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Abstract

Based on the theory of fractional calculus, the contraction mapping principle, Krasnoselskii fixed
point theorem and the inequality technique, a class of Caputo fractional-order BAM neural net-
works with delays in the leakage terms is investigated in this paper. Some new sufficient condi-
tions are established to guarantee the existence and uniqueness of the nontrivial solution. More-
over, uniform stability of such networks is proposed in fixed time intervals. Finally, an illustrative
example is also given to demonstrate the effectiveness of the obtained results.
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1. Introduction

Fractional order calculus was firstly introduced 300 years ago, but it did not attract much attention for a long
time since it lack of application background and the complexity. In recent decades, the study of fractional-order
calculus has re-attracted tremendous attention of much researchers because it can be applied to physics, applied
mathematics and engineering [1]-[6]. We know that the fractional-order derivative is nonlocal and has weakly
singular kernels. It provides an excellent instrument for the description of memory and hereditary properties of
dynamical processes where such effects are neglected or difficult to describe to the integer order models.

We know that the next state of a system not only depends upon its current state but also upon its history in-
formation. Since a model described by fractional-order equations possesses memory, it is precise to describe the
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states of neurons. Moreover, the superiority of the Caputo’s fractional derivative is that the initial conditions for
fractional differential equations with Caputo derivatives take on the similar form as those for integer-order dif-
ferentiation. Therefore, it is necessary and interesting to study fractional-order neural networks both in theory
and in applications.

Recently, some important and interesting results on fractional-order neural networks have been obtained and
various issues have been investigated [7]-[14] by many authors. In [11], the authors proposed a fractional-order
Hopfield neural network and investigated its stability by using energy function. In [12], the authors investigated
stability, multistability, bifurcations, and chaos for fractional-order Hopfield neural networks. In [13], Chen et al.
obtained a sufficient condition for uniform stability of a class of fractional-order delayed neural networks. In
[14], we investigated the finite-time stability for Caputo fractional-order BAM neural networks with distributed
delay and established a delay-dependent stability criterion by using the theory of fractional calculus and genera-
lized Gronwall-Bellman inequality approach. In [15], Song and Cao considered the existence, uniqueness of the
nontrivial solution and also uniform stability for a class of neural networks with a fractional-order derivative, by
using the contraction mapping principle, Krasnoselskii fixed point theorem and the inequality technique.

The integer-order bidirectional associative memory (BAM) neural networks models, first proposed and stu-
died by Kosko [16]. This neural network has been widely studied due to its promising potential for applications
in pattern recognition and automatic control. In recent years, integer-order BAM neural networks have been ex-
tensively studied [17]-[21]. Recently, some authors considered the uniform stability of delayed neural networks;
for example, see [22]-[24] and references therein. However, to the best of our knowledge, there are few results
on the uniform stability analysis of fractional-order BAM neural networks.

Motivated by the above-mentioned works, this paper considers the uniform stability of a class of fraction-
al-order BAM neural networks with delays in the leakage terms described by
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where O<a,f<1, °D* and “D? denote the Caputo fractional derivative of order «,/, respectively;
%(t) (i=1--,n) and y;(t) (j=1---,m) are the activations of the ith neuron in the neural field F, and
the jth neuron in in the neural field F, at time t, respectively; f, (yj (t)) denotes the activation function of
the jth neuron from the neural field F, attimetand g; (xi (t)) denotes the activation function of the ith neu-
ron from the neural field F, attimet; I, and J; are constants, which denote the external inputs on the ith
neuron from F, and the jth neuron from F , respectively; the positive constants ¢, and d; denote the
rates with which the ith neuron from the neural field F, and the jth neuron from the neural field F, will reset
their potential to the resting state in isolation when disconnected from the networks and external inputs, respec-
tively; the constants a; and b;; represent the connection strengths; the nonnegative constant o denotes the
leakage delay.

This paper is organized as follows. In Section 2, some definitions of fractional-order calculus and some ne-
cessary lemmas are given. In Section 3, some new sufficient conditions to ensure the existence, uniqueness of
the nontrivial solution and also uniform stability of the fractional-order BAM neural networks 1 is obtained. Fi-
nally, an example is presented to manifest the effectiveness of our theoretical results in Section 4.

