k
k kt

t t t s t tk k

tk k
k kt

t t t t t s kk

b bw t w t r t r t F s s
a a

b aw t r t r t F s s
ba

< < < <

< < < <

≤ +

 
= − < 

 

∏ ∏∫

∏ ∏∫
 

Since ( ) 0,w t ≥  the last inequality contradicts condition (15). This completes the proof.   

3. Oscillation Properties of the Problem (1) and (3) 
Next we consider the problem (1) and (3). To prove our main result we need the following lemmas. 

Lemma 3.1. Suppose that 0λ  is the smallest positive eigen value of the problem 

( ) ( )
( )

0  0, ,

 0, ,

x x x

x x

λ∆Ψ + Ψ = ∈Ω

Ψ = ∈∂Ω
 

and ( )xΨ  is the corresponding eigen function of 0λ . Then 0 0λ >  and ( ) 0, .x xΨ > ∈Ω  
Proof. The proof of the lemma can be found in [20].   
Lemma 3.2. Let ( ) ( ) ( )2 1,u x t C C∈ Γ Γ  be a positive solution of the problem (1), (3) in G. Then the func-

tion 

( ) ( ), d 0F x t x x
Ω

Ψ ≤∫  

are satisfies the impulsive differential inequality 
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0

1
,

n

j j j k
j

r t v t a t v t Cp t v t

C q t v t Q t t t

λ

σ
=

′′ + +  

+ − ≤ ≠∑
                            (19) 

( )
( )

* k
k k

k

v t
a a

v t

+

≤ ≤                                       (20) 

( )
( )

* , 1, 2,k
k k

k

v t
b b k

v t

+′
≤ ≤ =

′
                                  (21) 

where 

( ) ( ) ( ), d .Q t a t x t S
N

ϕ
∂Ω

∂Ψ
= −

∂∫  

has the eventually positive solution 

( ) ( ) ( ), d .v t u x t x x
Ω

= Ψ∫  

Proof. Let ( ),u x t  be a positive solution of the problem (1), (3) in G. Without loss of generality, we may 
assume that there exists a 00,T t T> >  such that ( ) ( ), 0, , 0, 1, 2, , ,ju x t u x t j nσ> − > =   for 

( ) [ )0, , .x t t∈Ω× ∞  

For 0 , , 1, 2, ,kt t t t k≥ ≠ =   multiplying equation (1) with ( )xΨ , which is the same as that in 
Lemma 3.1 and then integrating (1) with respect to x over Ω  yields 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( )
1

d d , d , d , , d
d d

, , d , d .
n

j j j
j

r t u x t x x a t u x t x x p x t f u x t x x
t t

q x t f u x t x x F x t x xσ

Ω Ω Ω

= Ω Ω

 
Ψ = ∆ Ψ − Ψ 

 

− − Ψ + Ψ

∫ ∫ ∫

∑∫ ∫
 

By Green’s formula, and the boundary condition we have 

( ) ( )

( ) ( )

( ) ( ) ( )( )

0

0

, d  d d

, d d

 , d , d ,

uu x t x x u S u x

x t S u x

x t S u x t x x

γ γ

ϕ λ
γ

ϕ λ
γ

Ω ∂Ω Ω

∂Ω Ω

∂Ω Ω

 ∂ ∂Ψ
∆ Ψ = Ψ − + ∆Ψ ∂ ∂ 

∂Ψ
= − + − Ψ

∂
∂Ψ

= − − Ψ
∂

∫ ∫ ∫

∫ ∫

∫ ∫

 

where dS  is the surface element on ∂Ω . 
From condition (H2), we can easily obtain 

( ) ( )( ) ( ) ( ) ( ) ( ), , d , dp x t f u x t x x Cp t u x t x x
Ω Ω

Ψ ≥ Ψ∫ ∫  

( ) ( )( ) ( ) ( ) ( ) ( ), , d , d .j j j j j jq x t f u x t x x C q t u x t x xσ σ
Ω Ω

− Ψ ≥ − Ψ∫ ∫  

The proof is similar to that of Lemma 2.1 and therefore the details are omitted.   
Lemma 3.3. Let ( ) ( ) ( )2 1,u x t C C∈ Γ Γ  be a positive solution of the problem (1), (3) in G. If we further 

assume that ( ) ( ) ,f u f u− = −  ( )0,u∈ +∞  and the impulsive differential inequality (19), and 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0
1

,
n

j j j k
j

r t v t a t v t Cp t v t C q t v t Q t t tλ σ
=

′′ + + + − ≤ − ≠   ∑                 (22) 
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( )
( )

* k
k k

k

v t
a a

v t

+

≤ ≤                                     (23) 

( )
( )

* , 1, 2,k
k k

k

v t
b b k

v t

+′
≤ ≤ =

′
                                (24) 

have no eventually positive solution, then each nonzero solution of the problem (1), (3) is oscillatory in the do-
main G. 

