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Abstract 
By using the asymptotic iteration method, we have calculated numerically the eigenvalues nE  of 

the hyperbolic single wave potential ( ) ( )
( )
x

V x V
x

λ γ
λ0 2

tanh
cosh

+
=  which is introduced by H. Bahlouli, 

and A. D. Alhaidari. They found a new approach (the “potential parameter” approach) which has 
been adopted for this eigenvalues problem. For a fixed energy, the problem is solvable for a set of 
values of the potential parameters (the “parameter spectrum”). This paper will introduce a re-
lated work to complete the goal of finding the eigenvalues, the Schrödinger equation with hyper-
bolic single wave potential is solved by using asymptotic iteration method. It is found that asymp-
totically this method gives accurate results for arbitrary parameters 0V , γ , and λ . 
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1. Introduction 
The numerical solutions of the Schrödinger equation have taken a great deal of interest in the description of 
nuclear motion in molecules in the Born-Oppenheimer approximation or in the description of atoms and mole-
cules in self-consistent field approximations. In most cases the use of numerical methods is necessary, where 
analytical solutions are not possible or difficult to find and the number of exactly solvable problems is very li-
mited [1]. Over the past decade, several numerical methods have been developed for the solution of the 
Schrödinger equation, such as the Nikiforov-Uvarov (NU) method, Runge-Kutta methods, Matrix Diagonaliza-
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tion Method (MDM), Discrete Variable Method (DVM), Spectral Method [2]-[6], and the asymptotic iteration 
method (A.I.M). 

Ever since the inception of empirical Morse potential about 85 years ago, a vast number of potential functions 
have been reported for molecules, with varying degrees of flexibility and accuracy [7]. In this work we are in-
terested to calculate the eigenvalues of hyperbolic single wave potential introduced by H. Bahlouli and A. D. 
Alhaidari [8] [9] some years ago. The new solvable hyperbolic single wave potential introduced given as 

( ) ( )
( )0 2

tanh
,

cosh
x

V x V
x

λ γ
λ
+

=                                 (1) 

where 0V  and γ  are real potential parameters and λ  is a length scale that determines the range of the po-
tential. The first term of this potential is completely new and cannot be predicted by any of the classical ap-
proaches based on diagonal representations. However, the second part is a special case of the hyperbolic 
Pöschl-Teller potential that has an exact conventional (diagonal representation) solution. Physically, the most 
interesting situation is when the parameter γ  lies between 1−  and 1+  in which case the shape of this poten-
tial becomes a hyperbolic single wave about the origin [8] [9]. The potential has two local extrema at 

( )
24 2 3ln

2 11
2

x

γ
γ

λ±

 ± +
 
 + =                                  (2) 

They have dealt with the case 1γ <  which carries a richer structure for a given potential. 
In [8] they have dealt with case 1γ <  which carries a richer structure for a given potential. The configura-

tion of this potential allows for both resonances and bound states, which is contrary to the case 1γ ≥  where 
either bound or resonance energy states are allowed. Nonetheless, their approach can still handle the case 1γ ≥  
as long as 0 0Vγ < . In this work, we apply the asymptotic iteration method, in order to find eigenvalues of 
hyperbolic single wave potential. 

This paper is divided into the following sections. In Section 2, we describe the asymptotic iteration method 
which introduced to find the solutions for the second-order differential equation. In Section 3, change of va-
riables has been done which allows as transforming Schrödinger equation to another form in order to apply the 
method to solve the equation with hyperbolic single wave potential. In Section 4, our numerical calculation re-
sults have been presented for the eigenvalues of the hyperbolic single wave potential. 

2. Solution Methodology 
Recently a technique called the asymptotic iteration method (AIM) has been introduced [10] to obtain eigenva-
lues of second-order homogeneous differential equations. In the case of the Schrödinger equation the AIM was 
found to reproduce the energy spectrum exactly for most exactly solvable potentials [11]-[13], while for non- 
exactly solvable potentials it produces very good results [14]-[18]. 