2. Preliminaries

For the convenience of the reader, we first briefly recall some definitions of fractional calculus, for more details,
see [1] [2] [5], for example.

Definition 1. The Riemann-Liouville fractional integral of order a >0 of a function u:(O,oo)—>R is
given by

1u(t) =—— [ (t=s)""u(s)ds

provided the right side is pointwise defined on (0,00), where T'(-) is the Gamma function.
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Definition 2. The Caputo fractional derivative of order y >0 of a function u:(O,oo) — R can be written

Cryr _ 1 t u(n)(s)
Du(t)_r(n—y)Io(t_s)’*l’”ds’ n-l<y<n.
Let X:{x|x:(x1,x2,---,xn)T,xieC([O,T],R)}, Y={y|y=(y1,y2,-~~,ym)T,yjeC([O,T],R)}. For p, q >

y
1, we know that X is a Banach space with the norm x|, =sup0gg(zin:1|xi (t)|p) " and Y is a Banach space

m

y
with the norm [ly| :supogg(zszyj (t)|q) " itis easy to see that X xY is a Banach space with the norm

"(X’ y)” = "X"p + "y"q '

The initial conditions associated with system (1) are of the form
%(0)=0(0), y;(0)=v;(0), 0€[-0,0], i=1--,n j=1--,m, (2

where ¢,y € C([—o-,O],]R) .
To prove our results, the following lemmas are needed.
Lemma 1. ([25]). Let « >0, then the fractional differential equation

“D7x(t)=h(t),
has solutions
X(t)=1°h(t)+cy +Ct+C,t% +---+ ¢, ,t",

where ¢ eR, n=[a]+1.

Lemma 2. ([26]). Let D be a closed convex and nonempty subset of a Banach space X. Let ¢, ¢, be the
operators such that

1) ¢x+¢,yeD wherever x,yeD;

2) ¢ iscompactand continuous;

3) ¢, isa contraction mapping.

Then, there exists xe D such that ¢x+¢,Xx=X.

In order to obtain main result, we make the following assumptions.

(H1) The neurons activation functions f, and g; are Lipschitz continuous, that is, there exist positive con-
stants L, | (i=%---,n, j=41,---,m)such that

[ (u)=f(v)|<Lu=v. |g;(u)-g;(v)|<lju-v], VuveR,

(H2) For i=1---,n, j=1---,m, there exist M;,M, >0 such that for u,veR, |fi(u)|£ M, and

|g J. (v)| <M,.

3. Main Results

For convenience, let

m n
¢ =maxc;, do =maxd,, ai0:§|aij|, bj0:§|bﬁ|, 3)
I, =max|l;|, J,=max J,|, =maxL, I, =maxl,
0 Jsign| '| 0 <j<m ) LO i<isn 0 JsjsmJ (4)

/p

m 4/(a-1) (a-1)/q n o/(p-1) (p-1)
oo aefgnr
j= i=

Theorem 3. Under assumption (H1), the system (1) has a unique solution on [0,T], if there exist two real

numbers p,q>1 such that
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F(a+l) (,3+1) =1

Proof. Define (F,G): X xY — X xY as

(F.G)(xY)(1) = (R (% Y) (). F (% Y)(8).G: (%, y) (1), Gy (1, Y)(1))

p m Ya q a n Yp
B=max{ LIRS R i (Zg;*] o’ (T‘U)MF(LZTH)[ZUPJ }<1. (6)

where

#0400+ [ e (s S (3, 0) o1 s

(t-s)"

G;(xY)(t)=v, (0)+L§ () {—djyj (s—<7)+i221:bjigi (% (s))+JJ}ds.

By Lemma 1, we know that the fixed point of (F, G) is a solution of system (1) with initial conditions (2). In
the following, we will using the contraction mapping principle to prove that the operator (F, G) has a unique
fixed point.