Proof. The proof is similar to Lemma 2.3, and hence the details are omitted.   
Futhermore, if we set 0ϕ ≡ , then we have the following lemma. 
Lemma 3.4. Let ( ) ( ) ( )2 1,u x t C C∈ Γ Γ  be a positive solution of the problem (1), (3) in G. If we further 

assume that ( ) ( ) ,f u f u− = −  ( )0,u∈ +∞  and the impulsive differential inequality (19), and 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0
1

0,
n

j j j k
j

r t v t a t v t Cp t v t C q t v t t tλ σ
=

′′ + + + − ≤ ≠   ∑                 (25) 

( )
( )

* k
k k

k

v t
a a

v t

+

≤ ≤                                       (26) 

( )
( )

* , 1, 2,k
k k

k

v t
b b k

v t

+′
≤ ≤ =

′
                                 (27) 

has no eventually positive solution, then each nonzero solution of the problem (1), satisfying the boundary con-
dition 

( )0, , ,  ku x t t t+= ∈∂Ω× ≠  

is oscillatory in the domain G. 
Proof. The proof is similar to Lemma 2.4, and hence the details are omitted.   
Using the above lemmas, we prove the following oscillation result. 
Theorem 3.1. If condition (14) and the following condition 

( ) ( )
0

0

*

< <
lim d = ,

k

t k
ktt t t s k

a r t F s s
b→+∞

+∞∏∫                             (28) 

hold, where 

( ) ( ) ( )
( )

0 ,
a t Cp t

F t
r t

λ +
=  

then every solution of the problem (1), (3) oscillates in G. 
Proof. Let ( ),u x t  be a nonoscillatory solution of (1), (3). Without loss of generality, we can assume that there 

exists 00, ,T t T> ≥  such that ( ), 0,u x t >  ( ), 0,ju x t σ− >  1, 2, ,j n=   for ( ) [ )0, , .x t t∈Ω× ∞  

From Lemma 3.4, we know that ( )v t  is a positive solution of (25)-(27). Thus from Lemma 2.6, we can find 
that ( ) 0v t′ ≥  for 0.t t≥  

For 0 ,t t≥  ,kt t≠  1, 2, ,k =   define 

( ) ( ) ( )
( ) 0, .

v t
w t r t t t

v t
′

= ≥  

Then we have ( ) 0,w t >  0 ,t t≥  ( ) ( ) ( ) ( ) 0.r t v t w t v t′ − =  We may assume that ( )0 1,v t =  thus we have 
that for 0t t≥  

( ) ( )( )
0

 exp d ,
t

t
v t w s s= ∫                                 (29) 
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( ) ( ) ( )( )
0

 exp d ,
t

t
v t w t w s s′ = ∫                                 (30) 

( ) ( ) ( )( )
( ) ( )( )

0

0

2  exp d

exp d .

t

t

t

t

v t w t w s s

w t w s s

′′ =

′+

∫

∫
                               (31) 

We substitute (29)-(31) into (25) and can obtain the following inequality, 

( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

0 0

0 0

2

0

exp d exp d

exp d  exp d 0,

t t

t t

t t

t t

r t w t w s s w t w s s

a t w s s Cp t w s sλ

 ′+  

+ + ≤

∫ ∫

∫ ∫
 

then we have 

( ) ( ) ( ) ( )0 0, .kr t w t a t Cp t t tλ′ + + ≤ ≠  

From (26)-(27), we can obtain 

( ) ( ) ( )
( ) ( ) ( )

( )

( ) ( )

*

* , 1, 2, .

k k k
k k k

k kk

k
k k

k

v t b v t
w t r t r t

a v tv t

b
r t w t k

a

+
+ + +

+

′ ′
= ≤

= = 

 

It follows that 

( ) ( ) ( ) ( )0 , .kr t w t a t Cp t t tλ′ ≤ − − ≠  

( ) ( ) ( )*
* , .k

k k k k
k

bw t r t w t t t
a

≤ =  

Let 

( ) ( ) ( )
( )

0 .
a t Cp t

F t
r t

λ− −
− =  

Then according to Lemma 2.5, we have 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0
0

0
0 0

0 * *

*

0*

d

d 0.

k k

k k

tk k
k kt

t t t s t tk k

tk k
k kt

t t t t t s kk

b b
w t w t r t r t F s s

a a

b a
w t r t r t F s s

ba

< < < <

< < < <

≤ +

 
= − < 

 

∏ ∏∫

∏ ∏∫
 

Since ( ) 0,w t ≥  the last inequality contradicts (28). This completes the proof.   
Theorem 3.2. If condition (14) and the following condition 

( )
0 00

0

*

lim d ,
k

t k
k j jtt t t s k

a r t C q s
b→+∞ < <

= +∞∏∫                                 (32) 

hold for some 
0j

q , then every solution of the problem (1), (3) oscillates in G. 
Proof. The proof is obvious and hence the details are omitted.   