The first step in applying this method to solve Schrödinger-type equations is to transform these equations, 
with the aid of appropriate asymptotic forms, to second-order homogeneous linear differential equations of the 
general form 

( ) ( ) ( ) ( ) ( )0 0 ,y x k x y x z x y x′′ ′= +                            (3) 

where the primes of ( )y x  denote derivatives with respect to x, ( )0 0k x ≠  and ( )0z x  are functions in
( )C x∞ . The solution of (3) follows from the symmetric structure of the right-hand side of Equation (3). There-

fore, if we differentiate (3) with respect to x, we get 

( ) ( ) ( ) ( ) ( )1 1 ,y x k x y x z x y x′′′ ′= +                              (4) 

where 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2
1 0 0 0

1 0 0 0

k x k x z x k x

z x z x z x k x

′= + +

′= +
                               (5) 

By differentiating Equation (4), we get 
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( ) ( ) ( ) ( ) ( ) ( )4
2 2 ,y x k x y x z x y x′= +                                  (6) 

for which 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 1 1 0 1

2 1 0 1

k x k x z x k x k x

z x z x z x k x

′= + +

′= +
                                (7) 

In general, the ( )1 thj +  and ( )2 thj +  derivatives of (3), 1, 2,j =  , are 
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1
1 1

2

,j
j j

j
j j

y x k x y x z x y x

y x k x y x z x y x

+
− −

+

′= +

′= +
                              (8) 

Respectively, where 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 0 1

1 0 1

j j j j

j j j

k x k x z x k x k x

z x z x z x k x
− − −

− −

′= + +

′= +
                              (9) 

The ratio of the ( )2 thj +  and ( )1 thj +  derivatives can be expressed as 
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                   (10) 

For sufficiently large j, we can introduce the “asymptotic” aspect of the method, that is, if 
( )
( )

( )
( ) ( )1

1

j j

j j

z x z x
x

k x k x
ϕ−

−

= =                                     (11) 

Thus, Equation (13) can be reduced to 
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=                                    (12) 

Which yields 
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 
∫ ∫             (13) 

where 1C  is the integration constant, and the right-hand side of Equation (13) follows from Equation (9) and 
the definition of ( )xϕ . Substituting Equation (13) into Equation (8) we obtain a first-order differential equa-
tion 

( ) ( ) ( ) ( ) ( ){ }1 0exp dy x x y x C x k x xϕ ϕ ′ + = + ∫                     (14) 

Which, in turn, yields the general solution to Equation (3) 

( ) ( )( ) ( ) ( ){ }( )2 1 0exp d exp 2 dy x x x C C k x x xϕ ϕ  = − + +  ∫ ∫ ∫              (15) 

3. Formulation of the Problem  
The time-independent Schrödinger equation, in the field of potential ( )V x  can be written as 

( ) ( ) ( ) ( )
2

2

d1
2 d

x
V x x E x

m x
ψ

ψ ψ− + =                                 (16) 

where ( )V x  is the hyperbolic single wave potential in Equation (1) 
Substituting Equation (1) into Schrödinger equation (16) we obtain 

( ) ( )
( ) ( )

2

02 2

d tanh1 0
2 d cosh

x x
V E x

m x x
ψ λ γ
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λ
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 
                           (17) 
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Before applying AIM to this problem, we have to transform the modified  Schrödinger equation (17) to an 
amenable form for AIM. By using the change of variables, we can simplify Equation (17) by eliminating the 
hyperbolic functions ( )cosh xλ  and ( )tanh xλ  as 

( )tanhr xλ=                                            (18) 

After making the convenient change of variable, a straightforward calculation shows that Equation (17) be-
comes 

( ) ( ) ( ) ( ) ( )
2

0 02

d d
dd

r
k r r z r r

rr
ψ

ψ ψ= +                               (19) 

With ( )0k r  and ( )0z r  are given by 

( )
( ) ( )

( )3
0 2 2

2
1 1

k r r r
r r

= −
+ −

                                (20) 

and 

( )
( ) ( )

( )3 2
0 0 0 0 02 22

2
1 1

mz r V r V r V V r E
r r

γ γ
λ

= − + − −
+ −

                    (21) 

AIM can be applied to the final form of the Schrödinger equation (19). 
In order to calculate the eigenvalues nE , 0,1, 2,3,n =   we need to iterate the expansion 

( ) ( ) ( ) ( ) ( )1 1j j j jr k r z r z r k rϕ − −= −                                (22) 

In each iteration, the expansion will depend on two variables E and r. The calculated eigenvalues nE  by the 
mean of the condition ( ) 0rϕ =  should depend on the choice of r. Nevertheless, the choice of r is observed to 
be critical only to the speed of the convergence of the eigenvalues nE , as well as for the stability of the process. 
In our work, it is observed that the best starting value for r must be 0r = . Therefore, at the end of the iterations 
we put 0r = . 