Firstly, we prove (F,G)B, — B, where B[,:{(x,y)eXxY:||(x,y)||£5}.8et

. (1+A)|(g.w)|+C

1-B ’ )
where
c,n’Po” d,m¥o”
A:max{l“(a+l)’ r(ﬂ+1)}’ ®)
and
LT amiTs g (Za j””+ g,T” qu Y o)
“T(a+l) T(p+1) T(a+)\G° r(g+ylg™) -
By Minkowski inequality, we have
(-s)" "
1 t(t—S
[Fxy), —ggg{g‘mom F e s St (o) o1 e }
. Yp o (e (i - p VP
S(%M(O)VJ +§<lgg{§(foq(;(;—; |Xi(s—a)|ds]]
ofpelales o VT
n Nl a‘i' t—s
ESLADY I D |fj(0)|dsJ (10)

r 1/p

+sup Zn: Jz|alj|r(a) ‘fj(Yj(S))_fj(O)‘dsJ

O<t<T | j=1 =1

o pTYP
+sup| > jo(trs L |d}} .

O<t<T | =1

By direct computation, we obtain by (3) that
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Zn:(j;(t —s)"* |xi (s —o-)| ds)pTp

F(a) 0<t<T | i1

isen[ S oo o) | ]

${-or o ]
( ([ (== (9)|d9)pr (11)

nYp
- o+ Ty )

Similar to (11) and the proof of Theorem 1 in [15], we have by (H1), (4) and (5) that

ot p VP ;

5::3{%[15 e } “Fary @

| | i pT¥P y

a foTa , p
0333{'1 [I Z I (a ) |fj(0)|d5} } Sr(a+1)[§aioj ' (13)

and
| |t ) » pJYP | |(t )a—l pJ¥P
mh[f Y )=, (@\ds] } <;eg{;[£;”rTulv,<s>ldsJ }

p¥P (14)

) |a |L ) 1\9/(a-2) (a-1)/a ) » L7 n ;
q
= ZJ[Z{T} J {Emeor] s | ri (8] .
Substitute (11)-(14) into (10), we get

NPT T v
IFsl, <l B g (520

15
- (15)

S il 7o) I, o 3 | b

Similarly, we obtain
ImT v
ol o+ 2 S | .
d,
(T ) (S| W,

Thus, from (15), (16) and (7), we have
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F Y- )+l (1), <A+ 2

T (5] (M(zbg,] <l y)]

+
I(a+)\ T
<(1+A)|(g.w)|+C+Bs<o.

Secondly, we prove that (F,G): X xY — X xY is a contraction mapping. Let (x,y),(u,v)e X xY , similar
to the above process, we get

I(F.0)(x9) - (F.8)(uw] = [F () F (), +[e (x y)-6 (wv),

ZI‘(t_S)M{ G[x(s—0)-u(s—o)]+ Zau( (v (s))- fj<vj(s)))}ds

° I'(a)
(=9 1"
m| . (t—s n
+i‘£{; IOTﬁ){—dj[yj(s—a)—vj(s—a)}+§bji(gi(xi(s))—gi(ui(s)))}ds }
4 pI¥P
<iﬁ‘£{i{ﬁ (t—s) ci|xi£5(;;f)—ui(5—a)| ds} ]
r L pT¥P
n t-— S
+oSsLtlng |Z:1: Ioll( F(a) | |yJ(S)—VJ(S)|dSJ
- Ya
m t- S S o)-V.(S—0o
+ Sup ,Z:; J'O( |y]1"(,3) )i )| dsJ
P I T
m |, (t=S ji | i
- sup > fz%'””"’]
_conl”’ o TP (2, g mYe g LT (o )P
Smax{r(aﬂ)(T—O') +F(ﬁ+1)[§§j] vm(T—‘f) +F(a+1)[§m ] }"(X-Y)—(U’V)"
=B|(x.y)~(u.v)].

By (6), we conclude that (F,G) is a contraction mapping. It follows from the contraction mapping principle

that system (1) has a unique solution. The proof is completed.
Theorem 4. Assume that (H2) holds. If there exist real numbers p,q>1 such that

Conl/P " doml/q 5
aX{F(a+1)(T—O') 'F(ﬁ+1)(T_O-) }<1, @an
then the system (1) has at least one solution on [0,T].
Proof. Let
LT gmers oMt (e Y M (e )
5> WA Ry ey (ﬁ+1)(zéjj +F(“+1)(;m j (18)

Conl/p

_ 0 _ a 0 _ B
1 max{l"(a+1)(r ) ’r(ﬂ+1)(T G)}
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Define two operators (L,L) and (N,N) on B, asfollows