4. Examples 
In this section, we present some examples to illustrate the main results. 

Example 4.1. Consider the impulsive differential equation 
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( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

2 2 22 2

2

π ,   π sin , π cos ,

π 2 π sin , π sin 2 cos sin , 1, , 1, 2,3,
2

1,  ,

,  , , 1, 2,

k

k k

t k t k

t u x t t t u x t t t u x t
t t

t t u x t t t t x t t t k

ku x t u x t
k

u x t u x t k

+

+

∂ ∂ + = + ∆ − +  ∂ ∂  
 − + − − + > ≠ =  

  
+

= 

= = 





      (33) 

and the boundary condition 

( ) ( )0, π, 0, 0, ,  1, 2, .ku t u t t t t k= = ≥ ≠ =                          (34) 

Here ( ) ( ) ( ) ( ) ( ) ( )2 2* * 210, π , , 1, 1, 2, , π , π sin ,k k k k
ka a b b k r t t a t t t

k
+

Ω = = = = = = = + = +

 

( ) ( ) ( )2 2π cos ,p t t t= +  ( ) ( ) ( ) ( ) ( )2
1 1 1

π2 π sin , , , ,
2

q t t t f u u f u uσ= + = = =  and taking { } { }1 1
2 .k

kt
+∞+∞ =  

Moreover 

0
0

1 2 3 4

1 2 3

*

1
1

1
1 1 1 1

2 3

0

lim d d
1

d d d d
1 1 1 1

1 1 2 1 2 3 21 2 2 2   
2 2 3 2 3 4 1

k k

k k k k

t k
tt t t s t sk

t t t t

t t t
t s t s t s t s

n

n

b ks s
a k

k k k ks s s s
k k k k

n

+ + +

+∞

→+∞ < < < <

< < < < < < < <

+∞

=

=
+

= + + + +
+ + + +

= + × + × × + × × × + = = +∞
+

∏ ∏∫ ∫

∏ ∏ ∏ ∏∫ ∫ ∫ ∫

∑





 

so (14) holds. We take { } ( )0 1 1 1
π 11, 1, max ,
2 π

C C w t
t

λ δ σ= = = = = =
+

, then 

( ) ( ) ( ) ( )
( )

( )
2 2 2

2
2

π π cos
1 cos ,

π

t t t
F t t

t

+ + +
= = +

+
 

thus 

( ) ( ) ( ) ( )( )

( )

* 2 2
1 1

1 1

2
1

1lim d lim 2 π 1 cos d

lim 1 cos d   .

k k

t t kk
kt tt s t sk

t

t

a kr t F s s s s
b k

s s

→+∞ →+∞< < < <

→+∞

+
= + +

≥ + = +∞

∏ ∏∫ ∫

∫
 

Hence (28) holds. Therefore all conditions of Theorem 3.1 are satisfied. Hence every solution of the problem 
(33), (34) oscillates in ( ) [ )0, π 0, .× ∞  In fact ( ), sin cosu x t x t=  is one such solution of the problem (33) and 
(34). 

Example 4.2. Consider the impulsive differential equation 

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

2 2 22 2

2 3

π ,  π sin , π cos ,

5π 2 π sin , 2 π cos cos , 1, , 1, 2,3,
2

1,  ,

,   , , 1, 2,

k

k k

t k t k

t u x t t t u x t t t u x t
t t

t t u x t t t x t t t k

ku x t u x t
k

u x t u x t k

+

+

∂ ∂ + = + ∆ − +  ∂ ∂  
 − + − + + > ≠ =  

  
+

= 

= = 





       (35) 

and the boundary condition 
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( ) ( )0, π, 0, 0, , 1, 2, .x x ku t u t t t t k= = ≥ ≠ =                        (36) 

Here ( )0, π ,Ω = * 1,k k
ka a

k
+

= = * 1,k kb b= = 1, 2, .k =  ( ) ( )2π ,r t t= + ( ) ( ) ( )2 2π sin ,a t t t= +  

( ) ( ) ( )2 2π cos ,p t t t= + ( ) ( ) ( )2
1 2 π sin ,q t t t= + 1

5π ,
2

σ = ( ) 0,h u = ( ) ( )1, ,f u u f u u= =  and taking 

{ } { }1 1
2 .k

kt
+∞+∞ =  It is easy to check that the conditions of Theorem 2.1 are satisfied. Therefore, every solution  

of the problem (35), (36) oscillates in ( ) [ )0, π 0, .× ∞  In fact ( ), sin cosu x t t x=  is one such solution of the 
problem (35) and (36). 
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