4. Results and Discussions 
In this section, the paper shows the results of applying and using of AIM numerically, also the results of the 
calculations show that the AIM is powerful and the spectrum of energy for hyperbolic single wave potential can 
be obtained for all energy states. The resulting energy levels of the AIM are not limited by the magnitude of the 
parameters 0 ,V γ  and λ  of the potential. Meanwhile, in the paper which has been done by H. Bahlouli, and A. 
D. Alhaidari found out that it is not so easy to obtain the energy spectrum for the potential by using the method 
which has been used to obtain the potential parameter spectrum, since it has to be inverted itself to obtain the 
energy spectrum, on the other hand, the inversion process is very hard to compute numerically the energy spec-
trum. 

This paper aims to compute the energy spectrum which has not been computed in [8] [9]. To the best of our 
knowledge, this paper is the first study to compute the eigenenergies for the hyperbolic single wave potential. 
Before presenting the results, test where made to find out whether the AIM is suitable for finding the energy 
spectrum for hyperbolic single wave potential. Table 1, elucidate the rate of convergence of the AIM for 0E , 
and 1E . The result shows that for 0E , the convergence takes place when 70j ≥ , while for 1E  the conver-
gence takes place when 95j ≥ . 

Comparing these results with the results obtained through a private communication with the authors of [8] [9] 
which are 0 13.0700709384, 2.4606420559E E= − = − , they were in a good agreement with them. 

The conclusion to be drawn from this behavior which taken from Table 1, is that for the application of the 
method, the number of iterations depends on the degree of convergence required. In order to get accurate result 
for higher excited states, one needs to increase the number of iterations j for ( )rϕ  until the convergence for 

nE  take place. 
Table 2 a comparison between AIM results and numerical results obtained through a private communication 

with the authors of [8] [9] are made for the potential (1) with 0 5V = − , 1, 1mλ = = , and different values of the 
parameter γ , and it is found that the results obtained by AIM are in good agreement with the other. 
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Table 1. The rate of convergence of the AIM for the eigenenergies of the lowest states E0, E1 with hyperbolic single wave 
potential in Equation (1) with V0 = 5, λ = 0.2, γ = −0.4, and m = 1, computed for a number of iterations j.                        

E1 E0 j 

−2.460641892 −3.070070940 60 

−2.460641993 −3.070070939 65 

−2.460642030 −3.070070939 70 

−2.460642044 −3.070070938 75 

−2.460642050 −3.070070938 80 

−2.460642053 −3.070070938 85 

−2.460642054 −3.070070938 90 

−2.460642055 −3.070070938 95 

−2.460642055 −3.070070938 100 

 
Table 2. A comparison of the energy eigenvalues En of the potential (1) with λ = 1, V0 = −5, m = 1 and for different parame-
ter γ.                                                                                                     

E4 E3 E2 E1 E0  γ 

   −0.333846418 −2.369083917 Ref [8] [9] 
0.5 

   −0.3912734181 −2.368969936 AIM 

  −0.2170852399 −1.503735290 −4.229621223 Ref [8] [9] 
1 

  −0.2170852399 −1.505648282 −4.229592395 AIM 

 −0.038680584 −0.904205704 −2.973584203 −6.25431469 Ref [8] [9] 
1.5 

 −0.1127053017 −0.9244639522 −2.973266542 −6.258429400 AIM 

 
In conclusion, AIM was used to obtain the energy spectrum hyperbolic single wave potential. One can note 

that the method gives the eigenvalues if one can transform the Schrödinger equation into a form of 
( ) ( ) ( ) ( ) ( )0 0y x k x y x z x y x′′ ′= + . The obtained numerical eigenenergies are in good agreement with the calcu-

lation results. 
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