(LD =(L (% YO, L (OG0 L (k) (1)
(VR0 = (N, (590 Ny (1) (1), B () (1), () 1)

where
t (t — S)a_l

L(xy)(6)=4(0)+];

[—cx (s—0o)+1;]ds,

(@)
N(X,y)(t)zj';(tl:(iz; Eaijfj(y())ds i=1-
C ()0, 0)+ | S 5o,
)= Sh  e)e -

Firstly, we will prove (L,E)(x,y)+(N, N_)(x,y)e B, . In fact, using Minkowski inequality and (18) gives
that

(L D) y)+(NN)(xy)|

| . p Y¥Pp
_Os:tjg{gﬂo) J';(tr_(j) {_cx(s a)+§a]f1(yj(s))+l}ds }
™ q)Ya
+§Sg§{iw(0)+ﬁ(tr_(sﬂ)) { d;y;(s-o) gb,-igi(x(S))”J}dS }
N . c (t—s) di
S(Z|¢(0)|j +[§|y, (o)|] +§<?p{z[jo I a|ds]]
- . 51 q Ya | |(t )a_l p VP
med (t—s n e fay|(t—s
+sup ,Z:; Jy J(r(lg)) |y1(5‘7)|dsJ] +§:ﬂg{;[.{o; r'(a) ‘fj(yj(s))‘dSJ }
: |b | ﬂ*1 a ¥ a- p VP
g J%W'g'(w))l“” +s&e{§{f$(t&2> i ]
- q va
+sup % J'O(t (S |J |ds}}
<(1 A_ o7 JomtT” Oy G vl
WAl F g T {F(a+1)( ) T _")}

M,T? (iﬁ“]ﬁq N rh(ﬂail)[i” J ‘s

T
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Thus, we conclude that (L )( ( ) x,y)eB
Secondly, forany (x,u),(y,v)e B , We have

”(" % “‘"'— (xy)=L(uv)], +]C(xy)-L(x y)”
a-1 p VP
gggp{i[ﬁ%m(s—a)—ui(s—a)|dsJ ]
Ya
n tdj (t—s)’g_l q
+§<?£|»;{IOW|)/J(SO—)Vj(SO')|dSJ ]
c,n’? oot )
gmax{r(aﬂ)(T—G) 'F(ﬂ+1)(T o) }"(xu) (y.v)).
which implies that (L,E) is a contraction mapping by (17).

Thirdly, we prove that (N, @ is continuous and compact. Since f;,g;, j=1---,m, i=1---,n, are con-
tinuous, it is obvious that (N, N ) is also continuous. Let (x,y)e B, we get by (H2) that

(N.N)C ) =N ey, +[N (v,

Yp
= | [ |aii|(t_s)ail p m |bji|(t—5)ﬂ7l !
ﬂ%§u§_ﬁa—%WﬁM% +sup| 35| 3o (x5

%H%W+KM%T’

which implies that (N, I\_l) is uniformly bounded on B, . Moreover, we can show that (N,N)(x, y)(t) is
equicontinuous. In fact, for (x, y)eB 0<t, <t,, we obtain

(N R)(x y) (1) - )(t)|
—HN (xy)(t)- (’ z|h+"N xY)(t) =N (xy)(t),

/q

el 89) o eedl (B

as t, »t. Hence, (N, N )(Ba) is relatively compact. By the Arzela-Ascoli theorem, (N , N) is compact. So,

2(t-t)" +t -t
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by Lemma 2 we have that system (1) has at least one solution.

Theorem 5. Assume that (H1) and condition (6) hold. Then the solution of system (1) is uniformly stable on
[0,T].

Proof. Assume that (x(t), y(t))T and (u(t),v(t))T are any two solutions of system (1) with the initial con-
ditions (¢,yr) and (¢7u7) respectively. Then

(x().y()) =(F.6)(xy)(1), (u(t).v(t)" =(F.G)(uv)(1).

that is,
0= 0+ [ 501 S, 1,601 |
1 )=,(0 J;(t;&f,:_l[—d,-yj(s—a)@bﬁgi(x«s))ﬂjds,
0 )=+ [ L 5o+ St o 9) 1 o
07,0+ [T o 5-0)+ Sha 063 o
which implies

[0 y) = (uw) = x=ul, +ly =Vl

a pTYP
-2 ${ LU -t

-1

p VP
+SUPL1[IZ|E‘ | (t- 5)) ‘fj(yj(S))_fj(Vj(S))‘dS] ]

0<t<T

s q Ve
-7, +ggg{§[f‘d‘(§(;)) Iy,(scr)v,(sa)Ids”

o<t<T i1

T e oo i ]

+ dym* —o) + LT" (< » v
[r(ﬂ 500 F(M)[gmj ]ny L
<[io)-(.7)| -l

+5UPL1[J. Z|b | )ﬂ_ |gi(Xi(S))—gi<Ui(S))|dSJ ]

Hence, we have

o) - @l < @) -(7.7)] (19)

Forany &>0, if we take H((/ﬁ (;z? 1/7)H (1-B)e , then we can obtain from (19) that
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Joey)-(uv)|<e.

which implies that the solution of system (1) is uniformly stable on [0,T].

4. An Illustrative Example

In this section, we give an example to illustrate the effectiveness of our main results.
Consider the following two-state Caputo fractional BAM type neural networks model with leakage delay

°Dx, (t) =-0.3x (t- o) - 0.2, (y, (1)) +0.1f,(y, (t ))+04

©Dx, (1) =-0.2%, (t— o)+ 0.3, (y, (1)) +0.2f,(y,(t))-0 20)
°D’y, (t)=-0.4y, (t-0)+0.49,(x (t))+0.2g, (x,(t))-0

°D%y, (t):—0.5y2(t—a)+0.1gl(x1(t))—0.3gz(xz(t))+02

with the initial condition

x()=a(t), %(t)=¢(), vu(t)=vi(t), Y.(1)=w,(t), te[-0.0],

where 4.y, €C([-0,0],R), i=12, «=084=09, c=03, n=m=2, f(x :3(|x.+q—|x.—q),

g;(x)=tanh(x) (i,j=12).Let T=1, p=q=2, from (3)-(5), it is easy to check that
¢, =03, d,=05 a,=03 a,=05 b,=06 b,=04,

=l,=1, 5 =+a}+a, =0.2236, 7, =,/a +a3, =0.3606,
0 1 all a12 2 21 22
= Jb% +b2 =0.4472, & =.[b% +bZ =0.3162.

Thus,

_ cyn”? LT (e Y dgmt oo LT (S0
B_max{r(ml)(r_a) r(p+ 1)(Z§’J T +F(06+1)(;mj

_max{o.3xﬁ x0.7°®  /0.4472% +0.31622 05x+/2x0.7° «/0.22362+0.36062}

r@ws) . r@e) | r@e) . r@o)

=0.9745<1,

that is, condition (6) holds. By utilizing Theorems 3.1 and 3.3, we can obtain that the system (20) has a unique
solution which is uniformly stable on [0,1].

In the following, we show the simulation result for model (20). We consider four cases:
Case 1 with the initial values

CIORAVEACHAC))

Case 2 with the initial values

(-0.3,15,0.9,-0.8)" for te[-0.3,0],

(4.(8), 6, (1) v ()0, (1)) =(1.2,-09,1.4,-13)" for te[-0.3,0],

Case 3 with the initial values

(4.(£). ¢, (), v (£). w2 (1)) =(0.9,16,0.7,L5)" for te[-03,0],

Case 4 with the initial values

(A.(6) 6, (t) v ()0, (1)) =(-0.5,-1.3,-19,2.2)" for te[-0.3,0].

The time responses of state variables are shown in Figure 1.
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x; (1)

v, (O

25 2
15t
l L
05
=
0.
-05
-1
035 10 20 30 20 50 9 10 20 30 40 30
t t
(@) (b)
1.5 : : : : 25
1 2k
15t
0.5
1
O_
=, 0.5
-
-05
0_
_1_
~05
~156 -1
-2 - ; ] 1 -15 L L . L
0 10 20 30 40 50 0 10 20 30 40 30
t t
© (d)

Figure 1. Transient states of the fractional-order BAM neural networks (20) with ¢ =0.8, =09, and 0 =0.3.
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